当前位置:首页 » 语数英语 » 高考数学考纲

高考数学考纲

发布时间: 2021-08-11 00:53:42

㈠ 高考数学考试大纲

高考数学考试大纲,
省市不同,大纲会有些许不同的,
建议你直接问你们数学老师,这样才不会走冤枉路的。

㈡ 关于高考文科数学考纲

(一)集合
1.集合的含义与表示
2.集合间的基本关系
3.集合的基本运算
(二)函数概念与基本初等函数I(指数函数、对数函数、幂函数)
1.函数
2.指数函数
3.对数函数
4.幂函数
5.函数与方程
结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数。
6.函数模型及其应用
(三)立体几何初步
1.空间几何体
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图。
(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表 示形式。
(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、、线条等不作严格要求)
(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
2.点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:
公理1:如果一条直线上的两点在同一个平面内,那么这条直线上的所有点都在此平面内。
公理2:过不在一条直线上的三点,有且只有一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共 直线。
公理4:平行于同一条直线的两条直线平行。
定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。
理解以下判定定理:
•平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
•一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
•一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。
•一个平面过另一个平面的垂线,则两个平面垂直。
理解以下性质定理,并能够证明:
•一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。
•两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。
•垂直于同一个平面的两条直线平行。
•两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
(3)能运用定理、公理和已获得的结论证明一些空间图形的位置关系的简单命题。
(四)平面解析几何初步
1.直线与方程
(1)在平面直角坐标系中,结合具体图形,掌握确定直线位置的几何要素。
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
(3)能根据两条直线的斜率判定这两条直线平行或垂直。
(4)掌握确定直线位置关系的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
(5)能用解方程组的方法求两相交直线的交点坐标。
(6)掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离。
2.圆与方程
(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
(2)能根据给定直线和圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断圆与圆的位置关系。
(3)能用直线和圆的方程解决一些简单的问题。
(4)初步了解用代数方法处理几何问题的思想。
3.空间直角坐标系
(1)了解空间直角坐标系,会用空间直角坐标表示点的位置。
(2)会推导空间两点间的距离公式。
(五)算法初步
1.算法的含义、程序框图
(1)了解算法的含义和算法的思想。
(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
2.基本算法语句
了解几种基本算法语句(输入语句、输出语句、赋值语句、条件语句、循环语句)的含义。
(六)统计
1.随机抽样
(1)理解随机抽样的必要性和重要性。
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
2.用样本估计总体
(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。
(2)理解样本数据标准差的意义和 作用,会 计算数据平均数和标准差。知道平均数与标准差是样本数据基本的数字特征。
(3)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。
(4)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。
3.变量的相关性
(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆)。
(七)概率
1.事件与概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别。
(2)了解两个互斥事件的概率加法公式。
2.古典概型
(1)理解古典概型及其概率计算公式。
(2)会用列举法计算一些 随机事件所含的基 本事件数及事件发生的概率。
3.随机数与几何概型
了解随机数的意义,能运用模拟方法估计概率。

(八)基本初等函数Ⅱ(三角函数)
1.任意角、弧度
(1)了解任意角的概念和弧度制的概念。
(2)能进行弧度与角度的互化。
2.三角 函数
(1)理解任意角三角函数(正弦、余弦、正切)的定义。
(2)能利用单位圆中的三角函数线推导出 的正弦、余弦、正切的诱导公式,能画出 的图像,了解三角函数的周期性。
(3)理解正弦函数、余弦函数在[0,2 ]上的性质(如单调性、最大值和最小值、图像与x轴的交点等),理解正切函数在 内的单调性。
(4)理解同角三角函数的基本关系式:
(5)了解函数 的物理意义;能画出函数 的图像。了解参数 对函数图像变化的影响。
(6)会用三角函数 解决一些简单实际问题,了解三角函数是描述周期变化现象的重要函数模型。
(九)平面向量
1.平面向量的实际背景及基本概念
(1)了解向量的实际背景。
(2)理解平面向量的概念和两个向量相等的含义。
(3)理解向量的几何表示。
2.向量的线性运算
(1)掌握向量加法、减法的运算,理解其几何意义。
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。
(3)了解向量线性运算的性质及其几何意义。
3.平面向量的基本定理及坐标表示
4.平面向量的数量积
5.向量的应用
(十)三角恒等变换
1.两角和与差的三角函数公式
2.简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆)。
(十一)解三角形
1.正弦定理和余弦定理。
2.应用
(十二)数列
1.数列的概念和简单表示法
2.等差数列、等比数列
(十三)不等式
1.不等关系
2.一元二次不等式
3.二元一次不等式组与简单线性规划问题
4.基本不等式:
(十四)常用逻辑用语
1、命题及其关系
2、简单逻辑联结词
3、全称量词与存在量词
(十五)圆锥曲线与方程
(十六)导数及其应用
1、导数的概念及其几何意义
(1)了解导数概念的实际背景.
(2)理解导数的几何意义.
2、导数的运算
3、导数在研究函数中的应用
(十七)统计案例
了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题。
1、回归分析
2、独立性检验

