当前位置:首页 » 语数英语 » 在线考研数学

在线考研数学

发布时间: 2021-08-10 13:57:11

❶ 考研数学有那些范围啊

考研数学分为数一、数二、数三,因考研专业而异。

一、数一大纲:

1、考试科目:

高等数学、线性代数、概率论与数理统计

2、形式结构:

(1)试卷满分及考试时间

试卷满分为150分,考试时间为180分钟.

(2)答题方式

答题方式为闭卷、笔试.

(3)试卷内容结构

高等数学 56%

线性代数 22%

概率论与数理统计22%

(4)试卷题型结构为:

单选题 8小题,每题4分,共32分

填空题 6小题,每题4分,共24分

解答题(包括证明题) 9小题,共94分

二、数二大纲:

1、考试科目:

高等数学、线性代数

2、形式结构

(1)试卷满分及考试时间

试卷满分为150分,考试时间为180分钟。

(2)答题方式

答题方式为闭卷、笔试。

(3)试卷内容结构

高等数学 78%

线性代数 22%

(4)试卷题型结构:

单项选择题选题 8小题,每题4分,共32分

填空题 6小题,每题4分,共24分

解答题(包括证明题) 9小题,共94分

三、数三大纲:

1、考试科目:

微积分、线性代数、概率论与数理统计

2、形式结构:

(1)试卷满分及考试时间

试卷满分为150分,考试时间为180分钟.

(2)答题方式

答题方式为闭卷、笔试.

(3)试卷内容结构

微积分 56%

线性代数 22%

概率论与数理统计 22%

(4)试卷题型结构

单项选择题选题8小题,每题4分,共32分

填空题 6小题,每题4分,共24分

解答题(包括证明题) 9小题,共94分

(1)在线考研数学扩展阅读:

考研数学命题原则:

1、科学性与公平性原则

作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免过于广大考生来说过于专业和抽象难懂的内容。

2、覆盖全面的原则

考研数学试题的内容要求涵盖所有考纲所要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。

3、控制难易度的原则

考研数学试题要求以中等偏上题为主,考试及格率控制在30-40%,平均分(满分150分)控制在75分左右。

3、控制题量的原则

考研数学试题的题量控制在20-22道之间(一般6道填空题,6道选择题,10道大题),保证考生基本能答完试题并有时间检查。

数学试卷的结构是总共20道题,填空5个,选择5个,大的综合题10个,其中高数6个,线性代数和概率论各2个。

❷ 考研数学总共有哪几种,具体考什么

考研数学一

高等数学、线性代数、概率论与数理统计。

高等数学占56%,线性代数占22%,概率论与数理统计占22%。

考研数学二

高等数学、线性代数。

高等数学占78%,线性代数占22%。

考研数学三

微积分、线性代数、概率论与数理统计。

微积分占56%,线性代数占22%,概率论与数理统计占22%。

(2)在线考研数学扩展阅读

根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。招生专业须使用的试卷种类规定如下:

一、须使用数学一的招生专业

1、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。

2、授工学学位的管理科学与工程一级学科。

二、须使用数学二的招生专业

工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。

三、须选用数学一或数学二的招生专业(由招生单位自定)

工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。

四、须使用数学三的招生专业

1、经济学门类的各一级学科。

2、管理学门类中的工商管理、农林经济管理一级学科。

3、授管理学学位的管理科学与工程一级学科。

❸ 考研数学1包括哪些内容

考研数学从卷种上来看是分为数学一、数学二和数学三,从所考难度、考试范围及适用专业这几个方面,能很好的区分考研数学一、二、三,请同学一定要注意。

  • 就所考范围:

数一与数三在题目类型的分布上是一致的,1-4、9-12、15-19属于高等数学的题目,5-6、13、20-21属于线性代数的题目,7-8、14、22-23属于概率论与数理统计的题目;而数学二不同,1-6、9-13、15-21均是高等数学的题目,7-8、14、22-23为线性代数的题目。

也就是说数学一和数学三会考高等数学、线性代数、概率论与数理统计,数学二只考高等数学、线性代数。

可以从上面的题型分布看出:

1、线性代数数学一、二、三均考察线性代数这门学科,而且所占比例均为22%,从历年的考试大纲来看,数一、二、三对线性代数部分的考察区别不是很大,唯一不同的是数一的大纲中多了向量空间部分的知识,不过通过研究近五年的考试真题,我们发现对数一独有知识点的考察只在09、10年的试卷中出现过,其余年份考查的均是大纲中共同要求的知识点。所以根据以往的经验来看,今年的考研数学中数一、数二、数三线性代数部分的题目也不会有太大的差别!

