数学排序题
① 组合和排列(数学题)
1,总共多少颗糖?
2,9*8*7*6=3024
3,一个演员,四个歌手,5*(8*7*6*5)/4*3*2*1=350
两个演员,三个歌手,(5*4/2)*8*7*6/3*2*1=560
总共910
② 高2数学 排列题目
A6,2
6选2做排列,你都知道是排列了,还不敢做?因为两个数一个做分子一个做分母,会有两个,所以是有顺序的,用排列。
③ 数学中排列问题。
排 列
课题:排列的简单应用(2)
目的:使学生切实学会用排列数公式计算和解决简单的实际问题,进一步培养分析问题、解决问题的能力,同时让学生学会一题多解.
过程:
一、复习:
1.排列、排列数的定义,排列数的两个计算公式;
2.常见的排队的三种题型:
⑴某些元素不能在或必须排列在某一位置——优限法;
⑵某些元素要求连排(即必须相邻)——捆绑法;
⑶某些元素要求分离(即不能相邻)——插空法.
3.分类、分布思想的应用.
二、新授:
示例一:从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
解法一:(从特殊位置考虑)
解法二:(从特殊元素考虑)若选: 若不选:
则共有 + =136080
解法三:(间接法) 136080
示例二:
⑴ 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,
则共有多少种不同的排法?
略解:甲、乙排在前排 ;丙排在后排 ;其余进行全排列 .
所以一共有 =5760种方法.
⑵ 不同的五种商品在货架上排成一排,其中a, b两种商品必须排在一起,而c, d两种商品不排在一起, 则不同的排法共有多少种?
略解:(“捆绑法”和“插空法”的综合应用)a, b捆在一起与e进行排列有 ;
此时留下三个空,将c, d两种商品排进去一共有 ;最后将a, b“松绑”有 .所以一共有 =24种方法.
☆⑶ 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种?
略解:(分类)若第一个为老师则有 ;若第一个为学生则有
所以一共有2 =72种方法.
示例三:
⑴ 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?
略解:
⑵ 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数?
解法一:分成两类,一类是首位为1时,十位必须大于等于3有 种方法;另一类是首位不为1,有 种方法.所以一共有 个数比13 000大.
解法二:(排除法)比13 000小的正整数有 个,所以比13 000大的正整数有 =114个.
示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列.
⑴ 第114个数是多少? ⑵ 3 796是第几个数?
解:⑴ 因为千位数是1的四位数一共有 个,所以第114个数的千位数应该是“3”,十位数字是“1”即“31”开头的四位数有 个;同理,以“36”、“37”、“38”开头的数也分别有12个,所以第114个数的前两位数必然是“39”,而“3 968”排在第6个位置上,所以“3 968” 是第114个数.
⑵ 由上可知“37”开头的数的前面有60+12+12=84个,而3 796在“37”开头的四位数中排在第11个(倒数第二个),故3 796是第95个数.
示例五: 用0,1,2,3,4,5组成无重复数字的四位数,其中
⑴ 能被25整除的数有多少个?
⑵ 十位数字比个位数字大的有多少个?
解: ⑴ 能被25整除的四位数的末两位只能为25,50两种,末尾为50的四位数有 个,末尾为25的有 个,所以一共有 + =21个.
注: 能被25整除的四位数的末两位只能为25,50,75,00四种情况.
⑵ 用0,1,2,3,4,5组成无重复数字的四位数,一共有 个.因为在这300个数中,十位数字与个位数字的大小关系是“等可能的”,所以十位数字比个位数字大的有 个.
三、小结:能够根据题意选择适当的排列方法,同时注意考虑问题的全面性,此外能够借助一题多解检验答案的正确性.
四、作业:“3+X”之 排列 练习
组 合
课题:组合、组合数的综合应用⑵
目的:对排列组合知识有一个系统的了解,掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题.
过程:
一、知识复习:
1.两个基本原理;
2.排列和组合的有关概念及相关性质.
