当前位置:首页 » 语数英语 » 数学三很难

数学三很难

发布时间: 2021-08-11 22:16:59

Ⅰ 考研数学3难不难

数学一:
①高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
数学二:
①高等数学(函数、极限、连续、一元函数微积分学、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量)。
数学三:
①微积分(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其概率分布、随机变量的联合概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
数学(三)适用的招生专业为:
(1)经济学门类的理论经济学一级学科中所有的二级学科、专业。
(2)经济门类的应用经济学一级学科中的二级学科、专业:统计学、数量经济学、国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、国际贸易学、劳动经济学、国防经济
(3)管理学门类的工商管理一级学科中的二级学科、专业:企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理、会计学、旅游管理。
(4)管理学门类的农林经济管理一级学科中所有的二级学科、专业。

三类数学试卷最大的区别在对于知识面的要求上:数学一最广,数学三其次,数学二最低。

Ⅱ 数学三 难不难

个人觉复得数学在考研中制是拉开距离的科目。。正如高考那样。。。数学即使勉过线..总分也高不到哪去。相反 数学很有优势的话,总分自然就上去了(除非你其他三门差的一塌胡涂)。所以考研考数学的话一定得花费大量时间的。尤其是现在正在备考的,应该着手基础了。
对于经管类的数三 重点就是微积分部分,技巧性很强,出题也很灵活,线性代数一般出题固定,解题很有规律。至于概率论则界于两者之间。楼主可以根据你的个人情况,觉得自己能够钻研进去,学进去数学的话不妨拼搏一下咯。。我周围也有同学因为畏惧数学而放弃考经管类的,但发现他们的专业课书本真的好多。。
不管怎样。。考研都是艰辛的路程...加油...

Ⅲ 考研数学一和数学三难度差多少

考研数学一和数学三的难度是不相上下的,为什么这么说呢?

1、数一考察知识点多,而数三的题目难度要更高一些

有些同学会感觉数学一难是因为数学一所考察的知识点会更多一些。在大纲中,数一要求掌握285个知识点,数三只要求掌握173个知识点,就这要求同学要熟练掌握更多的知识点。

而数学三相对于数学一,所要求掌握的知识点虽然少但是考察的深度要更深一些,也就是说虽然知识点少但要做到熟练运用,懂得举一反三。

2、数一和数三考察内容的侧重点不同

数学一与数学三所考察的内容虽然都是高等数学、线性代数、概率论与数理统计这三部分,并且所占比例都是为56%、22%和22%,但是侧重点以及一些要求掌握的知识点是不同的,这也就造成数一和数三有一定的难度差。

数一的考试重点在无穷级数、曲线、曲面积分上,是每年必考,而且经常以解答题的形式来考查;数三要求掌握经济应用问题,也基本上是每年必考,2015年以解答题的形式考查了边际成本和弹性的问题,2014年以填空题的形式考查了边际收益的问题,2013年以解答题的形式考查了边际利润的问题。

除了重点知识的不同外,一些要求掌握的知识点也是不同的。

在高等数学中,数学一考查空间解析几何、多元函数积分学(二重积分以外)、微积分的物理应用,数三是不考的;数三考察微积分的经济学应用,数一不考。

在概率论与数理统计中,数学一的考试范围比数学三略大,主要增加了参数估计部分的考点,包括估计量的评选标准、区间估计以及后续的假设检验。

综上所述

数学一和数学三的难度差是相对的,有些同学会认为数学一难,是因为数学一要求掌握的知识点多;而有些同学认为数学三难,是因为数学三的题目考察更偏,更有深度。所以说数学一和数学三的难度是不相上下的。

Ⅳ 考研数学三有多难

考研数学的难度只是相对而言的,一般认为数学一最难,数学二其次,数学三最简单。数三的考试大纲是最少的。

考研数学三大纲是考研数学三(科目代码303)的考试纲要,包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。

数学三考试大纲及相关要求:

微积分

函数、极限、连续

考试要求

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

2.了解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

5.理解极限的概念,理解函数左极限和右极限的概念以及极限函数存在与左极限、右极限之间的关系。

6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。

7.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小求极限。

8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

一元函数微分学

考试要求

1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。

2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数。

3.了解高阶导数的概念,会求简单函数的高阶导数,

4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。

5.理解并会用罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理和泰勒定理,了解并会用柯西(Cauchy)中值定理。

6.掌握用洛必达法则求未定式极限的方法。

7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。

8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

一元函数积分学

考试要求

1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。

2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿—莱布尼茨公式以及定积分的换元积分法和分部积分法。

3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题,

4.理解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分,

多元函数微积分学

考试要求

1.了解多元函数的概念,了解二元函数的几何意义。

2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。

3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。

4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题。

5.理解二重积分的概念,了解二重积分的与基本性质,了解二重积分的中值定理,掌握二重积分的计算方法(直角坐标.极坐标),了解无界区域上较简单的反常二重积分并会计算。

