初中数学读书笔记
『壹』 求一篇初中数学新课程标准读后感或者读书笔记,八百字左右,上教版
作为一名初中数学教师,认真学习了《标准》的基本理念。通过学习与教学实践从以下几个方面谈谈学习《标准》基本理念的粗浅体会,以求教于各位专家和同仁。
(一)建立和谐的、民主的、平等的师生关系
新课标要求"教师是数学学习的组织者、引导者与合作者"。即组织学生发现、寻找、搜集和利用学习资源,组织学生营造和保持教室中和学习过程中积极的心理氛围。引导学生激活进一步探究所需的先前经验,引导学生实现课程资源价值的超水平发挥。建立人道的、和谐的、民主的、平等的师生合作关系,让学生在尊重、信任、理解和宽容的氛围中受到激励和鼓舞,得到指导和建议。
(二)让学生经历数学知识的形成与应用过程
课堂教学方法的改革是实施素质教育的着力点之一。因此,教师在课堂教学中,应真正把学生当作数学学习的主人,发挥学生的主体作用,让学生积极参与学习的全过程,使他们的知识与能力在参与学习的过程中得到全面发展。对此,在教学中,教师要根据学科特点与学生的心理规律,创设情境,注重诱发学生的求知欲,激发参与动机,强化参与意识,提高参与兴趣,从而使学生自始至终主动参与学习的全过程。在参与学习的全过程中,教师要及时收集、反馈信息并作出评价调控。使学生在精神上得到满足,享受到成功的喜悦。对于有畏难情绪、不积极参加学习的学生,教师应给予真诚的鼓励、热情的帮助、细心的辅导,促其从“要我参与”转变为“我要参与”,增强学生参与的主动性,积极性投入到学习的全过程中。为了让学生在有限的时间里参与活动的时间尽量多些,参与活动的效率尽量高些,教师应多考虑使用现代化教学手段,把抽象的数学知识由“静态”变为“动态”的画面,有利于反映事物变化的过程,易于学生理解掌握知识。在课堂教学中,教师要尽量多地为学生提供参与说、议、做、练等多种活动的机会,让学生动口、动手、动脑,努力营造学生全面参与学习的浓厚气氛。与此同时,教师还要教给学生参与的方法,提高参与的质效。达到培养学生的主体意识、合作意识、创新意识和应用意识,使学生在独立探索、解决问题过程中,学会数学的思维方法。
(三)鼓励学生自主探索与合作交流
有效的数学学习过程不能单纯地依赖模仿与记忆,教师应引导学生主动地从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。在教学中教师要多鼓励学生大胆设疑、质疑、释疑、辩错。设疑,即放手让学生发现问题,大胆提出问题。学生如能发现问题,提出问题,表明他们已在积极探索事物之间的关系,是积极思维的表现。通过设疑,培养学生追根究底、不断探索、创新的精神。质疑,即对学生提出的问题进行交流讨论。在教学过程中当学生不满足于教师的讲解,对教师的讲解产生疑问时,教师应加以肯定和鼓励,不要忙于把现成的答案告诉学生。而应采用交流讨论的形式,让学生充分发表意见,互相启发,触发思维,寻求正确的答案,从而培养学生好求甚解、凡事多问的精神,让学生“学会与人合作,并能与他人交流思维的过程和结果”。
(四)尊重学生的个体差异,满足多样化的学习需要
学生的个体差异表现为认知方式与思维策略的不同,以及认知水平和学习能力的差异。教师要及时了解并尊重学生的个体差异,满足多样化的学习需要。对学习有困难的学生,教师要给予及时的关照与帮助,要鼓励他们主动参与数学学习活动,尝试着用自己的方式去解决问题,发表自己的看法;教师要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。对于学有余力并对数学有浓厚兴趣的学生,教师要为他们提供足够的材料,指导他们阅读,发展他们的数学才能。
(五)注重学生的评价
“评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学”,“评价要关注学生学习的结果,更要关注他们学习的过程”教师要通过对学生的评价分析与反思自己的教学行为,从多种渠道获得信息,找到改进教学要点,提高数学教学水平。。