二、例题评讲:
例1.6本不同的书,按下列要求各有多少种不同的选法:
⑴ 分给甲、乙、丙三人,每人两本;
⑵ 分为三份,每份两本;
⑶ 分为三份,一份一本,一份两本,一份三本;
⑷ 分给甲、乙、丙三人,一人一本,一人两本,一人三本;
⑸ 分给甲、乙、丙三人,每人至少一本.
解:⑴ 根据分步计数原理得到: 种.
⑵ 分给甲、乙、丙三人,每人两本有 种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有 种方法.根据分步计数原理可得: ,所以 .因此分为三份,每份两本一共有15种方法.
注:本题是分组中的“均匀分组”问题.
⑶ 这是“不均匀分组”问题,一共有 种方法.
⑷ 在⑶的基础上在进行全排列,所以一共有 种方法.
⑸ 可以分为三类情况:①“2、2、2型”即⑴中的分配情况,有 种方法;②“1、2、3型”即⑷中的分配情况,有 种方法;③“1、1、4型”,有 种方法.所以一共有90+360+90=540种方法.
例2.身高互不相同的7名运动员站成一排,甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?
解:(插空法)现将其余4个同学进行全排列一共有 种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有 种方法.根据分步计数原理,一共有 =240种方法.
例3.⑴ 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?
⑵ 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?
解:⑴ 根据分步计数原理:一共有 种方法.
⑵(捆绑法)第一步从四个不同的小球中任取两个“捆绑”在一起看成一个元素有 种方法,第二步从四个不同的盒取其中的三个将球放入有 种方法.所以一共有 =144种方法.
例4.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?
解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数为 种方法.
例5.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?
解:可以分为两类情况:① 若取出6,则有 种方法;②若不取6,则有 种方法.根据分类计数原理,一共有 + =602种方法.
满意请采纳。
④ 数学排列和组合练习题目
第一题,用1,3,5做末位,有3种方法,然后首位有4种选择,答案3*4*4*3*2=288个;第二题,分两类,即0做末位,结果是4*3=12个,若2或4作末位,有2*3*3=18个,所以答案是12+18=30个。
⑤ (数学)关于组合与排列的题目
含有5个元素的子集:9*8*7*6*5/5! = 126
含有5个元素且0个偶数元素的子集:版一个,就权是{1,3,5,7,9}
含有5个元素且1个偶数元素的子集:有4种选择偶数的方式,5*4*3*2/4! = 5种选择四个奇数的方式,所以总共有4*5 = 20个。
所以含有5个且至少有两个偶数元素的子集有 126 - 1 - 20 = 105个。
⑥ 数学 排列的题目
(1)百位有7种选择,十位有6种选择,个位有5种
7*6*5=210
(2)由三位偶数,可知个位必须是偶数(2,4,6)有3种选择
百位有6种选择,十位有5种选择
6*5*3=90
(3)能被5整除的三位,可知个位必须是5
百位有6种选择,十位有5种选择
6*5*1=30
(4)百位数字是2的三位奇数,可知个位必须是奇数(1,3,5,7)有4种选择
百位有1种选择,十位有5种选择
1*5*4=20
(5)百位数字是2的三位偶数,可知个位必须是偶数(4,6)有2种选择
百位有1种选择,十位有5种选择
1*5*2=10
希望你能看懂,希望你能明白,望采纳,赞同
⑦ 关于排列的数学题
第一:抄1.先考虑甲,只有袭一种;考虑乙,有2钟;其它5人全排列。根据分步记数原理,2*5*4*3*2*1=240
2.先考虑甲,只有一种;考虑乙,有5钟;其它5人全排列。根据分步记数原理,5*5*4*3*2*1=600
3.先考虑甲,只有两种;其它6人全排列。根据分步记数原理,2*6*5*4*3*2*1=1440
4甲乙捆绑有2种,再看成一个整体全排列。2*6*5*4*3*2*1=1440
5.其它4人先排列,甲乙丙3人在5个空种去3个;4*3*2*1*5*4*3=1440
6.甲乙丙3人全排列,其它4人全排列,各自为一个整体全排列。3*2*1*4*3*2*1*2*1=288
第2.10人全排列即可
第3.参考组合数的公式,5人的全排列除以2人的全排列即可。5*4*3*2*1/2*1=60
第4.先排男生3的全排列,再排女生有2种3的全排列,所以答案为3*2*1*2*3*2*1=72
第6.5名志愿者全排列,2位老人全排列,再插入5名志愿者中间的4个空中即可,5*4*3*2*1*2*1*4=960.