无穷级数

考试要求

1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。

2.掌握几何级数与p级数的收敛和发散的条件。

3.掌握正项级数收敛性的比较判别法、比值判别法、根值判别法,会用积分判别法。

4.掌握交错级数的莱布尼茨判别法。

5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。

6.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。

7.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。

8.掌握 e的x次方,sin x,cos x,ln(1+x)及(1+x)的a次方的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数。

常微分方程与差分方程

考试要求

1.了解微分方程及其阶、解、通解、初始条件和特解等概念。

2.掌握变量可分离的微分方程。齐次微分方程和一阶线性微分方程的求解方法。

3.理解线性微分方程解的性质及解的结构。

4.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

5.会解自由项为多项式、指数函数、正弦函数、余弦函数以及他们的和与积的二阶常系数非齐次线性微分方程。

6.了解差分与差分方程及其通解与特解等概念。

7.了解一阶常系数线性差分方程的求解方法。

8.会用微分方程求解简单的经济应用问题。

线性代数

行列式

考试内容:行列式的概念和基本性质行列式按行(列)展开定理

考试要求

1.了解行列式的概念,掌握行列式的性质。

2.会应用行列式的性质和行列式按行(列)展开定理计算行列式。

矩阵

考试要求

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质。

2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。

3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。

4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。

5.了解分块矩阵的概念,掌握分块矩阵的运算法则。

向量

考试要求

1.了解向量的概念,掌握向量的加法和数乘运算法则。

2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。

3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩。

4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系。

5.了解内积的概念。掌握线性无关向量组正交规范化的施密特(Schmidt)方法。

线性方程组

考试要求

1.会用克莱姆法则解线性方程组。

2.掌握非齐次线性方程组有解和无解的判定方法。

3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。

4.理解非齐次线性方程组解的结构及通解的概念。

5.掌握用初等行变换求解线性方程组的方法。

矩阵的特征值和特征向量

考试要求

1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。

2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。

3.掌握实对称矩阵的特征值和特征向量的性质。

二次型

考试要求

1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理。

2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形。

3.理解正定二次型。正定矩阵的概念,并掌握其判别法,

概率统计

随机事件和概率

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。

3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。

随机变量及其分布

考试要求

1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布及其应用。

3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用。

5.会求随机变量函数的分布。

多维随机变量及其分布

考试要求

1.理解多维随机变量的分布函数的概念和基本性质。

2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布。

3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系。

4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。

5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。

随机变量的数字特征

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。

2.会求随机变量函数的数学期望。

3.了解切比雪夫不等式。

大数定律和中心极限定理

考试要求

1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。

2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。

数理统计的基本概念

考试要求

1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念。

2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、t分布、F分布和分布得上侧 分位数,会查相应的数值表。

3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布。

4.了解经验分布函数的概念和性质。

参数估计

考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法。

考试要求

1.了解参数的点估计、估计量与估计值的概念。

2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法。

Ⅳ 数学一和数学三的难度有什么区别

【数学一】是报考理工科的学生考,考试内容包括高等数学,线性代数和概率论与数理统计,考试的内容是最多的。

【数学三】是报考经济学的学生考,考试内容是高等数学,线性代数和概率统计。高数部分中,主要重视微积分的考察,概率统计中没有假设检验和置信区间。

数学1:是对数学要求较高的理工类的;

数学3:是针对管理、经济等等方向的.

数一考得比较全面,高数,线代,概论都考,而且题目偏难

数三考得也很全面,题目的难度不比数一简单多少。

数一题目涉及范围广,而且有时需要形象思维,难度也不低。
数三虽然大纲内容比数一少,但题目精,难度不是想象中的那么简单。

Ⅵ 考研数学三难吗

在数学一、二、三中,数学一和数学三的难度不相上下,都不容易,数内学二简单一些。虽然容从历年的考试大纲来看,数学三所考察的知识点要少一些,不过数学三考察问题的深度要更高,也就是说同学并不需要记很多东西,但要学精学透。
数学三考察高等数学、线性代数、概率论与数理统计这三部分。其中线性代数和概率论与数理统计这两部分分别占总分的22%,高等数学占总分的56%。所以同学在备考的时候要主抓高等数学部分进行复习。在复习规划上,备考的强化阶段要稳扎稳打,也就是9月之前,要把数学三的基础知识点吃透,才能为后期备考专业课和政治争取出充足的时间。

还有就是看数学三是否有难度,还要看同学本身的数学基本功,如果是跨考并且数学本身学的就不好,会更有难度。同时别忘了结合所要报考的学校及专业对数学的要求,数学三虽然是统考,但有些专业对数学的分数有更高的要求,这也就一定程度上加大了数学三的难度。