『贰』 数学故事的读书笔记怎么写
数学读书笔记是一个很好的学习方法,我在上初中就开始写数学笔记,效果很好内。现在容很多知识还记忆犹新。具体做法是课后整理笔记,把一天的内容按自己的理解和思路整理下来,尤其是课前预习时的问题和难点,如果在课上得到解决,就把他整理下来;如果是自己在听课后解决的,更要详细总结。做好这个过程,我想你的数学一定会学好的,关键是你提高了学习兴趣和效率。
『叁』 数学课外书籍读书笔记
全书对我启发最大的是“从教育的角度看数学文化”这一部分的内容,笔者强调,我们应当注意纠正这样一种倾向,不能一味地强调数学的工具的作用,然而目前,我们中、小学的数学课程的教学目标主要是将数学作为一种工具来进行传授,在我们的日常教学中,应当更为重视数学思维的训练与培养。
『肆』 数学读书笔记,短一点的
阅读了何棋老师的《优秀高中数学教师知道的十件事》,的确感受到何老师教育教学基本功扎实、经验丰富,教育理念超前,理论水平高。能够站在一线教师的角度,对一线教师如何成为一名优秀教师谈了非常明确的观点。阅读过后,自感很多方面尚有欠缺,尤其他谈到了高中数学教学方面的几件事,给我留下深刻印象,现与大家交流。
在该书中,何棋老师首先提到,一个高中数学教师要想成为一名优秀的教师,首先他必须具有健康的身体、积极的心态和完善的人格。教师的宽阔胸襟能够感染学生,净化学生的心灵,使之终身受益。其次,作为老师必须要有一份爱心,这是师德的核心。老师给予学生一份关爱,会影响至学生的一生。我们严格要求学生先学会成人然后再谈成才。目前社会上各种各样的诱惑充斥着我们的生活环境,因此教育中学生明是非,辨真伪,为学生的成长指引正确的方向和道路。二期课改明确了教师要尊重学生的个性差异,尊重每一位学生,建立和谐的师生关系。对高中学生,尤其是高一的新生,教师应帮助他们完善学习方法,掌握学习数学的技能,做到有效学习尤为重要。
我们会经常听到学生或家长提到的一个问题:初中时数学学得很好,每次考试不下90分,到了高中怎么学习数学这么吃力呢?甚至经常徘徊在及格线附近,这种现象应该说也是正常的,但是一个优秀的高中教师要了解学生数学能力的实际水平,并引导学生改变数学学习方法,以适应高中的大容量、快节奏的学习。针对此类问题,何棋老师提出:我们老是要做到方法上的引导,因此就必须:
(1)了解高中数学和初中数学有何不同。从教材内容和要求到学习知识的能力需求分析。相对初中数学,高中数学的知识内容丰富,思维要求高,题目难度大,抽象概括性强,灵活性综合性强。教材中概念的符号多,定义严格,论证要求高,抽象思维增多,注重数学思想方法的积累和应用。不仅要求学生运算能力,还要有逻辑推理能力,能运用一定的数学思想方法解决问题。比如:高一数学教材第一章是集合与命题,紧接着就是不等式和函数,特别是函数的性质部分,这一连串的内容有一个又一个的难点,有些学生知道高中毕业也还是惧怕函数内容,还有不等式中,对二次项系数的分类讨论问题,很多学生容易忽略,缺乏分类讨论的意识。相比之下,初中数学以常量数学教学为主,内容比较平面化,直观,针对某些知识还经常反复训练,机械模仿等。由于新课标强调的是学习的螺旋式上升,教材对知识章节的编排不够连贯,结构比较松散,教材坡度较缓,直观性强,对每一个概念配置了足够的例题和习题。同时初中对抽象思维要求较低,况且初中升学门槛降低,学生的数学基础和能力下降较多,诸如:运算能力差,不会化简代数式,不会解方程组,不会准确画二次函数图像等等,这些位高中教学无疑增加了难度。为此他提出,一个优秀的高中数学教师必须充分了解初中数学内容和要求的变化,努力寻求初高中知识的衔接点,调整以往的教学经验,根据学生的最近发展区组织课堂教学,提高课堂效率。