⑧ 数学排列问题
1、N=7!-2*6!……总数减相邻的总数
2、N=C5(1)*2*5!……从5人中选一人在甲乙中间C5(1),甲乙有左右2种,将3人
作为以整体。
3、N=4!*4!……相邻的4男生排列4!,作为以整体与3女生排列4!
4、N=4!*3!*2!……相邻的4男生排列4!相邻的3女生排列3!,两整体2!
5、N=4!*A5(3)……先将4男生排列4!,在讲3女生不相邻地插入5个空挡
中A5(3)
6、N=3!*A4(4)……先将3女生排列3!,再将4男生不相邻地插入4个空挡
中A4(4)
7、N=A3(2)*5!……从3女生中选两人在最两端A3(2),然后其余5人排列
8、N=7!/2……甲在乙左还是在乙右的数量是想等的
9、N=(7!/4!)*2……4个男生有4!中排列,只有2种是符合要求的
⑨ 数学排列题目解答
开场节目和压轴节目已被指定,而三个歌曲联唱必须排在一起,那么应用捆绑法将专3个歌曲捆绑成一个整体属
剩下5个节目,因为两个相声要分开,先不考虑排,就剩下三个节目
这三个节目和三个歌曲捆绑成的整体先进行排列,为P44(由于无法打出来,说明一下一个4在P的下面,还有个4在P的上面,这是
排列组合
的符号)
三个歌曲联唱又可以进行排列为P33(一个3在P的下面,还有个3在上面)
另外两个相声要求分开,总共四个节目有5个空,将两个相声插入这5个空中,就满足分开了,这样排列为C52(一个5在C的下面,还有个2在C的上面)
最后安排的方法数为:P44*P33*C52=24*6*10=1440种
⑩ 数学排列的经典例题
通项都告你了:
h(n)=c(2n,n)/(n+1)
Catalan数h(n)与h(n-1)之间的关系你写不出来???
h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) 是用生成函数解决的……
生成函数(也有叫做“母函数”的,但是我觉得母函数不太好听)是说,构造这么一个多项式函数g(x),使得x的n次方系数为f(n)。
生成函数最绝妙的是,某些生成函数可以化简为一个很简单的函数。也就是说,不一定每个生成函数都是用一长串多项式来表示的。比如,这个函数f(n)=1 (n当然是属于自然数的),它的生成函数就应该是g(x)=1+x+x^2+x^3+x^4+...(每一项都是一,即使n=0时也有x^0系数为1,所以有常数项)。再仔细一看,这就是一个有无穷多项的等比数列求和嘛。如果-1<x<1,那么g(x)就等于1/(1-x)了。在研究生成函数时,我们都假设级数收敛,因为生成函数的x没有实际意义,我们可以任意取值。于是,我们就说,f(n)=1的生成函数是g(x)=1/(1-x)。
我们举一个例子说明,一些具有实际意义的组合问题也可以用像这样简单的一个函数全部表示出来。
考虑这个问题:从二班选n个MM出来有多少种选法。学过简单的排列与组合的同学都知道,答案就是C(4,n)。也就是说。从n=0开始,问题的答案分别是1,4,6,4,1,0,0,0,...(从4个MM中选出4个以上的人来方案数当然为0喽)。那么它的生成函数g(x)就应该是g(x)=1+4x+6x^2+4x^3+x^4。这不就是……二项式展开吗?于是,g(x)=(1+x)^4。
