当前位置:首页 » 语数英语 » 数学圆的知识点

数学圆的知识点

发布时间: 2021-08-09 19:17:47

Ⅰ 小学五年级数学关于圆的知识点

、圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
2、圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示
3、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
4、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
5、圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴
6、在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
7、圆的半径或直径决定圆的大小,圆心决定圆的位置。
8、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
9、圆周率:圆的周长与直径的比值叫做圆周率。
10、圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
11、直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
12、圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。
13、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
14、在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
二、周长计算公式
(1)已知直径:C=πd
(2)已知半径:C=2πr
(3)已知周长:D=c/π
(4)圆周长的一半:1/2周长(曲线)
(5)半圆的周长:1/2周长+直径(π÷2+1)
三、面积计算公式:
(1)已知半径:S=πr2
(2)已知直径:S=π(d/2)2
(3)已知周长:S=π[c÷(2π)]2

Ⅱ 六年级数学圆的知识归纳

1、圆:圆是由一条曲线围成的平面图形。
(长方形、梯形等都是由几条线段围成的平回面图形)
2、半径:答一端在圆心,一端在圆上的线段叫半径。在同一圆里,半径有无数条,条条都相等。
3、直径:通过圆心,两端都在圆上的线段叫直径。在同一圆里,直径有无数条,条条都相等。
在同一圆里,直径长是半径长的2倍。(d=2r, r=d÷2)
4、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
5、圆心决定圆的位置,半径决定圆的大小。
6、正方形里最大的圆。两者联系:边长=直径
7、长方形里最大的圆。两者联系:宽=直径
8、直径是圆里最长的线段
11、半圆的周长等于圆周长的一半加一条直径。
14、半圆的面积是圆面积的一半。S半=πX r的平方÷2
15、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径的倍数2倍
16、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。
17、三个顶点都在圆上,且有一条边是直径的三角形一定是直角三角形。
应用这条规律可以找出圆的直径和圆心。
(1)以圆上的一个点为顶点画一个直角
(2)连接角的两边与圆的两个交点,这条就是直径

Ⅲ 初三数学圆知识点

1、 圆的有关概念:(1)、确定一个圆的要素是圆心和半径。(2)连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。圆上任意两点间的部分叫做圆弧,简称弧。小于半圆周的圆弧叫做劣弧。大于半圆周的圆弧叫做优弧。在同圆或等圆中,能够互相重合的弧叫做等弧。顶点在圆上,并且两边和圆相交的角叫圆周角。经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。直角三角形内切圆半径 满足: 。
2、 圆的有关性质(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论1(ⅰ)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(ⅱ)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(ⅲ)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。推论2圆的两条平行弦所夹的弧相等。(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90 。90 的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。(5)定理:不在同一条直线上的三个点确定一个圆。(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。

Ⅳ 初三数学圆的知识点

1.圆的定义
圆的定义有两个:
其一:平面上到定点 的距离等于定长的所有点所组成的图形叫圆。
其二:平面上一条线段,绕它固定的一个端点O旋转360°,它的另一端留下的轨迹叫圆。

2.圆的其他相关量
①圆心与半径:(如定义)固定的端点O即为圆心,用字母 来表示,记作⊙O;定义中的定长即为半径,用字母r表示;
②弦与直径:连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆中最长的弦为直径;
③圆弧:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧;
④圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;
⑤等圆:能够重合的两个圆叫做等圆。

3.垂径定理及其推论
①定理
如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的两条弧。
②推论(四条)
推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧;
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧;
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。

4.圆心角与圆周角
(1)定义
①圆心角:顶点在圆心的角叫做圆心角;
②圆周角:顶点在圆上,且两边都与圆相交的角叫做圆周角。
(2)定理及推论
①圆心角
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
推论一:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等;
推论二:在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等。
②圆周角
定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
推论一:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;
推论二:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等;
推论三:圆内接四边形的对角互补。

5.点与圆的位置关系
(1)点和圆的位置关系
点和圆的位置关系相对较为简单,可分为三种情况:圆内、圆上和圆外。
一般情况下,判断点和圆的位置关系,以点到圆心的距离和圆半径之间的大小为依据,假设⊙O的半径为r,点P到圆心O的距离为d,则点P与⊙O的位置关系可表示如下:
点P 在⊙O 外 等价于d >r
点P 在⊙O 上 等价于d =r
点P 在⊙O 内 等价于d <r
(2)不在同一直线上的三个点确定一个圆
不在同一直线上的三个点确定一个圆。根据这一定理,我们可以经过任意三角形的三个顶点做一个圆,这个圆就叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做该三角形的外心。
(3)反证法
不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立。这种证明方法就叫做反证法。

