当前位置:首页 » 语数英语 » 简单教数学

简单教数学

发布时间: 2021-08-11 21:23:33

『壹』 怎么教7岁的孩子学数学

幼儿时期是具体形象思维为主的时期,孩子算数学数手指是常事,如果孩子的具体思维还没有过渡到抽象思维,你让孩子算加减法,不让他们数实物时,会看到他们凝目不动,或稍稍点头的动作,其实他们是在依靠点数视线内的实物或脑中以前见过实物的印象来计算。不要担心,这是发展的正常时期。幼儿的数学思维发展过程是从实物操作——实物图象——圆点等表示图案——数字这样一样从具体到抽象的发展过程。数学教学包括数、量、形、空、时几大方面,不仅仅是加减法这一方面的学习,如果把数学只当成加减法来教就太枯燥了。孩子在学习数学时的游戏性也很重要。比如我们的老师常和孩子玩这样简单、方便又有趣的数学游戏:老师随手抓出一把彩色小积木,首先让孩子按颜色分分类,然后让孩子点数一下各种颜色的各有几个,并让孩子记住,接下来,老师就会一边说变变变,一边用手捂住几个小积木,请幼儿通过观察剩下的积木来判断少了几个什么颜色的积木,孩子说出答案后教师松开手检验答案。这个游戏对孩子训练就不是单一的数的问题,含有分类、计数、加减方面的问题,是一种综合能力的培养,孩子的观察力、积极思考能力都从中得到发展,这才是最主要的。如果孩子的综合数学能力提高了,加减法计算就不难了。

『贰』 幼儿学数学讲究方法,怎样教幼儿学数学

我觉得主要的要点是把枯燥的数学尽可能用轻松的方式教给孩子。

严格意义上来讲,幼儿不需要太早就学习数学。数学虽然可以从某种程度上开发幼儿的智力,但对于孩子来说也是一种学习负担,孩子在这个时候最需要提高的是自我感知能力和基本的控制能力,父母完全可以在孩子稍微大一点以后再开始教孩子学数学。

一、父母尽量可以用可视化的方式来教幼儿学数学。

随着科学技术的不断发展,我们会发现科学技术会带动教育模式的发展。以前我们在教数学的时候,我们只会教孩子数字。现在教育出现了很多新型的教育方法,可视化的教育方法就是其中之一。我们可以采用图形和动画的方式来教孩子数学,这样可以让孩子明白简单的数学道理,也可以学习数学知识。

综上所述,我觉得以上几个观点比较适合幼儿的数学教育,有其他不懂的地方可以向我留言。

『叁』 自己在家,怎么教宝宝学数学


『肆』 求简短的数学趣味题 !50道、

1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

答案:
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道

2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?

答案:
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.

3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?

答案:
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。

4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。

问雄、兔各几何?

原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。

设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

6 数学家维纳的年龄,全题如下:我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21 的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、 6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21 的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。所以,维纳的年龄应是18。
有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家,
每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香
蕉?

25根。

先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米,要吃25根,还剩25根到家。

把一张纸裹在一支粉笔上,再用刀斜着把粉笔切断,请问把纸展开后断边为什么形状?
答案:正弦曲线
大雪后的一天,婷婷和爸爸从同一点出发沿同一方向分别步测一个圆形花园的周长。婷婷毎步长54厘米,爸爸毎步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印。问:这个花园的周长是多少米?
理由,列式
假设法
求54和72的最小公倍数216
即求216厘米中共有几个脚印
216/54+216/72-1 (因为刚开始两人脚印重合)
=4+3-1
=6
60/6=10
216*10=2160(cm)
五年级奥数
包含与排除
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?

解:两个小组共有(15+18)-10=23(人),

都不参加的有40-23=17(人)

答:有17人两个小组都不参加。

--
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
解:45-29-10+3=9(人)
答:语文成绩得满分的有9人。

3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
解:4的倍数有50/4商12个,6的倍数有50/6商8个,既是4又是6的倍数有50/12商4个。
4的倍数向后转人数=12,6的倍数向后转共8人,其中4人向后,4人从后转回。
面向老师的人数=50-12=38(人)
答:现在面向老师的同学还有38名。

4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
解:2的倍数有100/2商50个,3的倍数有100/3商33个,2和3人倍数有100/6商16个。
领2支的共准备(50—16)*2=68,领3支的共准备(33—16)*3=51,重复领的共准备16*(2+3)=80,其余准备100-(50+33-16)*1=33
共需要68+51+80+33=232(支)
答:游艺会为该项活动准备的奖品铅笔共有232支。

