当前位置:首页 » 语数英语 » 数学与科学

数学与科学

发布时间: 2021-08-13 13:29:32

数学是科学吗

数学是研复究抽象事物之制间内在关系的思维学科,而科学是研究客观世界的学问,科学的特征是可验证可重复,而验证与重复也是证伪的过程,科学总是在不断修正错误中前进,而数学要求体系的完备,不能有内在的逻辑错误,因此数学不属于严格意义下的科学,但是一切科学研究的必须依存的基础。
补充例子:
1.数系只有扩展,没有否定过去;而科学中的物理学会否定过去--牛顿力学是速度远远小于光速的相对论近似,而不能说实数是复数的近似,因为复数是完全包含了实数。
2.无理数只需要逻辑反正即可确定成立,不会采用计算出无穷小数来验证,而验证是科学最重要的特征;
3.科学建立在对客观认识的基础上,数学是建立在假设基础,按照逻辑推演得到结果,二者从方法、目的以及体系都有截然不同的区别。

Ⅱ 科学与数学的关系

当科学(尤其物理)学得深奥一点了以后,如果没有扎实的数学版运算基础,是根本无法继续下权去的。而科学如果能很好的理解,那么对数学的学习也是有帮助的。
考试并不是唯一标准,你现在在考试中有高分,未必以后就能灵活运用。现在拿低分,以后未必就一事无成。所以现在还是尽量把每一科都学好,.竟科学和数学是不一样的

Ⅲ 数学与科学的关系

科学起源于数学,数学早于科学产生。5000多年前,四大文明古国和古希腊都产生了数学,公元前300年左右,古希腊数学蓬勃发展,产生了真正成体系的欧几里得几何学。当数学蓬勃发展的时候,产生了科学的萌芽,而科学则是产生于14世纪中叶至17世纪初在欧洲发生的思想文化运动后,在伽利略等人的努力下制定了科学研究的规范,才产生真正意义上的科学。用我们今天定义的数学和科学来区分年代的话,科学只有400多年的历史,而数学却有2000多年的历史。

两者研究对象不同。数学是用符号语言研究数量和空间关系,研究对象可以是实的,也可以是虚的,具有很强的抽象性。科学则是研究自然界物质的现象和事物的发生、发展和变化规律,既包括物体个体、物体系统、物体细分,也包括宏观现象、微观现象等,科学研究的对象必须是真的,具有很强的实证性。

研究方法不同。数学比较注重逻辑推理,2000多年前的数学家们就确定了“大胆猜测,严密论证”的演绎论证方法。所有数学定理全部要经过演绎论证,否则不可以进入严密认证自洽的数学体系。科学则侧重于实验,是基于推理的摸索与探索,自然科学的所有学科都是注重实验、观察的科学,从实验中得出的结论。

结论的可靠性不同。数学定理一般非常可靠,等同于真理,不易被后来者推翻。科学上的结论往往只是一个时代的真理,随着数学理论的更加完善,实验和检测手段的不断提高,其它学科提供了更加充分的证据,使得有些前人认为是真理的东西被证明是落后的,科学结论过了它所处的时代可能就不再可靠了。

数学是科学的先锋。马克思曾明确指出“一种科学只有在成功运用数学时,才算达到了真正完善的地步”。数学为科学研究提供了工具,数学推理为科学探索提供了研究方向。只有数学发展到更高水平,科学才能上升迈上新的理论体系。如在物理学领域,当数学发展水平处于欧几里德几何学时期,科学研究只能建立在静止力学的基础上,对应的科学体系是托勒玫的“地心说”;牛顿发明了微积分,科学研究才可能在动态力学的基础上进行,逐步建立了哥白尼—牛顿的科学体系;当数学发展到非欧几里德几何学阶段,爱因斯坦以发展演变的动态宇宙观,用黎曼几何推演,才发明了广义相对论,建立了当今的爱因斯坦—霍金的科学体系。