(十八)推理与证明
1、合情推理与演绎推理
2、直接证明与间接证明
(十九)数系的扩充和复数的引入
1、复数的概念
2、复数的四则运算
(二十)框图
1、流程图
2、结构图

㈢ 2018年高考理科数学考试大纲都有哪些

Ⅰ. 考核目标与要求

根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容.

一、知识要求

知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.

各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.

对知识的要求依次是了解、理解、掌握三个层次.

1. 了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.

2. 理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.

3. 掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.

这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.

二、能力要求

能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.

1. 空间想象能力:能根据条件做出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.

空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.

2. 抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.

抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

3. 推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.

中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.

4. 运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.

运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.

5. 数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.

数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.

6. 应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.

7. 创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.

创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.

三、个性品质要求

个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.

四、考查要求

数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.

1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.

2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.

3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.

对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.

4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.

5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.

(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.

3. 数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.

(十九) 数系的扩充与复数的引入

1. 复数的概念

(1)理解复数的基本概念.

(2)理解复数相等的充要条件.

(3)了解复数的代数表示法及其几何意义.

2. 复数的四则运算

(1)会进行复数代数形式的四则运算.

(2)了解复数代数形式的加、减运算的几何意义.

祝考生们高考取得好成绩!

㈣ 高考数学主要考什么内容

重要,函数是大块啊。至于高考还是有模式的,你可以去找份往年的考卷,每题都有知识点的,大题一般有一个主题,不如概率啊,导数啊,概率啊,这样,我觉得你会觉得难,第一是刚进高中,数学和初中的上升了一个层次你会不太能适应,还有就是做的不够多,如果做多了,就不陌生了,熟悉后上手就快了。我的经验就是多做,当然做完错了要反省自己错哪,然后重头到尾不看答案做一遍。很多人都是看了答案恍然大悟,哦,是这样,就不管了,结果没什么记忆,所以,重头到尾桌一遍也是很重要的。对数还需要把一些公式变化和图形记下来,做题时还是有一定的模式,数形结合也是很重要的。加油啦。高一打好基础。后面会好很多的。

㈤ 高中数学考试大纲主要考哪些内容

数学

考试大纲

全国教师教育网络联盟入学联考
高中起点升专科
数学课程考试大纲

总要求

本大纲是网络学院联盟高中起点数学考试大纲,目的是为网络学院选拔合格的学生。
本大纲对所列知识提出了三个层次和相应要求,三个层次由低到高顺序排列,高一级层次的要求包含低一级层次的要求。
三个层次分别为:
了解 要求考生对所列知识的含义有初步的认识,识记有关内容,并能直接运用。
理解、掌握、会 要求考生对所列知识的含义有比较深刻的认识,能够解释、举例或变形、推断,并能运用知识解决有关问题。
灵活运用 要求考生对所列知识能够综合运用,并能解决较为复杂的数学问题。

