高中数学有几本
㈠ 高中数学要上几本书
高中数学怎么学?高中数学难学吗?
数学这个科目,不管是对于文科学生还是对于理科学生.都是比较重要的,因为他是三大主课之一,它占的分值比较大.要是数学学不好,你可能会影响到物理化学的学习,因为那些学科都是要通过计算.然而,这些计算也都是在数学里面.高中数学怎么学?有哪些好的方法?
老师让孩子上黑板做题
数学担负着培养孩子的运算能力,还有孩子应用知识的能力.高中数学怎样学?还是要看学生对数学的理解程度.学生要有自己的学习方法,你不光要掌握老师上课的内容,在下课之后还要及时巩固,加深.
㈡ 人教版高中数学教材选修有几本
A版有13本和B版有14本
数学1- 1 (选修)版
数学1- 2 (选修)A版
数学2- 1 (选修)A版
数学2- 2 (选修)A版
数学2- 3 (选修)A版
数学3- 1 (选修)A版 数学史选讲
数学3- 4 (选修)A版 对称与群
数学4- 1 (选修)A版 几何证明选讲
数学4- 2 (选修)A版 矩阵与变换
数学4- 4 (选修)A版 坐标与参数方程
数学4- 5 (选修)A版 不等式选讲
数学4- 6 (选修)A版 初等数论初步
数学4- 7 (选修)A版 优选法与试验设计初步
数学1- 1 (选修)B版
数学1- 2 (选修)B版
数学2- 1 (选修)B版
数学2- 2 (选修)B版
数学2- 3 (选修)B版
数学3- 1 (选修)B版 对称与群
数学3- 4 (选修)B版 数学史选讲
数学4- 1 (选修)B版 几何证明选讲
数学4- 2 (选修)B版 矩阵与变换
数学4- 4 (选修)B版 坐标系与参数方程
数学4- 5 (选修)B版 不等式选讲
数学4- 6 (选修)B版
数学4- 7 (选修)B版 优选法与实验设计初步
数学4- 9 (选修)B版 风险与决策
㈢ 高中数学有几本书 必修和选修
数学要学选修和必修两部分,选修3本,必修5本。
高中数学人教版教材一共需要学习八本书,必修是一至五,选修是二至四。这个说法可能不是最准确的,也可能文科理科学习的教材不同,而且各所高中学校的学习进度不同,所以学习的高中数学教材也可能会有差异。
高中数学到底学习哪几本书,这个虽然不一而论,但必修科目基本上是一致的,而且必修也是大家必须要学习的,高考必考的内容,学好数学必修科目没商量。高中数学学几本书不重要,重要的是把必修这几本书都学会了。
(3)高中数学有几本扩展阅读:
注意事项:
数学能力的提高离不开做题,但当处理的题目达到一定量后,决定复习效果的关键因素就不再是题目的数量,而在于题目的质量和处理水平。解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径。
在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。一节课与其抓紧时间大汗淋淋地做三十道考查思路重复的题,不如深入透彻地掌握一道典型题
要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。
㈣ 高中数学必修和选修有几本
高中数学共学习11本书,其中必修5本,选修6本。
必学部分:必修1、必修2、必修3、必修4、必修5、选修1-1、选修1-2;
选学部分:选修4-1(几何证明选讲)、选修4-2(矩阵与变换)、选修4-4(坐标系与参数方程)、选修4-5(不等式选讲)。
(4)高中数学有几本扩展阅读:
必修一
1、集合
(约4课时)
(1)集合的含义与表示
①通过实例,了解集合的含义,体会元素与集合的“属于”关系。
②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
2、函数概念与基本初等函数
(约32课时)
(1)函数
①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
⑤学会运用函数图象理解和研究函数的性质(参见例1)。
(2)指数函数
①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
(3)对数函数
①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。
(4)幂函数
通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。
(5)函数与方程
①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
(6)函数模型及其应用
①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
(7)实习作业
根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例。
采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。
㈤ 高中数学人教版,一共有几本教材书,请列举出来
《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》、必修一到五、选修一到四。
1、《高中数学必修1》,即《普通高中课程标准实验教科书·数学必修1·A版》的简称)是2007年人民教育出版社出版的图书,作者是人民教育出版社课题材料研究所、中学数学课程教材研究开发中心。该书是高中数学学习阶段顺序必修的第一本教学辅助资料。
2、《高中数学A版必修2》,是2007年9月由人民教育出版社出版的图书,作者是王申怀。该书主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。
3、《高中数学必修3》,是新课标高中数学必修系列的第3本书籍,分为A、B两版,由人民教育出版社出版发行。本书主要内容是对算法,统计,概率知识的讲解与总结。
4、《高中数学必修4》,是2007年人民教育出版社出版图书,新课标教材,必修系列中第4本,普通高中课程标准实验教科书数学必修4 A版。
数学4(必修)的内容包括三角函数、平面向量、三角恒等变换。
5、《高中数学必修5》,是2006年人民教育出版社出版的图书。本册教科书包括“解三角形”、“数列”、“不等式”等三章内容。
本书要求学生适当的运用数学知识,解决生活中实际问题。本书高考占很大比例,主要集中于数学第一道大题中。
题型较为简单,但变化多端。书内分“观察”、“思考”、“探究”等模块,与“观察与猜想”、“阅读与思考”、“探究与发现”、“信息技术运用”等拓展性栏目。
㈥ 高中数学课本一共有几本啊
高中数学课本数目因各地使用的教材不同会有所不同,人教版教材一共需要学习八本书,分别为:
1、必修:
高中数学必修一、高中数学必修二、高中数学必修三、高中数学必修四、高中数学必修五
2、选修:
高中数学选修一、高中数学选修二、高中数学选修三
(6)高中数学有几本扩展阅读
《高中数学》是由人民教育出版社出版的图书,该书由人民教育出版社、课程教材研究所、数学课程教材研究开发中心共同编制,内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
㈦ 高中数学总共有多少本书
全国卷大纲的话,理科是必修1~5,选修2-1,2-2,2-3,以这8本为主;但还有个选做题是从回4-1,4-4,4-5里选一个答,这三本书内容很少,而且可以自学。文科是必修1~5,选修1-1,1-2,这7本为主,还有选做的4-1,4-4,4-5。
㈧ 高一的数学有几本数学书分别是必修几到必修几
高一数学一共有四本数学书,分别是《高中数学必修一》、《高中数学必修二》、《高中数学必修三》、《高中数学必修四》。
1、《高中数学必修一》:是2007年人民教育出版社出版的图书,作者是人民教育出版社课题材料研究所、中学数学课程教材研究开发中心。该书是高中数学学习阶段顺序必修的第一本教学辅助资料。
2、《高中数学必修二》:是2007年9月由人民教育出版社出版的图书,作者是王申怀。该书主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。
3、《高中数学必修三》:是新课标高中数学必修系列的第3本书籍,分为A、B两版,由人民教育出版社出版发行。本书主要内容是对算法,统计,概率知识的讲解与总结。
4、《高中数学必修四》:数学4(必修)的内容包括三角函数、平面向量、三角恒等变换。三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。这是学生在高中阶段学习的最后一个基本初等函数。
(8)高中数学有几本扩展阅读
高中数学必修教材之间的联系:
数学教材中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。
函数概念有两种定义,一种是初中给出的定义,是从运动变化的观点出发,其中的对应关系是将自变量的每一个取值,与唯一确定的函数值对应起来:另一种是高中给出的定义,是从集合、对应的观点出发,其中的对应关系是将原象集合中的每一个元素与象集合中唯一确定的元素对应起来。
㈨ 高中数学有几本是不是从必修一到必修五
高中数学课程分必修和选修。必修课程由5个模块组成;选修课程有4个系列,其中系列1、系列2由若干个模块组成,系列3、系列4由若干专题组成;每个模块2学分(36学时),每个专题1学分(18学时),每2个专题可组成1个模块。
1.必修课程(共5本)
必修课程是每个学生都必须学习的数学内容,包括5个模块。
数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。
数学2:立体几何初步、平面解析几何初步。
数学3:算法初步、统计、概率。
数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。
数学5:解三角形、数列、不等式。
2. 选修课程(共21本)
选修课程由系列1,系列2,系列3,系列4等组成。
◆系列1:由2个模块组成。
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。
◆系列2:由3个模块组成。
选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。
选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。
选修2-3:计数原理、统计案例、概率。
◆系列3:由6个专题组成。
选修3-1:数学史选讲。
选修3-2:信息安全与密码。
选修3-3:球面上的几何。
选修3-4:对称与群。
选修3-5:欧拉公式与闭曲面分类。
选修3-6:三等分角与数域扩充。
◆系列4:由10个专题组成。
选修4-1:几何证明选讲。
选修4-2:矩阵与变换。
选修4-3:数列与差分。
选修4-4:坐标系与参数方程。
选修4-5:不等式选讲。
选修4-6:初等数论初步。
选修4-7:优选法与试验设计初步。
选修4-8:统筹法与图论初步。
选修4-9:风险与决策。
选修4-10:开关电路与布尔代数。
3. 关于课程设置的说明
◆课程设置的原则与意图
必修课程内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备。
选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。其中,
系列1是为那些希望在人文、社会科学等方面发展的学生而设置的,系列2则是为那些希望在理工、经济等方面发展的学生而设置的。系列1,系列2内容是选修系列课程中的基础性内容。
系列3和系列4是为对数学有兴趣和希望进一步提高数学素养的学生而设置的,所涉及的内容反映了某些重要的数学思想,有助于学生进一步打好数学基础,提高应用意识,有利于学生终身的发展,有利于扩展学生的数学视野,有利于提高学生对数学的科学价值、应用价值、文化价值的认识。其中的专题将随着课程的发展逐步予以扩充,学生可根据自己的兴趣、志向进行选择。根据系列3内容的特点,系列3不作为高校选拔考试的内容,对这部分内容学习的评价适宜采用定量与定性相结合的方式,由学校进行评价,评价结果可作为高校录取的参考。
4.对学生选课的建议
1). 学生完成10个学分的必修课程,在数学上达到高中毕业要求。
2). 在完成10个必修学分的基础上,希望在人文、社会科学等方面发展的学生,可以有两种选择。一种是,在系列1中学习选修1-1和选修1-2,获得4学分;在系列3中任选2个专题,获得2学分,共获得16学分。另一种是,如果学生对数学有兴趣,并且希望获得较高数学素养,除了按上面的要求获得16学分,同时在系列4中获得4学分,总共获得20学分。
3). 希望在理工(包括部分经济类)等方面发展的学生,在完成10个必修学分的基础上,可以有两种选择。一种是,在系列2中学习选修2-1,选修2-2和选修2-3,获得6学分;在系列3中任选2个专题,获得2学分;在系列4中任选2个专题,获得2学分,共获得20学分。另一种是,如果学生对数学有兴趣,希望获得较高数学素养,除了按上面的要求获得20学分,同时在系列4中选修4个专题,获得4学分,总共获得24学分。
课程的组合具有一定的灵活性,不同的组合可以相互转换。学生作出选择之后,可以根据自己的意愿和条件向学校申请调整,经过测试获得相应的学分即可转换。