5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
解:3厘米的记号:180/3=60,最后到头了不划,60-1=59个
4厘米记号:180/4=45,45-1=44个,重复的记号:180/12=15,15-1=14个,所以绳子中间实际有记号59+44-14=89个。
剪89次,变成89+1=90段
答:绳子共被剪成了90段。

6、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?
解:1,2,3,4,5年级共有16,1,2,3,4,6年级共有15,5,6年级共有25
所以总共有(16+15+25)/2=28(幅),1,2,3,4年级共有28-25=3(幅)
答:其他年级的画共有3幅。

---
7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。那么,这些卡片一共有多少张?
解:12的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)
答:这些卡片一共有36张。
--
--
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。

---
9、五年级三班学生参加课外兴趣小组,每人至少参加一项。其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。求这个班的学生人数。
解:25+35+27-(8+12+9)+4=62(人)
答:这个班的学生人数是62人。

-- --
10、如图8-1,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73。求阴影部分的面积。
解:甲、乙、丙三者重合部分面积=73+(6+8+5)-3*30=2
阴影部分面积=73-(6+8+5)+2*2=58
答:阴影部分的面积是58。

--
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。

--
12、图书室有100本书,借阅图书者需要在图书上签名。已知在100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本。问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?
解:三个人一共看过的书的本数是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,当甲乙丙最大时,三人看过的书最多,因为甲、丙共同看过的书只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25本。
三人总共看过最多有42+25=67(本),都没看过的书最少有100-67=33(本)
答:这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过。

--
13、如图8-2,5条同样长的线段拼成了一个五角星。如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?

解:五条线上右发有5*1994=9970个红点,如果所有交叉点上都放一个红点,则红点最少,这五条线有10个交叉点,所以最少有9970-10=9960个红点

答:在这个五角星上红色点最少有9960个。

--
14、甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?
解:甲和乙必有78+68-100=46盆共同浇过,丙有100-58=42没浇过,所以3人都浇过的最少有46-42=4(盆)
答:3人都浇过的花最少有4盆。

--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。

--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。

--
以下是引用abc在2004-12-12 15:42:17的发言:
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?

解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。

1000-314=686

答:既不能被5除尽,又不能被7除尽的数有686个。

题中的除尽应该是整除吧.

--

11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。

解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21

答:参加文艺小组的人数是21人。
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《
少年文摘》或《学与玩》的有多少人?
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
(2)是2的倍数或是3的倍数的数有多少个?
(3)是2的倍数但不是3的倍数的数有多少个?
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
【试题答案】
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《
少年文摘》或《学与玩》的有多少人?
19 + 24—13 = 30(人)
答:订阅《少年文摘》或《学与玩》的有30人。
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
只学钢琴人数:58—37 = 21(人)
只学画画人数:43—37 = 6(人)
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
既是3的倍数又是2的倍数,一定是6的倍数
100÷6 = 16……4
所以,既是2的倍数又是3的倍数有16个
(2)是2的倍数或是3的倍数的数有多少个?
100÷2 = 50,100÷3 = 33……1
50 + 33—16 = 67(个)
所以,是2的倍数或是3的倍数的数有67个。
(3)是2的倍数但不是3的倍数的数有多少个?
50—16 = 34(个)
答:是2的倍数但不是3的倍数的数有34个。
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
12 + 10—3 + 26 = 45(人)
答:这个班共有学生45人。
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
50—(30 + 21—8)= 7(人)
答:两样都不会的有7人。
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
30 + 25—42 = 13(人)
答:这个班两队都参加的有13人。
某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人.问这个班最多多少人?最少多少人?
分析与解 如图6,数学、语文、英语得满分的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得满分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.

由容斥原理有
Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3
即y=20+20+20-7-8-9+x+3=39+x。
以下我们考察如何求y的最大值与最小值。
由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值x是数学、语文、英语三科都得满分的人数,因而他们中的人数一定不超过两科得满分的人数,即x≤7,x≤8且x≤9,由此我们得到x≤7.另一方面数学得满分的同学有可能语文都没得满分,也就是说没有三科都得满分的同学,故 x≥0,故0≤x≤7。
当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。
答:这个班最多有46人,最少有39人。 就这么多了啊欢迎追问啊!!!

『伍』 有什么好方法教好小学一年级的数学比如讲

小学数学怎么样学?随着小学数学教材的不断更新,内容不再是简单的加减乘除算数题,而是将许多的生活中运算加到小学的知识中,这样一来也在不同程度上使小学数学的成绩加大了难度.那小学数学怎么样学才有效?学生们在学习过程中怎样掌握方法才能学好小学数学?