你或许应该知道,(1+x)^k=C(k,0)x^0+C(k,1)x^1+...+C(k,k)x^k;但你或许不知道,即使k为负数和小数的时候,也有类似的结论:(1+x)^k=C(k,0)x^0+C(k,1)x^1+...+C(k,k)x^k+C(k,k+1)x^(k+1)+C(k,k+2)x^(k+2)+...(一直加到无穷;式子看着很别扭,自己写到草稿纸上吧,毕竟这里输入数学式子很麻烦)。其中,广义的组合数C(k,i)就等于k(k-1)(k-2)(k-i+1)/i!,比如C(4,6)=4*3*2*1*0*(-1)/6!=0,再比如C(-1.4,2)=(-1.4)*(-2.4)/2!=1.68。后面这个就叫做牛顿二项式定理。当k为整数时,所有i>k时的C(k,i)中分子都要“越过”0这一项,因此后面C(k,k+1),C(k,k+2)之类的都为0了,与我们的经典二项式定理结论相同;不同的是,牛顿二项式定理中的指数k可以是任意实数。
我们再举一个例子说明一些更复杂的生成函数。n=x1+x2+x3+...+xk有多少个非负整数解?这道题是学排列与组合的经典例题了。把每组解的每个数都加1,就变成n+k=x1+x2+x3+...+xk的正整数解的个数了。教材上或许会出现这么一个难听的名字叫“隔板法”:把n+k个东西排成一排,在n+k-1个空格中插入k-1个“隔板”。答案我们总是知道的,就是C(n+k-1,k-1)。它就等于C(n+k-1,n)。它关于n的生成函数是g(x)=1/(1-x)^k。这个生成函数是怎么来的呢?其实,它就是(1-x)的-k次方。把(1-x)^(-k)按照刚才的牛顿二项式展开,我们就得到了x^n的系数恰好是C(n+k-1,n),因为C(-k,n)*(-x)^n=[(-1)^n*C(n+k-1,n)]*[(-1)^n*x^n]=C(n+k-1,n)x^n。这里看晕了不要紧,后文有另一种方法可以推导出一模一样的公式。事实上,我们有一个纯组合数学的更简单的解释方法。因为我们刚才的几何级数1+x+x^2+x^3+x^4+...=1/(1-x),那么(1+x+x^2+x^3+x^4+...)^k就等于1/(1-x)^k。仔细想想k个(1+x+x^2+x^3+x^4+...)相乘是什么意思。(1+x+x^2+x^3+x^4+...)^k的展开式中,n次项的系数就是我们的答案,因为它的这个系数是由原式完全展开后k个指数加起来恰好等于n的项合并起来得到的。
现在我们引用《组合数学》上暴经典的一个例题。很多书上都会有这类题。
我们要从苹果、香蕉、橘子和梨中拿一些水果出来,要求苹果只能拿偶数个,香蕉的个数要是5的倍数,橘子最多拿4个,梨要么不拿,要么只能拿一个。问按这样的要求拿n个水果的方案数。
结合刚才的k个(1+x+x^2+x^3+x^4+...)相乘,我们也可以算出这个问题的生成函数。
引用内容
g(x)=(1+x^2+x^4+...)(1+x^5+x^10+..)(1+x+x^2+x^3+x^4)(1+x)
=[1/(1-x^2)]*[1/(1-x^5)]*[(1-x^5)/(1-x)]*(1+x) (前两个分别是公比为2和5的几何级数,
第三个嘛,(1+x+x^2+x^3+x^4)*(1-x)不就是1-x^5了吗)
=1/(1-x)^2 (约分,把一大半都约掉了)
=(1-x)^(-2)=C(1,0)+C(2,1)x+C(3,2)x^2+C(4,3)x^3... (参见刚才对1/(1-x)^k的展开)
=1+2x+3x^2+4x^3+5x^4+....