6.直线与圆的位置关系
直线与圆的位置关系可分为三种:相交、相切和相离,详述如下:
(1)相交
直线和圆有两个公共点,则直线与圆相交,这条直线叫做圆的割线。
(2)相切
直线和圆只有一个公共点,则直线与圆相切,该直线叫做圆的切线,该公共点叫做切点。
(3)相离
即直线和圆没有公共点。
假设⊙O 的半径为r ,直线l 到圆心O 的距离为d ,根据上述定义,可以得到:
直线l 和⊙O 相交 等价于d <r
直线l 和⊙O 相切 等价于d =r
直线l 和⊙O 相离 等价于d >r

7.关于切线的定理
(1)切线的定义
如果一条直线和圆只有一个公共点,那么这条直线和圆相切,直线就叫做圆的切线,公共点即为切点。
(2)切线判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。
(3)切线性质定理
圆的切线垂直于过切点的半径。
(4)切线长
经过圆外一点做圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。
(5)切线长定理
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

8.三角形内切圆
与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。另外还需知道一点,即三角形的内心到三角形三边的距离相等,也就是三角形内切圆半径。

9.圆与圆的位置关系
圆与圆的位置关系主要可分为三种:相离、相切和相交,分述如下:
(1)相离
如果两个圆没有公共点,那么就说这两个圆相离;相离又分为外离和内含,两圆内含有一种特殊情况即两圆同心。
(2)相切
如果两个圆只有一个公共点,那么就说这两个圆相切;相切又可分为外切和内切。
(3)相交
两圆相交较为简单,即如果两个圆有两个公共点,那么就说这两个圆相交。

10.正多边形和圆
我们先来温习一下什么是正多边形——各边相等、各角也相等的多边形,我们称之为正多边形。
正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。

Ⅳ 求初中数学圆的知识点(最好带图)

1、圆是定点的距离等于定长的点的集合

2、圆的内部可以看作是圆心的距离小于半径的点的集合

3、圆的外部可以看作是圆心的距离大于半径的点的集合

4、同圆或等圆的半径相等

5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

7、到已知角的两边距离相等的点的轨迹,是这个角的平分线

8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

9、定理不在同一直线上的三点确定一个圆。

10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

11、推论1:

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

12、推论2:圆的两条平行弦所夹的弧相等

13、圆是以圆心为对称中心的中心对称图形

14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

16、定理:一条弧所对的圆周角等于它所对的圆心角的一半

17、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

18、推论:2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

19、推论:3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

20、定理: 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

21、①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

23、切线的性质定理圆的切线垂直于经过切点的半径

24、推论1 经过圆心且垂直于切线的直线必经过切点

25、推论2 经过切点且垂直于切线的直线必经过圆心

26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

27、圆的外切四边形的两组对边的和相等

28、弦切角定理:弦切角等于它所夹的弧对的圆周角

29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

34、如果两个圆相切,那么切点一定在连心线上

35、①两圆外离 d>R+r

②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r)

⑤两圆内含 d<R-r(R>r)

36、定理:相交两圆的连心线垂直平分两圆的公共弦

37、定理:把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

38、定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

39、正n边形的每个内角都等于(n-2)×180°/n

40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

41、正n边形的面积Sn=pnrn/2 p表示正n边形的周长

42、正三角形面积√3a/4 a表示边长

43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,

因此k (n-2)180°/n=360°化为(n-2)(k-2)=4

44、弧长计算公式:L=n兀R/180

45、扇形面积公式:S扇形=n兀R^2/360=LR/2

46、内公切线长= d-(R-r) 外公切线长= d-(R+r)

Ⅵ 小学数学圆的知识点

数学圆也是一个很重要的知识点,今天就来总结一下小学阶段圆的一些知识版点~

π是一个无限权不循环小数,范围在3.1415926~3.1415927之间,一般计算取3.14。圆还有一些易错的知识点,要将概念记忆清楚,比如:任意俩条半径都能组成一条直径,这说法是错误的。通过圆心并且两端都在圆上的线段叫做直径。

热点内容
关节痛怎么 发布:2025-07-03 13:04:02 浏览:270
艺新教育 发布:2025-07-03 12:42:17 浏览:8
历史上有几个皇帝 发布:2025-07-03 11:31:18 浏览:975
面包教学视频 发布:2025-07-03 11:01:53 浏览:490
鲍鱼是什么意思 发布:2025-07-03 10:12:06 浏览:662
编制教师招聘 发布:2025-07-03 07:57:11 浏览:747
新教师教学心得 发布:2025-07-03 07:17:38 浏览:215
教师个人师德师风剖析材料 发布:2025-07-03 06:22:30 浏览:595
中小学教师师德师风自查报告 发布:2025-07-03 05:51:21 浏览:831
金榜行动数学 发布:2025-07-03 05:46:20 浏览:215