第一部分 考试内容
一、代数
(一) 数式、方程和方程组
1. 理解有理数、实数及数轴、相反数、绝对值、倒数、算术平方根的概念,会进行有关的计算。
2. 理解有关整式、分式、二次根式的概念,掌握它们的一些性质和运算法则。
3. 掌握一元一次方程、一元二次方程、二元一次方程组、三元一次方程组的解法;会解由一个二元二次方程和一个二元一次方程组成的方程组;会解简单的由两个二元二次方程组成的方程组。
(二) 函数
1. 了解集合的意义及其表示方法;了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号的含义,并能运用这些符号表示元素与集合、集合与集合的关系。
2. 理解函数的概念,会求一些常见函数的定义域。
3. 理解函数的单调性和奇偶性的概念,掌握增函数、减函数及奇函数、偶函数的图像特征。
4. 理解一次函数、反比例函数的概念,掌握它们的图像和性质,会求它们的解析式。
5. 理解二次函数的概念,掌握二次函数的图像和性质,掌握二次函数 与 的图像间的关系;会求二次函数的解析式及最大值或最小值,能灵活运用二次函数的知识解决有关问题。
6. 理解幂函数的概念,掌握幂函数的图像和性质。
7. 了解反函数的意义,会求一些简单函数的反函数。
8. 理解指数与对数的概念,掌握有关的运算法则。
9. 理解指数函数与对数函数的概念,掌握它们的图像和性质,会用它们解决有关问题。
(三) 不等式和不等式组
1. 理解不等式的性质,会用基本不等式(R),(R),解决一些简单问题。
2. 会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式;会解一元二次不等式;了解区间的概念,会在数轴上表示不等式或不等式组的解集。
3. 了解绝对值不等式的性质,会解形如和的绝对值不等式。
(四) 数列
1. 了解数列及其有关概念。
2. 理解等差数列、等差中项的概念,会运用等差数列的通项公式、前n项和公式解决有关问题。
3. 理解等比数列、等比中项的概念,会用等比数列的通项公式、前n项和公式解决有关问题。
二、三角
(一) 三角函数及其有关概念
1. 了解正角、负角、零角的概念,理解象限角和终边相同的角的概念。
2. 了解弧度的概念,会进行弧度与角度的换算。
3. 理解任意角三角函数的概念,了解三角函数在各象限的符号和特殊角的三角函数值。
(二) 三角函数式的变换
1. 掌握同角三角函数间的基本关系式、诱导公式,会用它们进行计算、化简和证明。
2. 掌握两角和、两角差、二倍角的正弦、余弦、正切公式,会用它们进行计算、化简和证明。
(三) 三角函数的图像和性质
1. 掌握正弦函数、余弦函数的图像和性质,会用这两个函数的性质(定义域、值域、周期性、奇偶性和单调性)解决有关问题。
2. 了解正切函数的图像和性质。
3. 会求函数的周期、最大值和最小值。
4. 了解反正弦、反余弦、反正切、反余切函数的概念及其定义域和值域;会计算常用反三角函数值。
三、平面解析几何
(一) 平面向量
1. 理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2. 掌握向量的加、减运算,掌握数乘向量的运算;了解两个向量共线的条件。
3. 掌握向量数量积运算,了解其几何意义和在处理长度、角度及垂直问题的应用;了解向量垂直的条件。
4. 掌握向量的直角坐标及其运算。
5. 掌握平面内两点间的距离公式、线段的中点公式。
(二) 直线
1. 理解直线的倾斜角和斜率的概念,会求直线的斜率。
2. 会求直线方程,能灵活运用直线方程解决有关问题。
3. 掌握两条直线平行与垂直的条件以及点到直线的距离公式,会用它们解决有关问题;了解两条直线所成角的公式。
(三) 圆锥曲线
1. 了解曲线和方程的关系,会求两条曲线的交点。
2. 掌握圆的标准方程和一般方程,掌握直线与圆的位置关系,能灵活运用它们解决有关问题。
3. 理解椭圆、双曲线、抛物线的概念,掌握它们的标准方程和性质,会用它们解决有关问题。
第二部分 试卷结构

考试采用闭卷笔试形式,全卷满分100分,考试时间为120分钟,考试中可以使用计算器。
一、内容比例
代数 约 65%
三角 约 25%
平面解析几何 约 10%
二、题型比例
选择题 约 35%
填空题 约 25%
解答题 约 40%
三、难易比例
容易题 约 40%
中等难度题 约 40%
较难题 约 20%

参考书:《全国各类成人高考复习指导丛书高中起点升本、专科 数学(文史类) 第十二版》 相关章节 郑洪深主编 高等教育出版社

㈥ 2021年高考数学考试范围

2021年高考数学考试范围一样的是高一到高三的知识点,所以要认真学习这三年的知识

㈦ 2021年全国一卷高考数学考纲

当然不是,教育部每年都要公布最新一年高考的考试大纲,2011年高考不可能使用2018年高考考试大纲的。

热点内容
教师工资收入 发布:2025-06-29 02:13:44 浏览:914
多久会不疼 发布:2025-06-29 00:30:31 浏览:410
老师述职报告范文 发布:2025-06-29 00:19:39 浏览:630
英语不会读 发布:2025-06-29 00:06:15 浏览:308
hpv要治疗多久 发布:2025-06-28 23:50:50 浏览:60
体育老师图片大全 发布:2025-06-28 23:48:05 浏览:431
过氧化氢的化学方程式 发布:2025-06-28 23:35:19 浏览:78
宁波教育考试中心 发布:2025-06-28 23:09:28 浏览:87
朗诵教学教案 发布:2025-06-28 20:42:26 浏览:594
老师同居 发布:2025-06-28 19:20:26 浏览:701