Ⅶ 考研 数学三难不难

在数一中,高等数学、线性代数、概率与数理统计的比例为56%、22%、22%;数二不考概率与数理统计,高等数学和线性代数的比例是78%、22%;数三中三者的比例和数一的相同,也是56%、22%、22%。对于数一、数二、数三而言,每一门学科的侧重点也是不同的。下面,我将具体来和大家分析一下。
我们先来看一下高等数学。高等数学对于数一、数二、数三而言,区别是非常大,可以说在三门学科中,区别是最大的,而这一种区别也只是表现在考试范围上的要求,而在考试能力上的要求是几乎没有变化的,比如说极限,对于数一、数二、数三而言,考试都要考察,这一点在考试的要求上几乎是完全一样的。
对于数一的考生而言,我们复习的重点是下册,也就是说考试的重点是多元函数微分学,多元函数积分学,级数,并且多元函数微分学,多元函数积分学几乎每年都会各出一道大题。很多考生觉得是下册难。事实上,这一点大家是完全错误的想法,上册是比较难的。下册的知识点往往都是起点高,落点低。虽然说,每一道题目考查的都比较复杂,但是解题的方法和思路都是承接我们上册的思路和方法,而且也是比较好掌握的。只要我们掌握了其中的思想,要想拿到这部分的分数还是没有什么压力的。

Ⅷ 考研数学三难吗 我数学基础差,我想知道数学三对于零基础的人来说困难吗

考研数学三相比数学一和数学二的容易。工科一般都是要考数一、二的管理类回等要考数答三、四。
数学三考试内容包括:微积分,线性代数,概率论与数理统计。其中微积分占到总分的56%,线性代数占到总分的22%,概率论与数理统计占到总分的22%。所以考研数学还要重视微积分的学习。

对于零基础的人来说肯定是有一定困难的,但是考研最重要的一点就是坚持,而且在数学三是相对较容易的,因而只要有决心是不难的。考研看的是总成绩,单科只要过了国家线就可以了,所以只要按照自己的计划来,重零开始学习数学三也是没有问题的。

Ⅸ 数学三真的很难吗

你看你数学不好是哪种不好,如果是那种实在没天赋型的,我也建议你不要学这个版了。也不权知道你到底是什么水平。而且你是11年考还是12年,11年的话现在准备估计都晚了。如果是12年的话,你先试试看,有个特别厚的那个数学的书,你试试能不能吃透,那个要反复看。
我没有吓你的啦, 我也不知道你有啥目标啊。人家都说你9月之前那本厚书都要看的很熟了。我寝室2个同学就属于数学怎么学都差,高考90分是最高分。不是没学,那就是差,看见数字都害怕。你不属于这一类的吧。那就有救。你要是考外校,那就尽量少吃少睡,赶紧学习去,别上网了。
同学,最后那位说的很对,你是不是有了全方位的了解。上面那位说的太犀利了。我想干涉下你的内政昂,你为啥想考研啊,我就是有疑问,男生为什么还要去考研,尤其是文科,就业不是很好么

Ⅹ 数学三到底难不难啊!我基础很差的!

不难,难的就是怕你动真功夫,我也学过高数,数学一二三四的差别其实并不在难度上,而是体现在考试范围和侧重点的差别上。
数一、数二一般是理工类的,它们对高数的要求比较高。而数三、数四重点是放在概率论、数理统计上的,经济类的尤其是数四,对于概率论部分的要求非常高,甚至超过数学一。数理统计部分数学四不考,数学三考。而且数学三在这部分内容上一般比数学一范围还要广一点,难度还要大一点。与数学二相比,数学三考试的范围要更广一些,像无穷级数,这方面数学二就不考,数学二还不考概率论与数理统计。从高等数学的角度来讲,数学一当然是这四类数学中最难的,但是如果从概率论与数理统计的角度来讲,数学三则要难一些。
范围的大小从很大程度上也决定了复习投入精力的多少,从这个角度来说,数学一最难,其次是数学三,接下来的两个,我认为对理工类的学生来说,数学四更难(多一门概率),但对经济类考生来说,数学二更难(体现在高等数学部分)。

热点内容
序数词教学 发布:2025-06-26 22:56:49 浏览:667
景洪教育 发布:2025-06-26 22:50:06 浏览:156
英语牛仔 发布:2025-06-26 19:04:47 浏览:897
小天才宝贝电脑多少钱 发布:2025-06-26 18:52:20 浏览:683
幼儿教师德能勤绩廉述职报告 发布:2025-06-26 18:44:15 浏览:732
优秀教师师德师风演讲稿 发布:2025-06-26 18:05:35 浏览:504
数学与地理 发布:2025-06-26 17:09:40 浏览:615
化学实验经典 发布:2025-06-26 12:09:34 浏览:34
双能型教师 发布:2025-06-26 11:54:59 浏览:232
人体物理降温的方法 发布:2025-06-26 10:29:57 浏览:633