于是,拿n个水果有n+1种方法。我们利用生成函数,完全使用代数手段得到了答案!
如果你对1/(1-x)^k的展开还不熟悉,我们这里再介绍一个更加简单和精妙的手段来解释1/(1-x)^2=1+2x+3x^2+4x^3+5x^4+....。
1/(1-x)=1+x+x^2+x^3+x^4+...是前面说过的。我们对这个式子等号两边同时求导数。于是,1/(1-x)^2=1+2x+3x^2+4x^3+5x^4+....。一步就得到了我们所需要的东西!不断地再求导数,我们同样可以得到刚才用复杂的牛顿二项式定理得到的那个结论(自己试试吧)。生成函数还有很多其它的处理手段,比如等式两边同时乘以、除以常数(相当于等式右边每一项乘以、除以常数),等式两边同时乘以、除以一个x(相当于等式右边的系数“移一位”),以及求微分积分等。神奇的生成函数啊。
我们用两种方法得到了这样一个公式:1/(1-x)^n=1+C(n,1)x^1+C(n+1,2)x^2+C(n+2,3)x^3+...+C(n+k-1,k)x^k+...。这个公式非常有用,是把一个生成函数还原为数列的武器。而且还是核武器。
接下来我们要演示如何使用生成函数求出Fibonacci数列的通项公式。
Fibonacci数列是这样一个递推数列:f(n)=f(n-1)+f(n-2)。现在我们需要求出它的生成函数g(x)。g(x)应该是一个这样的函数:
g(x)=x+x^2+2x^3+3x^4+5x^5+8x^6+13x^7+...
等式两边同时乘以x,我们得到:
x*g(x)=x^2+x^3+2x^4+3x^5+5x^6+8x^7+...
就像我们前面说过的一样,这相当于等式右边的所有系数向右移动了一位。
现在我们把前面的式子和后面的式子相加,我们得到:
g(x)+x*g(x)=x+2x^2+3x^3+5x^4+8x^5+...
把这最后一个式子和第一个式子好好对比一下。如果第一个式子的系数往左边移动一位,然后把多余的“1”去掉,就变成了最后一个式子了。由于递推函数的性质,我们神奇地得到了:g(x)+x*g(x)=g(x)/x-1。也就是说,g(x)*x^2+g(x)*x-g(x)=-x。把左边的g(x)提出来,我们有:g(x)(x^2+x-1)=-x。于是,我们得到了g(x)=x/(1-x-x^2)。
现在的任务是要把x/(1-x-x^2)还原成通项公式。这不是我们刚才的1/(1-x)^n的形式,我们要把它变成这种形式。我们发现,1-x-x^2=[1-(1-√5)x/2]*[1-(1+√5)x/2] ((1-√5)/2和(1+√5)/2是怎么算出来的?显然它们应该是x^2-x-1=0的两个根)。那么x/(1-x-x^2)一定能表示成?/[1-(1-√5)x/2]+?/[1-(1+√5)x/2]的形式(再次抱歉,输入数学公式很麻烦,将就看吧)。这是一定可以的,因为适当的?的取值可以让两个分式通分以后分子加起来恰好为一个x。?取值应该是多少呢?假设前面一个?是c1,后面那个是c2,那么通分以后分子为c1*[1-(1+√5)x/2]+c2*[1-(1-√5)x/2],它恰好等于x。我们得到这样两个式子:常数项c1+c2=0,以及一次项-c1*(1+√5)/2-c2*(1-√5)/2=1。这两个式子足够我们解出c1和c2的准确值。你就不用解了,我用的Mathematica 5.0。解出来c1=-1/√5,c2=1/√5。你不信的话你去解吧。现在,我们把x/(1-x-x^2)变成了-(1/√5)/[1-(1-√5)x/2] + (1/√5)/[1-(1+√5)x/2]。我们已经知道了1/[1-(1-√5)x/2]的背后是以(1-√5)/2为公比的等比数列,1/[1-(1+√5)x/2]所表示的数列公比为(1+√5)/2。