科学的好奇和探索推动数学不断向前发展,在科学发展过程中,也给数学提出一些新的课题。量子力学是在20世纪初由一大批科学家共同创立的,创立初期所用的数学是线性代数,彻底改变了科学家对物质组成成分的观点。量子力学研究了差不多一百年,特别是对量子纠缠的研究,有些现象既无法用代数来描写,也无法用分析来推演,由于数学发展水平的限制,至今无重大突破,并没有改变大众对物质组成成分的认知。量子力学没有取得突破,是因为没有现成可用的数学方法,急需要发明新的数学。

数学与科学有着天然的联系。现代科技的发展得益于数学的发展,可以说几乎所有科技领域都用到数学,数学用的越好,科技水平和技术含量就越高。数学认知能力的发展是人类探究和解决问题的前提,人类解决问题,从宏观到微观,从宇宙到地球,所有的探索都离不开数学。

Ⅳ 科学和数学有什么关系 什么

科学包含数学,但一切科学都是以数学为基础计算的

Ⅳ 数学与科学的关系

“科学”本身是个抄非常浅显袭的东西,按网络的定义就是“分科而学”。但科学发展到今天,已经不那么简单,它需要“格物致知”,更需要“穷理”,以至达不到穷理的东西都不能称之为“科学”。那什么是“穷理”呢?穷尽原理。原理是什么?数学。人们到今天都应该认识到,数学乃宇宙万事万物存在运行规律的原理,尽管人类目前掌握的这些原理还很有限,也就是数学能力也很有限,但只要不是错误的公式,都是原理。换句话说,数学是自然规律在人类认知领域的抽象和归纳,尽管是有限的归纳。要不人类的存在有何意义呢?发挥好奇,格测自然,找出规律,推导公式,发展科学,发明技术,满足需求,文明进步。
不过网络“分科而学”的定义抓住了“科学:的精髓,把复杂的事物模块化,按中国话说就是“化整为零”,然后钻深吃透,穷尽“道”理,把不可能任务变成轻松可行。 题外话了。
以上有点答非所问了。讲成了科学与数学的关系了。你的问题是《科学》课与《数学》课学习成绩的比较。这么说就不是那么回事了,你的《科学》好可能只是你的科学知识好,兴趣和记忆的比较好,《数学》则不一样了,需要数学运算,抽象归纳,逻辑推理等能力。不在一个层面上的东西。

Ⅵ 能不能解释一下数学与科学是什么意思谢谢

数学:数学是研究数量、结构、变化以及空间模型等概念的一门学科.透过抽象化和回逻辑推答理的使用,由计数、计算、量度和对物体形状及运动的观察中产生.数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理.
科学:科学首先指对应于自然领域的知识,经扩展、引用至社会、思维等领域,如社会科学.它涵盖两方面含义:致力于揭示自然真象,而对自然作理由充分的观察或研究.科学一词起源于中国古汉语,原意为“科举之学”,宋 陈亮 《送叔祖主筠州高要簿序》:“自科学之兴,世之为士者往往困於一日之程文,甚至於老死而或不遇.”而科,单独有分类,条理,项目之意,学则为知识,学问,因此到近代日本翻译西方著作的时候,在翻译英文science的时候,引用了中国古汉语的“科学”一词,意为各种不同类型的知识和学问.

Ⅶ 数学与科学间的关系

数学是研究数量、结构、变化以及空间模型等概念的一门学科.主要培养逻辑思维能力、运算能力等从而为科学做出贡献!