例如:高中解绝对值不等式方法:绝对值的定义,分类讨论,还有绝对值的零点分成不等式组等,初步让学生体会分类讨论的方法,这是一个绝好的机会。
(2)找准初高中数学教学的切入点。
初高中知识的衔接点主要包括两个方面:第一,初中二期课改删除的内容,未与高中教材衔接但是高中阶段要用到的一些知识。第二,初中虽有涉及但是较简单,而高中需要熟练掌握的公式,定理、常用的思想方法等。必须多花时间进行整理和补充,对于已经掌握的同学而言是巩固,对未学过的同学来说是为以后的学习打基础。有条件的可以开设初高中内容衔接课。
(3)上好高中数学第一节课。高中数学第一节课处理得好,能激发学生的学习兴趣和求知欲望,从而调动学生的学习主动性,展现了下一步学习的良好开端。第一节课,对教师而言是一次展示自我的机会。上好第一节课,有利于教师在学生心目中树立起较好的形象,对整个阶段的教学效果都将产生极大的影响。每一位学生都希望自己的新老师是值得崇拜的学者,但同时他们的心里又用自己的标准来衡量老师的一言一行,这就对老师们提出了更高的要求,一旦得到了学生的认可,方能 “亲其师,信其道”从而取得较好的教学效果。从内容上来看,第一节课可以是上教材上的某一节课,也可以是讲授高中数学的知识框架和结构,初步介绍一些学习方法。
(4)指导学生高中数学的学习方法
可在经过短时间的高中数学学习后,通过调查问卷的方式了解学生是如何进行高中数学学习的,从中发现问题并给予及时的指导。包括:课堂学习作笔记的指导;学习新内容的指导;分析问题的指导;作业和课后的复习巩固的指导等。指导学生坚持整理课堂笔记,是知识系统划,梳理知识的内在联系,使指系统化,同时也培养学生的归纳概括能力。
为做好上述几个方面,一个优秀的教师显然还应该具备系统扎实的专业知识、基本方法等,了解本学科的发展趋势。不仅如此,教师只有不断提升自己,才能拓宽知识面,教学中也才能够运用自如,课堂才会生动有趣。另外,要成为一位优秀的数学教师,还应该具备以下几个方面的能力:第一,优秀高中数学教师对数学要有自己深刻的理解和思考,数学不只是枯燥无味的公式、定理等,而是我们认识世界、分析问题的思想方法。引导学生在生活中发现数学问题并解决问题,从中体验到学习数学的乐趣,增强学习的信心。第二:优秀的高中数学教师无一例外的具有较强的数学基本功、教学基本功。他们数学知识熟练广博,接替机枪多样,使学生心目中的“难不倒”的老师。他们不仅善于学习总结,更善于了解数学的发展近况,扑捉新信息 ,把握好重难点,找准问题的关键。选择恰当的方式设计数学问题情景实施教学,激发学生的学习兴趣。第三:优秀的高中数学教师会创造性地处理教材,是“用教材”而非“教教材”。他们会深刻领悟编写的意图,联系学生的实际,不断补充相应的内容,勇于创新,或者开展专题研究或小课题研究,更好地“用活教材”,从而创造性地开展教学工作。
除此之外,他还提到一个优秀高中数学教师还能够评估学生的数学认知结构。了解了初中的内容还不够,还要评估学生学习数学的能力,这一点并不全是与数学成绩成正比。评估学生的认知结构,可以为教学提供信息,确定怎样的教学方法。也可以为数学学习提供诊断,找出影响学习质量的原因。教师需充分调查了解学生已经掌握的知识和技能,了解掌握的熟练程度,了解学生对数学思想方法的理解程度,这样才能设计出适合学生情况的教学活动,充分调动学生原来的认知结构对新知识进行“同化”和“顺应”,提高课堂效率。
总之,要想成为一位优秀的高中数学教师,必须拥有丰富的数学基础知识,结合当前的可改精神,认真领悟二期课该的精神,创造性地使用教材,尽可能因材施教,充分了解每一位学生的成长环境和经历,发现学生的个性特长,充分发挥学生的主体性,让他们体验数学解题的思维过程,抓住数学的本质,学会学习数学。何棋老师为高中数学老师的发展指明了方向,让我明白了自己的不足,在竞争愈来愈激烈的今天,我们会更加努力!