2、概率论与数理统计数学二不考察,数学一与数学三均占22%,从历年的考试大纲来看,数一比数三多了区间估计与假设检验部分的知识,但是对于数一与数三的大纲中均出现的知识在考试要求上也还是有区别的,比如数一要求了解泊松定理的结论和应用条件,但是数三就要求掌握泊松定理的结论和应用条件,广大的考研学子们都知道大纲中的“了解”与“掌握”是两个不同的概念,因此,建议广大考研党在复习概率这门学科的时候一定要对照历年的考试大纲,不要做无用功!3、高等数学数学一、二、三均考察,而且所占比重最大,数一、三的试卷中所占比例为56%,数二所占比例78%。由于考察的内容比较多,故我们只从大的方向上对数一、二、三做简单的区别。以同济六版教材为例,数一考察的范围是最广的,基本涵盖整个教材(除课本上标有*号的内容);数二不考察向量代数与空间解析几何、三重积分、曲线积分、曲面积分以及无穷级数;数三不考察向量空间与解析几何、三重积分、曲线积分、曲面积分以及所有与物理相关的应用。

  • 就难度而言:

数学一和数学三不相上下,都不容易,数学二相对来说要简单

  • 就适用专业:

数学一主要适用于理工学类,数学二适用于农、林、地、矿、油等专业,数学三适用于经济学及管理学类。

综上所述:

如果学的是自动化,是要数学一,数学一所考范围已经在上面的内容作了详细的阐述。数学一是这三类里面最难的一类,请不要忽视,加油!祝金榜题名!

❹ 求,新东方在线2017考研数学高数口诀

2017考研数学高数42句口诀必背
口诀1:函数概念五要素,定义关系最核心。
口诀2:分段函数分段点,左右运算要先行。
口诀3:变限积分是函数,遇到之后先求导。
口诀4:奇偶函数常遇到,对称性质不可忘。
口诀5:单调增加与减少,先算导数正与负。
口诀6:正反函数连续用,最后只留原变量。
口诀7:一步不行接力棒,最终处理见分晓。
口诀8:极限为零无穷小,乘有限仍无穷小。
口诀9:幂指函数最复杂,指数对数一起上。
口诀10:待定极限七类型,分层处理洛必达。
口诀11:数列极限洛必达,必须转化连续型。
口诀12:数列极限逢绝境,转化积分见光明。
口诀13:无穷大比无穷大,最高阶项除上下。
口诀14:n项相加先合并,不行估计上下界。
口诀15:变量替换第一宝,由繁化简常找它。
口诀16:递推数列求极限,单调有界要先证,两边极限一起上,方程
之中把值找。
口诀17:函数为零要论证,介值定理定乾坤。
口诀18:切线斜率是导数,法线斜率负倒数。
口诀19:可导可微互等价,它们都比连续强。
口诀20:有理函数要运算,最简分式要先行。
口诀21:高次三角要运算,降次处理先开路。
口诀22;导数为零欲论证,罗尔定理负重任。
口诀23:函数之差化导数,拉氏定理显神通。
口诀24:导数函数合(组合)为零,辅助函数用罗尔。
口诀25:寻找ξη无约束,柯西拉氏先后上。
口诀26:寻找ξη有约束,两个区间用拉氏。
口诀27:端点、驻点、非导点,函数值中定最值。
口诀28:凸凹切线在上下,凸凹转化在拐点。
口诀29:数字不等式难证,函数不等式先行。
口诀30:第一换元经常用,微分公式要背透。
口诀31:第二换元去根号,规范模式可依靠。
口诀32:分部积分难变易,弄清u、v是关键。
口诀33:变限积分双变量,先求偏导后求导。
口诀34:定积分化重积分,广阔天地有作为。
口诀35:微分方程要规范,变换,求导,函数反。
口诀36:多元复合求偏导,锁链公式不可忘。
口诀37:多元隐函求偏导,交叉偏导加负号。
口诀38:多重积分的计算,累次积分是关键。
口诀39:交换积分的顺序,先要化为重积分。
口诀40:无穷级数不神秘,部分和后求极限。
口诀41:正项级数判别法,比较、比值和根值。
口诀42:幂级数求和有招,公式、等比、列方程。

❺ 考研数学一二三怎么区别

数学一是考研数学一是考研数学中难度最大,范围最广的。数学一的考试科目包括高等数学、线性代数、概率统计三科。其中高等数学占比百分之五十六;线性代数占比百分之二十二;概率统计占比百分之二十二;

数学二是考研数学二是考研数学中考试范围最小,但是高等数学占比最高的。考研数学二的考试科目包括高等数学和线性代数其中高等数学占比百分之七十八;线性代数占比百分之二十二。

数学三是考研数学三是考研数学中考试难度较简单的。考研数学三的考试科目与数学一完全一样,各科目的分值占比也与考研数学一完全一样。但是难度相对于考研数学一而言较为简单。

这三者区别是:

1、数学一考得比较全面,高数,线代,概论都考,而且题目偏难。

2、数二不考概论,而且题目较数学一容易。

3、数三考得也很全面,题目的难度不比数一简单多少

4、在专业方面,工学类专业的为数一、数二,学校的不同限定了究竟是考数一还是数二,经济学和管理学类专业的为数学三。

5、在难度方面,数一最难,其次是数二,最后是数三。数三照比前两者是稍微简单些,但是考研数学毕竟是考研数学,难度都不容小觑。

6、数学一需要学习的内容最多,高数,线性代数以及概率都要考,其中的考点也考察的很全面,书中删减的,不需要学习的内容特别少。

7、数学二只考察高数和线性代数两本书,但是其中考题的难度是很大的。

8、数学三考察的书目与数学一相同,其中有一些数一学习考察的内容数三是不需要掌握的,但是数学三与数学一需要学习的内容是相当之多的,而数学二虽是少学了一本书的内容,但是难度却是很大的。

(5)在线考研数学扩展阅读:

根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。招生专业须使用的试卷种类规定如下:

一、须使用数学一的招生专业

1、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程。

测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。

2、授工学学位的管理科学与工程一级学科。

二、须使用数学二的招生专业

工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。

三、须选用数学一或数学二的招生专业(由招生单位自定)

工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。

四、须使用数学三的招生专业

1、经济学门类的各一级学科。

2、管理学门类中的工商管理、农林经济管理一级学科。

3、授管理学学位的管理科学与工程一级学科。

❻ 考研数学三

考试形式

1、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
2、答题方式
答题方式为闭卷、笔试.
试卷内容结构

微积分 56%
线性代数 22%
概率论与数理统计 22%
试卷题型结构

单项选择题选题8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
考试内容编辑
微积分

函数、极限、连续
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性.单调性.周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.了解数列极限和函数极限(包括左极限与右极限)的概念.
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.
7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.
一元函数微分学
考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.
2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.
9.会描述简单函数的图形.
一元函数积分学
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.
4.了解反常积分的概念,会计算反常积分.
多元函数微积分学
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.
无穷级数
考试要求
1.了解级数的收敛与发散.收敛级数的和的概念.
2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.
6.了解 e的x次方, sin x, cos x, ln(1+x)及(1+x)的a 次方的麦克劳林(Maclaurin)展开式.
常微分方程与差分方程
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性微分方程.
4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.了解一阶常系数线性差分方程的求解方法.
7.会用微分方程求解简单的经济应用问题.
线性代数

行列式
考试内容:行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
矩阵
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
向量
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
线性方程组
考试要求
1.会用克莱姆法则解线性方程组.
2.掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
矩阵的特征值和特征向量
考试要求
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
二次型
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型.正定矩阵的概念,并掌握其判别法.
概率统计

随机事件和概率
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
随机变量及其分布
考试要求
1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为
5.会求随机变量函数的分布.
多维随机变量及其分布
考试要求
1.理解多维随机变量的分布函数的概念和基本性质.
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.
4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.
5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.
随机变量的数字特征
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量函数的数学期望.
3.了解切比雪夫不等式.
大数定律和中心极限定理
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.
数理统计的基本概念
考试要求
1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布、分布和分布得上侧 分位数,会查相应的数值表.
3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.
4.了解经验分布函数的概念和性质.
参数估计
考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法
考试要求
1.了解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.

❼ 有没有比较好的考研数学网课推荐

考研课程千万不要人云亦云,不要在意别人的说法,只有适合你的才是好的,别人说好是对他好,考研好课,这个宫中好。上共,享了很多名师以及机构的网课视频,都是实时更新的,大家可以看一下各个机构的进行对比,选择一个最适合自己的就可以了,需要的同学可以去看一下,可以的话点个采纳点个赞哈!

❽ 有推荐的考研数学网课和资料吗

一般建议先打造自己的数学基础先。

❾ 考研数学都考什么

数 学 三

考试科目 微积分、线性代数、概率论与数理统计

微 积 分
一、函数、极限、连续
考试内容
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、隐函数、反函数、分段函数和隐函数基本初等函数的性质及图形 初等函数函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小和无穷大的概念及关系 无穷小的性质及无穷小的比较极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:
,
函数连续的概念 函数间断点的类型 初等函数的连续性闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,理解初等函数的概念.
5.了解数列极限和函数极限(包括左、右极限)的概念.
6.理解无穷小的概念和基本性质,掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系.
7.了解极限的性质与极限存在的两个准则,掌握极限四则运[wiki]算法[/wiki]则,会应用两个重要极限.
8.理解函数连续性的概念(含左连续与右连续), 会判别函数间断点的类型.
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值与最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学
考试内容
导数和微分的概念 导数的几何意义和经济意义函数的可导性与连续性之间的关系 平面曲线的切线与法线导数和微分的四则运算 基本初等函数的导数复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式不变性微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值函数图形的凹凸性、拐点及渐近线 函数图形的描绘函数的最大值与最小值
考试要求
1. 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线[wiki]方程[/wiki]和法线方程.
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导法.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(Rol1e)定理、拉格朗日(Lagrange)中值定理、了解泰勒(Taylor)定理、了解柯西(Cauchy)中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念掌握函数极值、最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数,当 时, 的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点和渐近线.
9.会描绘简单函数的图形.