第一:需要对学习方法更加注意,数学的学习不应该只包括加减乘除的运算,如果将计算只在大脑中形成一种纯粹的记忆,没有进行逻辑关系的理解,那么只会越来越觉得困难.
第二:在所有的数学学习中,简单的计算或者只实际的问题解算,锻炼解题思路都不是通过解题步骤,因为谁都会有粗心大意的时候,所以教育孩子不能为了省事而去忽略步骤.
第三:多问问题,遇到那些比较典型的题目,在第一次解题时即便是已经做对了,也要让孩子将思路在次的理清,这样做的原因是让孩子在做题过程中掌握规律.
第四:理清思路,不仅仅是要做题,而是在做题的过程中做到举一反三,让孩子更加的清楚自己是正确的,增加孩子的自信心,让孩子对知识充满兴趣.
第五:让孩子学会对计算的过程进行详细的解释,让孩子用自己的思维模式将问题进行叙述,这同样也是孩子帮助自己理清思路的一种方法,有助于在将来遇到难题时能够准确的找到切入点.
第六:引导孩子动脑筋思考,遇到较难的题目家长不能着急的将答案说出来,而是去想办法引导孩子通过转动大脑找到解决的方法,有的时候不妨用激将的方法让他自己去思考,这样更有利于孩子将来的学习.
第七:引导孩子对规律进行总结,对于相同的问题,观察题目的类型和特点,让孩子发现其中规律,进行经验的总结.
第八:差异的比较,对于相近的题目,找出其中的差异,这也同样是能够让孩子掌握的方法避免在以后的学习中出现错误.
第九:发现数学中的趣味,用特殊的语言和方法让孩子感受到数学的魅力,其实数学本来就是一门很有意思学问,培养兴趣而不是枯燥的教学,如果有浓烈的兴趣,孩子自然会爱上学习.

以上九点是有关小学数学怎么样学才有效,提出相关的方法.希望能给你带来借鉴和参考的价值,重要的是让孩子通过正确的方法提高成绩.

『陆』 小学数学和小学语文哪个好教

小学数学怎么样学?随着小学数学教材的不断更新,内容不再是简单的加减乘除算数题,而是将许多的生活中运算加到小学的知识中,这样一来也在不同程度上使小学数学的成绩加大了难度.那小学数学怎么样学才有效?学生们在学习过程中怎样掌握方法才能学好小学数学?

以上九点是有关小学数学怎么样学才有效,提出相关的方法.希望能给你带来借鉴和参考的价值,重要的是让孩子通过正确的方法提高成绩.

『柒』 如何学好数学

学习数学的能力:

操作的数学,在数学学习的基本技能。初中阶段是培养数学能力的黄金时代,初中的代数和算术运算,有理数运算,融合计算,保理,小数运算,激进的计算和解方程的主要内容。初中的计算能力不过关,会直接影响高中数学的学习。在面对复杂的操作时,往往要注意以下两点:①情绪稳定,算清晰的理念,流程合理,速度均匀,准确;②有信心,打一次没有,减缓了一下,想清楚写,心算,小跳,草稿纸写清楚的。

理解数学的基本知识,并记住数学基础知识的前提下学习数学。理解是用自己的话来解释事物的意义,同一个数学概念,形态存在于学生的头脑是不一样的。因此,了解个人的积极性,重新处理内部或外部的信息,是一种创造性的劳动。理解的标准是“准确”,“简单”和“全面”。 “准确”把握事物的本质,“简单”是很容易理解和简洁的“全面”是“不仅要看到树木,你看森林”,不漏。了解基本的数学知识可以分为两个层次:第一,知识的形成和演示,知识扩展其蕴含的数学思想,数学的思维方式。
记忆个体记忆他们的经验,并维系和再现,输入信息,编码,储存和提取。关键词或暗示的帮助下,尝试回忆的记忆,方法是更有效的方法,例如,看到“抛物线”的名字,你会想到:抛物线的定义是什么?标准方程是什么?抛物转向指标方面的性质?关于抛物线一个典型的数学问题?不妨内容写下来的心,去寻找控制,这样的印象会更加深刻。数学学习记忆和推理紧密结合起来,如三角函数章,所有的公式是根据三角函数的定义和加法定理,如果记忆公式掌握推导公式,我们可以有效地防止忘记。