『伍』 关于《数学的领悟》的读书笔记
读书笔记:数学的领悟-罗增儒读书笔记:数学的领悟-罗增儒一、摘要理解实质:学会,会学对于学生,不应只满足于表面文字的学会,还要深入理解概念、原理、方法等的精神实质。这样解à怎样解 看透本质:我们做题,首先要找到答案,这是基本要求,但不是最终的目的。如果求出答案后不能把题目所隐含的数学内容的实质揭示出来,就等于在原有的思维水平上简单重复、原地踏步而已。知其然,不知其所以然 优化素质:优化数学素质的主要途径是注重知识的发生过程,如概念的形成过程,定理的发现过程,证明的寻求过程等。对于解题来说,进行解题过程的分析是优化素质的一条捷径。居高临下的回首,就为我们提供了指导性的经验。学数学毕竟与学技艺不尽相同。一门技艺可以通过模仿与重复操练去掌握,而数学解题不是机械地重复数学基础知识和数学基本方法,还要综合而灵活地运用这些知识和方法,它在本质上是一种创造性的思维过程。后来,我们悟出了一个门路,那就是通过已知学未知,通过分析已经解决过的题来领悟解题的思想,通过解题思想来驾驭知识与方法。这个体会和方法,使我们摆脱了单纯的模仿和在同一思维层次上的简单重复,使得每一天的学习都能获得解题能力或思维水平的一点提高。我们认为,为了提高数学能力,至少在还没有找到更好的办法之前,“分析已经解决的题”是一个普遍可行的好方法。 事实上,解题思路的获得,包括下列“三位一体”的完整工作:1. 捕捉有用的信息,符号信息和形象信息;2. 提取记忆,主要是相关的公式、定理、基本模式等解题依据;3. 将两者有效组合,使之成为一个合乎逻辑的和谐结构。苦难就在于此步。 做题的作用:巩固知识,加强记忆,加深理解的知识目的; 但更有提高能力,开发智力,训练思维的能力目的。 解题的心理过程:知道的越多,不知道的也越多有用捕捉、有关提取、有效组合是心理活动的外在表现它恰好对应着人的复杂心理活动过程的三个环节:观察试验、联想转化、推理证明。 联想转化的朴素含义是,把待解决的或未解决的问题,归结为一类已经解决的或者比较容易解决的问题。 爱因斯坦说过:你能观察到眼前的什么现象,不仅取决于你的肉眼,还取决于你运用什么样的思维,思维决定了你到底能观察到什么。例子,鲁宾双关图形G.波利亚: 为初中生设计的: 设计出自己的解题表,以适应具体的学科和学习的不同阶段 差异分析法:题目的条件与结论之间的差异成为目标差解题的实质就在于设计一个目标差不断减少的过程通过不断寻找目标差,不断减少目标差而完成解题的思维方法,成为差异分析法从寻找目标差入手,未知是什么?已知是什么?两者有什么联系与区别? 特殊化:数学家认为,在讨论数学问题时,特殊化比一般化起着更为重要的作用特殊化问题有可能更简单、更容易,进而推广之其功能在于:1解题的突破口,2寻找解题思路的策略,3完成解题过程的方法由一般退到特殊,由复杂退到简单,由抽象退到具体,由整体退到部分,退到最原始而又不失去重要性的地方,退到你会做、能下手的问题上 数形结合:一柄双刃的利剑数转化为形,看透实质如果一个特定的问题被转化为一个图形,那么思想就整体地把握了问题,并能创造性地思索问题的解法形转化为数, 转换思考的角度:顺向推导有困难时就逆向反求,直接解决问题有困难就间接解决,正面证实困难就反面否定,探究可能性困难就探究不可能性,等式证明从左到右不顺利就从右到左逆推法,反证法,举反例,常量变量换位,公式定理的逆用分析法:由未知,找须知,靠拢已知反证法更适用于否定性问题、无限性命题、唯一性命题、存在性问题、逆命题、学科起始性命题。 分类讨论: 层次解决:解题研究表明,人们在创造性处理一个新问题时,思维是按照层次展开的,先粗后细,先宽后窄一般性解决à功能性解决,à特殊性解决层次法往往同方程、函数结合起来 解题过程分析:1. 多走了哪些回路,删除合并之2. 能否用更一般的原理代替现存的很多步骤,提高解题的观点和层次3. 是否有特殊的技巧4. 是否浪费了更重要的信息? 整体分解,提炼步骤信息交合,
『陆』 中学数学教师读书笔记(共8篇)
书中提到肖先生借用了清代文学家袁枚关于“学、才、识”的论述来说明三项数学教育目的,他认为广义的数学教育不是把数学仅仅视作为一件实用的工具,而是通过数学教学达至更广阔的教育功能,包括数学思维延伸至一般思维,培养正确的学习方法和态度、良好的学风和品德修养,也包括从数学欣赏带来的学习愉悦以及知识的尊重我们必须理清三者之间的关系。与具体的数学知识的学习比,数学的文化价值(包括思维训练和文化素养)更为重要。