那么,各乘以一个常数,再相加,我们就得到了Fibonacci数列的通项公式:f(n)=-(1/√5)*[(1-√5)/2]^n + (1/√5)*[(1+√5)/2]^n。或许你会问,这么复杂的式子啊,还有根号,Fibonacci数列不都是整数吗?神奇的是,这个充满根号的式子对于任何一个自然数n得到的都是整数。熟悉用特征方程解线性递推方程的同学应该知道,以上过程实质上和找特征根求解没有区别。事实上,用上面所说的方法,我们可以求出任何一个线性齐次递推方程的通项公式。什么叫做线性齐次递推呢?就是这样的递推方程:f(n)等于多少个f(n-1)加上多少个f(n-2)加上多少个f(n-3)等等。Fibonacci数列的递推关系就是线性齐次递推关系。
我们最后看一个例子。我们介绍硬币兑换问题:我有1分、2分和5分面值的硬币。请问凑出n分钱有多少种方法。想一下刚才的水果,我们不难得到这个问题的生成函数:g(x)=(1+x+x^2+x^3+...)(1+x^2+x^4+...)(1+x^5+x^10+..)=1/[(1-x)(1-x^2)(1-x^5)]。现在,我们需要把它变成通项公式。我们的步骤同刚才的步骤完全相同。我们把(1-x)(1-x^2)(1-x^5)展开,得到1-x-x^2+x^3-x^5+x^6+x^7-x^8。我们求出-1+x+x^2-x^3+x^5-x^6-x^7+x^8=0的解,得到了以下8个解:-1,1,1,1,-(-1)^(1/5),(-1)^(2/5),-(-1)^(3/5),(-1)^(4/5)。这个不是我解出来的,我还是用的Mathematica 5.0。不是我不想解,而是我根本不会解这个8次方程。这也是为什么信息学会涉及这些东西的原因:次数稍微一高,只好交给计算机解决了。于是,(1-x)(1-x^2)(1-x^5)=(1+x)(1-x)^3(1+(-1)^(1/5) x)()()() (省略不写了)。注意那个(1-x)^3。由于等根的出现,我们不得不把(1-x)^3所包含的(1-x)和(1-x)^2因子写进一会儿的分母里,不然会导致解不出合适的c来。你可以看到很多虚数。不过没关系,这些虚数同样参与运算,就像刚才的根式一样不会影响到最后结果的有理性。然后,我们像刚才一样求出常数满足1/(1-x)(1-x^2)(1-x^5)=c1/()+c2/(1-x)+c3/(1-x)^2+c4/(1-x)^3...+c8/()。这个解太复杂了,我用Mathematica解了几分钟,打印出了起码几十KB的式子。虽然复杂,但我确实是得到了通项公式。你有兴趣的话可以尝试用Mathematica解决一下1/[(1-x)(1-x^3)] (只有1分和3分的硬币)。解c的值时可以用SolveAlways[]函数。你可以亲眼见到,一个四五行的充满虚数的式子最后总是得到正确的整数答案。
生成函数还有很多东西,推导Catalan数列啊,指数生成函数啊,之类的。我有空再说吧,已经5000多个字了。
huyichen一直在问那道题。很显然,那道题目和上面的兑换硬币有些联系。事实上,很多与它类似的题目都和生成函数有关。但那个题却没有什么可以利用生成函数的地方(或许我没想到吧)。或许每个max的值有什么方法用生成函数解出来,但整个题目是不大可能用生成函数解决的。
近来有个帖子问一道“DP天牛”题目的。那个题目也是这样,很多与它类似的题目都和DP有关,但那道题却不大可能动规。我总觉得它可以归约到装箱问题(考虑体积关系,最少要几个箱子才能把物品放完),而后者貌似属于NPC。或许我错了吧,现在没事就在研究理论的东西,很久没有想过OI题了,这方面的能力已经开始退化了。