学习数学数学解题没有捷径可走,以确保数量和质量的主题是学习数学的唯一途径。担保数量为①选择合适的教材同步辅导书或练习簿的一个。 ②完成所有的练习,在一个受控的答案标记。不要做一个对的答案,因为这将导致中断的思想和心理依赖的答案,先易后难,我们必须首先将无权遇到跳过去,去了所有的题目以稳定的速度,第一个会做完全解决的问题,没有太多的问题,不要急躁,沮丧,其实,你认为的疑难问题,为他人,也只是需要一点时间和耐心,例如,有两个方法:“先做后看”和“看后测试。(3)选择反映的价值的称号,与学生,教师交流和经验在头脑中的自习。④每每天要保证小时的练习时间,,
保证质量是不①标题,但在本质上,学习解剖麻雀“。充分理解题意,注意对整个问题的翻译,深化的条件问题上的理解与数学基础知识,有没有新的功能或用途?通过分析理念的产生和错误的,因为原产地繁殖思维活动,需要真实的口语化的语言描述后,感觉自己的做题,觉得写什么,以便挖掘出一般的数学思维和数学思维方法一个给定的问题的解决方案,有一个问题多样,多元归一。 ②实施:不仅要实现思维的过程,并实施解决方案过程。 ③检讨:“老字号”,一些“经典”的标题重做了几次,错题作为一个自我反省的“镜子”,是一个高效率,高针对性的学习方法。

数学思维和数学思维理念,整合学习高层次的数学要求。例如,数学的思维方式并不孤单,它的对立面,并在解决问题的过程中既可以互换,互为补充,,如直觉和逻辑,散度和方向的宏观和微观,前进和扭转等的另一种方法,如果我们能有意识地在某种程度上是阻塞,指导他们的反对,也许会有一个“犯罪嫌疑人人迹罕至的山重水复,柳暗花明”的感觉。例如,在某些一系列问题,找到的总称式和第一n术语和公式的方法,也可以用于,在除了演绎推理,归纳推理。应该说,它的哲学领悟数学思想和数学思维的经营理念的指导下,是提高学生的数学素养,培养学生的数学能力。
数学,我们将能够学习,只要我们重视计算能力的培养,牢固掌握基本的数学知识,学会聪明地做题,可以站到的高度,哲学反思自己的数学思维活动。

『捌』 怎么教育一个6岁小孩学数学

小学6年级数学辅导怎样做?数学在大部分人的眼中是一科较难的科目,并且跟随年级的增长也逐步变难,正因为这样数学是被拉分的科目.好多学生以为数学就是练习,以为练习好多,得分就会升高.其实有一个关键因素在阻碍我们数学得分的升高,那就是好的学习习惯.

小学6年级数学辅导需要帮助孩子建立的八种好习惯:

8、重复"检查"习惯.培养学生的考核能力习惯是提高数学学习质量的重要举措,这是培养学生自我意识和责任感的必要过程.小学6年级数学辅导只要从以上八点出发,相信孩子在很短的时间内会有惊人的进步.

『玖』 如何教5岁孩子学数学

3-7岁的孩子,即学龄前儿童,这个年龄段的孩子,对于数学学习还处回于直观的形象答思维阶段,能够感知数的概念,对数有简单的认识,需要家长的引导才能完全理解数的意义,通过学习能实现手口一致点数。

对图形和时间、空间也有基本认识。

幼儿学前数学教育根据何秋光老师的将数学教育体系,可分为以下六大模块:

幼儿园小班的孩子一般处于3-4岁,应国家发布的《3—6岁儿童发展指南》要求,幼儿对数学的认知需要具备以下几方面:

1、学习数学的兴趣

当幼儿感知和发现到周围物体的多样性时,便能体验和发现生活中很多地方都能用到数学,对数学学习开始感兴趣。

2、主动探索操作,寻求答案

基于幼儿对数学感兴趣,便会主动探索,通过不同方法寻求答案,过程中智力得到开发,多项数学能力也得到提高。

3、感知实物,学会比较

幼儿在这个阶段能注意物体较明显的形状特征,并能用自己的语言描述,能感知物体基本的空间位置与方位,理解上下、前后、里外等方位词。

4、理解数和数量

结合具体事物让幼儿通过多次比较,逐渐理解数字和数量的意义。

热点内容
序数词教学 发布:2025-06-26 22:56:49 浏览:667
景洪教育 发布:2025-06-26 22:50:06 浏览:156
英语牛仔 发布:2025-06-26 19:04:47 浏览:897
小天才宝贝电脑多少钱 发布:2025-06-26 18:52:20 浏览:683
幼儿教师德能勤绩廉述职报告 发布:2025-06-26 18:44:15 浏览:732
优秀教师师德师风演讲稿 发布:2025-06-26 18:05:35 浏览:504
数学与地理 发布:2025-06-26 17:09:40 浏览:615
化学实验经典 发布:2025-06-26 12:09:34 浏览:34
双能型教师 发布:2025-06-26 11:54:59 浏览:232
人体物理降温的方法 发布:2025-06-26 10:29:57 浏览:633