Ⅷ 数学,自然科学和社会科学的区别

一、三者的意义不同:

1、数学的意义:在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

2、自然科学的意义:自然科学认识的对象是整个自然界,即自然界物质的各种类型、状态、属性及运动形式。认识的任务在于揭示自然界发生的现象以及自然现象发生过程的实质,进而把握这些现象和过程的规律性,以便解读它们,并预见新的现象和过程,为在社会实践中合理而有目的地利用自然界的规律开辟各种可能的途径。

3、社会科学的意义:在现代科学的发展进程中,新科技革命为社会科学的研究提供了新的方法手段,社会科学与自然科学相互渗透,相互联系的趋势日益加强。

二、三者的概述不同:

1、数学的概述:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

2、自然科学的概述:自然科学与“社会科学”、“思维科学”并称“科学三大领域”,它是以定量作为手段,研究无机自然界和包括人的生物属性在内的有机自然界的各门科学的总称。

3、社会科学的概述:社会科学是用科学的方法,研究人类社会的种种现象的各学科总体或其中任一学科。它是研究各种社会现象的科学。如社会学研究人类社会(主要是当代),政治学研究政治、政策和有关的活动,经济学研究资源分配。

三、三者的范围不同:

1、数学的范围:数学涵盖的范围包括数量、结构、变化、空间以及信息。

2、自然科学的范围:包括天文学、物理学、化学、地球科学、生物学等。

3、社会科学的范围:社会科学所涵盖的学科包括:经济学、政治学、法学、伦理学、历史学、社会学、心理学、教育学、管理学、人类学、民俗学、新闻学、传播学等。

Ⅸ 数学与人文科学的关系是什么

从教育哲学的角度来看,数学教育是在人文主义教育思想和科学主义教育思想交互影响下不断发展的历史过程。世纪之交,当今教育的一个重要主题是提高公民素质,培养新型的科学文化人。因此,一种新型的教育观--素质教育应运而生。根据马克思主义的历史唯物观,这种教育观不是对传统观念的机械否定,而是历史的继承、沿革,是传统科学教育与人文教育以整合态势的新发展。 一、整合的内涵、特征 整合,从字面意义上来说,是“统筹下的融合”,即有机结合、相互渗透,是科学学新近使用的一个概念,表述的是各门学科与知识经高度综合产生的学科(边缘学科、跨学科)的知识。这一术语现已被广泛借用到各门学科之中。 数学教育中科学与人文的整合并不是将科学教育与人文教育思想进行简单的调和、相加,生成一种“混合物”,而是具有特定的内涵和特征。 数学是独立于人文科学与自然科学之外的一门独特的科学。现代数学哲学的研究表明,数学不仅是科学的工具,更是一种文化;数学教育不仅具有科学价值,而且还具有文化价值,对人的全面发展、形成完善人格具有不可估量的作用。数学教育的历史发展和数学教育哲学研究,为数学教育中实施科学教育与人文教育的整合的可行性提供了理论依据。 数学教育中的科学教育与人文教育整合,首先考虑其本身的内在规律。数学教育中科学价值和人文价值是一个统一体,数学的知识是其思想、精神的载体,数学的应用是多层次的。从表层意义上来讲,是知识的应用,因此必须贯穿科学教育的思想,以知识的传授为最基本的要求,任何人都不可否认知识的力量。从深层意义上来讲,是思想、精神、方法的运用,反映出深蕴其中的文化价值,影响人们的思维方式、智力发展、审美情趣、伦理道德。基础教育中的数学教育的任务不是一种职业培训,数学教育的文化价值应受到重视。 数学教育中科学教育与人文教育的整合还具有时代特征。自18世纪微积分诞生以来,数学在应用方面的成就层出不穷,数学本身固有的那种工具性品格日渐突出,以至于人们淡忘了另一种更为重要的文化品格。功利主义、实用主义倾向排斥了人文主义的教育功能。数学中的文化价值则变成了少数哲学家研究的内容,未能引起广大数学教育工作者的重视,数学教育的文化价值甚至不为人们所理解。在西方功利主义占据了统治地位,强调数学的一切为了应用的局限性已日见端倪,新人文主义思想已受到人们的重视。如何进行整合,必须结合实际情况,反映时代特征。 二、整合的意义 1957年,英国学者C.P.斯诺在剑桥大学发表的题为《两种文化与科学革命》的演讲,引起了知识界的共鸣。他认为:人文文化与科学文化这两者之间存在着一个互不理解的鸿沟,教育中科学教育与人文教育的割裂是造成这一状况的根本原因。而科学文化与人文文化具有互补性与相容性,两种文化的整合要以教育中科学与人文的整合为前提,随着现代科学技术的高度发展,通才教育受到广为的重视。人类知识正从高度的分化走向高度的综合,处在科学前沿的学科大多数带有跨学科性,人文科学、自然科学成为人类文化不可分割的两个组成部分。自然科学家需要艺术修养,人文学家离不开科学素养,对跨学科知识的探究人才的培养,呼唤着科学教育与人文教育的整合。 数学教育内在规律迫切需要实施科学与人文的整合。