三、一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质基本积分公式 定积分的概念和基本性质定积分中值定理积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法和分部积分法 反常(广义)积分积分的应用
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握不定积分的换元积分法与分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用题.
4.了解反常积分的概念,会计算反常积分.

四、多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续性的概念有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算无界区域上简单的广义二重积分
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会用多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决某些简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法([wiki]直角[/wiki]坐标、极坐标),了解无界区域上较简单的广义二重积分并会计算.

五、无穷级数
考试内容
常数项级数收敛与发散的概念收敛级数的和的概念 级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性 正项级数收敛性的判别任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区问(指开区间)和收敛域 幂级数的和函数 幂级数在收敛区间内的基本性质 简单幂级数的和函数的求法
初等函数的幂级数展开式
考试要求
1.了解级数的收敛与发散、收敛级数的和的概念.
2.掌握级数的基本性质及级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和.
6"掌握 、 、 、 及的麦克劳林(Maclaurin)展开式,会用它们将简单函数间接展开成幂级数.

六、常微分方程与差分方程
考试内容
微分方程的概念变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解 一阶常系数线性差分方程微分方程与差分方程的简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性微分方程.
4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.掌握一阶常系数线性差分方程的求解方法.
7.会用微分方程和差分方程求解简单的经济应用问题.
Back

线 性 代 数
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.理解行列式的概念,掌握行列式的性质.
2. 会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂方阵乘积的行列式
矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵矩阵的初等变换 初等矩阵 矩阵的秩矩阵的等价 分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,理解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵的乘积的行列式的性质.
3.理解逆矩阵的概念、掌握逆矩阵的性以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.

三、向量
考试内容
向量的概念 向量的线性组合与线性表示 向量组线性相关与线性元关 向量组的极大线性元关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系
向量的内积 线性无关向量组的正交规范化方法
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大无关组的概念,会求向量组的极大无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法

❿ 考研数学考的是什么内容

考研时的知识点基本上都是高数、线代与概率论的知识点。一般统考不会超过课本知识,但是难度比课本习题难度大很多。一般可以参考每年的数学考研大纲。数学一考研数学内容:

高等数学

一、函数、极限、连续

考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数

二、一元函数微分学

考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法;线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数。

一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径

四、向量代数和空间解析几何

考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念

平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程

五、多元函数微分学

考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用

六、多元函数积分学

考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用

七、无穷级数

考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域

幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数

八、常微分方程

考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用

线性代数

一、行列式

考试内容行列式的概念和基本性质行列式按行(列)展开定理

二、矩阵

考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算

三、向量

考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质

四、线性方程组

考试内容:线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解

五、矩阵的特征值和特征向量

考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵

六、二次型

考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性

概率论与数理统计

一、随机事件和概率

考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验

二、随机变量及其分布

考试内容:随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布

三、多维随机变量及其分布

考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布

四、随机变量的数字特征

考试内容:随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质

五、大数定律和中心极限定理

考试内容:切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理

六、数理统计的基本概念

考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布

七、参数估计

考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计

八、假设检验

考试内容:显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验

(10)在线考研数学扩展阅读:

一、须使用数学一的招生专业

1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。

2.授工学学位的管理科学与工程一级学科。

二、须使用数学二的招生专业

工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。

三、须选用数学一或数学二的招生专业(由招生单位自定)

工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。

四、须使用数学三的招生专业

1.经济学门类的各一级学科。

2.管理学门类中的工商管理、农林经济管理一级学科。

3.授管理学学位的管理科学与工程一级学科。

热点内容
浅谈学前教育 发布:2025-06-30 13:13:39 浏览:626
8个月宝宝拉稀怎么办 发布:2025-06-30 13:01:17 浏览:786
教育机构取名 发布:2025-06-30 12:51:10 浏览:337
哪里的面好吃 发布:2025-06-30 12:33:04 浏览:996
转转笔基础教学 发布:2025-06-30 10:03:48 浏览:32
师生恋夜夜不 发布:2025-06-30 09:44:16 浏览:65
家长意见和建议怎么写 发布:2025-06-30 06:36:14 浏览:508
老师尤物 发布:2025-06-30 04:45:10 浏览:145
徐州教师补课 发布:2025-06-30 04:08:30 浏览:482
化学mn 发布:2025-06-30 02:22:21 浏览:834