一方面,人们已认识到数学教育的价值不仅体现在工具性上,而且体现在超功利性上。数学可以陶冶人的情操,净化人的灵魂,给人以美的享受。另一方面,现代教育学、心理学的研究表明:人的动机、情感、意志等因素对数学学习和人智力发展具有不可或缺的作用。而现实的数学教育中,往往只重视概念、定理、公式、逻辑推理的教学,在审美、意志、情感、价值观、责任感等方面缺乏对学生的正确的引导,造成学生缺乏对现代生活的全面、完整、正确的理解和认识,不利于学生身心和谐发展。 历史的教训告诫我们,割裂数学教育的工具价值和文化价值是极为有害的。现代科学技术的高度发展离不开数学工具,数学具有巨大的、潜在经济价值。但是,科学技术对人类社会的发展并不能代表一切。学校教育如果只重视对科技发展的工具性功能,而忽视了人的自身发展的功能,就会助长功利主义的倾向和发展,社会的道德水准就会下降,文明社会也会出现腐败和崩溃。这种现象成为当今社会的隐患,引起了广大有识之士的关注。数学更是一种文化,特别是计算机技术日新月异的飞速发展,已形成了一种“数字化”、“数学化”的生存方式。数学通过其思维方式影响到人们的生活方式乃至生存方式。数学教育的价值已超越了工具的层面而进入了人文领域。人文主义教育观注重增进个人自由、价值、尊严,重视道德伦理、审美、情感等教育,人们试图以此来统整文化、平衡社会、改变人际关系间彼此不理解、不信任、自私自利的状况。数学教育是一个不容忽视的重要阵地。 三、整合范式探究 目前,以“升学考试”为目标的“应试教育”模式,在我国具有极为广泛的市场,数学教育中的科学价值和人文价值都没有能够得到应有的重视。一度盛行的“学好数理化,走遍天下都不怕”的口号,看似重视数学(理化)的科学价值,其实质不过是在强调应试中的地位。由应试教育向素质教育转轨,数学教育应通过数学的思想和精神,提升人的精神生活,培养既有健全的人格,又有生产技能,既有明确生活目标、高雅审美情趣,又能创造、懂得生活的人,把传递人类文化的价值观念和伦理道德规范与传授数学知识有机结合起来,以实现人文教育和科学教育的整合。为此,在数学教学过程中应正确处理好以下几个关系: 1.形式陶冶与实际应用 数学教育的价值取向是形式陶冶还是经世致用,历来是人文教育与科学教育争论的焦点。既要整合,任何一种极端之举都是不可取的。从当今商品经济社会和我国国情出发,大力发展经济是中心任务,数学教育特别要强调为经济建设服务,在数学教育中密切联系实际,适当降低数学形式化要求,注重实质,形成用数学的意识。但对数学的应用不能狭义地理解为仅仅是知识的应用。基础教育中的数学教育不是一种职业教育,作为知识的数学其应用价值只能是有限的,人们在日常生活中常常能用到的数学知识是极少的,数学的应用体现在多个层面上。不可彻底否定形式陶冶的作用,有些数学知识即使是暂没有实际应用价值也值得去学习。 2.知识技能与思想方法 掌握数学的基础知识与基本技能是学好数学的必备条件,重视“双基”教学也是我国传统教育的一大特色,在这一方面有许多成功的经验。数学的思想方法是数学的灵魂和精髓,数学正是通过其思想方法、思维方式去影响人们的思维方式,进而影响人们的生活方式直至生存方式,以此来体现数学教育的文化价值。对数学中的思想方法的教学是目前数学教学中的一个薄弱环节。在数学教学中重视数学思想、数学方法论的教学,不仅可以提高数学教学效率,减轻学生负担,而且有利于人才的培养、素质的提高。 3.逻辑推理与审美直觉 数学历来被看成是一个严密的逻辑体系,数学在培养逻辑思维能力方面具有不可替代的作用。数学还是一个开放性文化体系。数学发展的进程离不开直觉、猜想、观察、实验、探索、美感等非逻辑方法。数学不仅促进了逻辑思维能力的发展,而且有助于提高形象思维和直觉思维能力。发明靠直觉,美感则是动力、源泉。数学不仅是一个抽象的演绎体系,还是美的乐园。数学中的美不同于一般的自然美和艺术美,具有独特的形式。数学美是一种崇高的至上的理性之美,不易被常人所体验。正像一幅世界名画,一件古玩珍品一样,并非所有的人都能领悟其真谛。对数学美的领悟同样必须具备一定的数学修养。传统的数学教育中,过分强调了数学中逻辑思维能力的培养,忽视了直觉思维能力和对数学美的鉴赏,因此应加强审美意识和直觉洞察力的培养。 4.认知学习与情感意向 情感以兴趣、愿望、热情等形式构成学习动机,作为主要的非认知因素指导着认知学习。教育不仅要侧重认知能力的培养,还要兼顾情感的发展。事实上,情意行为与认知活动是不可分的,两者共生共茂。缺乏感情的学习不是真正的学习,几乎所有的知识都会有感情成分,而且相辅相成。智力是创造力的基础,创造力是智力发展的高级阶段,一个人的情意行为对启发创造潜能有着重大的关系。数学活动是一个高度的创造性的活动,数学学习是一种再创造的过程。学生创造力的培养是数学教育的重要任务。传统的教育方式虽注意到智力开发,但忽视情意行为,又过分强调统一性,因此,压制了学生的个性发展,这是因为,个性是创造的前提条件,高创造力必须具有理想、信念、兴趣、执着、进取、坚韧、献身等情感意向因素。

Ⅹ 能不能解释一下数学与科学是什么意思谢谢

数学:数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
科学:科学首先指对应于自然领域的知识,经扩展、引用至社会、思维等领域,如社会科学。它涵盖两方面含义:致力于揭示自然真象,而对自然作理由充分的观察或研究。科学一词起源于中国古汉语,原意为“科举之学”,宋 陈亮 《送叔祖主筠州高要簿序》:“自科学之兴,世之为士者往往困於一日之程文,甚至於老死而或不遇。”而科,单独有分类,条理,项目之意,学则为知识,学问,因此到近代日本翻译西方著作的时候,在翻译英文science的时候,引用了中国古汉语的“科学”一词,意为各种不同类型的知识和学问。

热点内容
2017高考全国数学卷一 发布:2025-06-24 03:02:56 浏览:706
高二地理考点 发布:2025-06-24 02:48:27 浏览:339
巴南教育城 发布:2025-06-24 02:29:48 浏览:702
安全教育平台帐号 发布:2025-06-23 23:31:44 浏览:155
放疗做多久 发布:2025-06-23 21:31:35 浏览:69
小学英语教师个人述职 发布:2025-06-23 17:08:54 浏览:167
感恩教师节班会 发布:2025-06-23 15:07:00 浏览:101
2017高考数学全国卷 发布:2025-06-23 13:04:52 浏览:66
六年级下册英语教学计划 发布:2025-06-23 12:52:09 浏览:410
中国国家地理在线阅读 发布:2025-06-23 12:01:19 浏览:784