当前位置:首页 » 语数英语 » 八年级数学内容

八年级数学内容

发布时间: 2021-08-15 16:45:10

A. 初二数学上册内容

初二代数:
第八章 因式分解

8.1 提公因式法
8.2 运用公式法
8.3 分组分解法
读一读 用配方法分解二次三项式

小结与复习
复习题八
自我测验八

第九章 分式

9.1 分式
9.2 分式的基本性质
9.3 分式的乘除法
9.4 分式的加减法
读一读 繁分式
9.5 含有字母系数的一元一次方程
9.6 探究性活动:a=bc型数量关系
9.7 可化为一元一次方程的分式方程及其应用

小结与复习
复习题九
自我测验九

第十章 数的开方

10.1 平方根

10.2 用计算器求平方根
10.3 立方根
读一读 n次方根和n次算术根
10.4 用计算器求立方根
10.5 实数
读一读 为什么说不是有理数

小结与复习
复习题十
自我测验十

第十一章 二次根式

11.1 二次根式
11.2 二次根式的乘法
读一读 比较二次根式的大小
11.3 二次根式的除法
11.4 最简二次根式
读一读 二次根式应用举例
11.5 二次根式的加减法
11.6 二次根式的混合运算

11.7 二次根式的化简

B. 八年级上册数学的所有内容

第一章全等三角形是研究图形的重要工具,学生只有掌握好全等三角形的内容,并且能灵活运用它们,才能学好四边形、圆等内容。学生已学过线段、角、相交线、平行线以及三角形的有关知识,七年级两册教科书中安排了一些说理的内容,前面又学习了全等三角形的概念和性质,这节是探究三角形全等的条件的第一节课,让学生经历三角形全条件的探索过程,突出体现了新教材的设计思想。从本节开始,要使学生理解证明的基本过程,掌握用综合法证明的格式。这既是本章的重点,也是教学的难点。教科书把研究三角形全等条件的重点放在第一个条件(“边边边”条件)上,使学生以“边边边”条件为例,理解什么是三角形的判定,怎样判定。在掌握了“边边边”条件的基础上,使学生学会怎样运用“边边边”条件进行推理论证,怎样正确地表达证明过程。“边边边”条件掌握好了,再学习其他条件就不困难了。
第二章轴对称 立足学生已有的经验,从生活的角度研究轴对称,在呈现方式上,一提供生动的有趣的现实情景,二注重观察动手能力。

第三章实数一章内容调整与大纲下的教科书相比,本章作了一些调整:(1)加强了实数学习必要性的感受;(2)重视在现实背景中对运算意义的理解和运算的应用;(3)精确运算的要求有所降低,不要求分母有理化;(4)加强了估算;(5)鼓励使用计算器进行有关繁难的计算和近似计算。这些调整的依据和《有理数及其运算》类似,主要是基于对这样几个问题的思考:为什么要运算,也就是运算的意义与作用是什么?现实生活中对运算的要求是什么,是否都是精确的,能否精确?不能精确,如何估计和近似计算?

3、过去大纲下的教科书一般先学习平方根再学习算术平方根,具体做法一般是:直接从运算的角度思考“平方已知求原来的数”,从而得到平方根,而实际生活中可能只选择其中一个正的,因此学习算术平方根。这种做法基于教科书的一贯思路:从数学上得到各种运算,到现实生活中进行应用,也就是先准备知识,再进行知识运用。 但本教科书对于无理数的引入已经做了调整,希望在问题中引入新知,对于开方也是这样,而实际问题中研究的开方多是正的,因此先研究正的方根即算术平方根。

第四章“一次函数”在现行教材中与传统教材相比,在课程目标上,注重了知识的探索过程,更加突出了数学的“建模”思想;注重了学生形象性思维能力的培养,提高了学生利用“数形结合”解决问题的能力;注重了“一次函数”的应用,加强了数学与现实生活的联系。

第五章是“整式的乘除与因式分解”。本章的主要内容是整式的乘除运算、乘法公式以及因式分解。本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理化学学科及其他科学技术不可缺少的数学基础知识。

C. 人教版八年级上册数学内容

最低0.27元/天开通网络文库会员,可在文库查看完整内容>
原发布者:ycfx2011
八年级数学讲义第11章三角形一、三角形的概念1.三角形的定义 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示 △ABC中,边:AB,BC,AC或c,a,b.顶点:A,B,C.内角:∠A,∠B,∠C.. 二、三角形的边1.三角形的三边关系:(证明所有几何不等式的唯一方法)(1)三角形任意两边之和大于第三边:b+c>a(2)三角形任意两边之差小于第三边:b-ca时,就可构成三角形.1.2确定三角形第三边的取值范围:两边之差<第三边<两边之和.2.三角形的主要线段2.1三角形的高线从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线.①锐角三角形三条高线交于三角形内部一点;②直角三角形三条高线交于直角顶点;③钝角三角形三条高线所在直线交于三角形外部一点2.2三角形的角平分线三角形一个角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。三条角平分线交于三角形内部一点.2.3三角形的中线连结三角形一个顶点与它对边中点的线段叫做三角形的中线。三角形的三条中线交于三角形内部一点.三、三角形的角1三角形内角和定理结论1:△ABC中:∠A+∠B+∠C=180° ※三角形中至少有2个锐角结论2:在直角三角形中,两个锐角互余.

D. 人教版八年级数学的主要内容

人教版八年级数学(上册)http://www.pep.com.cn/czsx/jszx/bnjsc/dzkb/
人教版八年级数学(下册)http://www.pep.com.cn/czsx/jszx/bnjxc/dzkb/

这个专网站的内容很全的属,有所有科目的人教版初、高中的课本教材,上面的是我已经找好的,直接打开后点击你想看的内容就行了。

E. 八年级数学的知识点有哪些

八年级上册数学知识点及基本方法步骤

第十一章 全等三角形

1、全等三角形的性质:全等三角形对应边相等、对应角相等。

2、全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

3、角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等。

4、角平分线推论:角的内部到角的两边的距离相等的点在这个角的平分线上。

5、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

①确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等边三角形所隐含的边角关系);

②回顾三角形判定,搞清我们还需要什么;

③正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

学习方法

第十二章 轴对称

1、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3、角平分线上的点到角两边距离相等。

4、线段垂直平分线上的任意一点到线段两个端点的距离相等。

5、与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6、轴对称图形上对应线段相等、对应角相等。

7、画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8、点(xy)关于x轴对称的点的坐标为(x-y)

点(xy)关于y轴对称的点的坐标为(-xy)

点(xy)关于原点轴对称的点的坐标为(-x-y)

9、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

学习方法

10、等腰三角形的判定:等角对等边。

11、等边三角形的三个内角相等,等于60°。

12、等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

13、直角三角形中,30°角所对的直角边等于斜边的一半。

14、直角三角形斜边上的中线等于斜边的一半。

第十三章 实数

1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 。0的算术平方根为0;从定义可知,只有当a≥0时a才有算术平方根。

2、平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3、正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4、立方根:一般地,如果一个数x的立方根等于a,即x3=a,那么数x就叫做a的立方根。

5、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

学习方法

6、数a的相反数是-a,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。

第十四章 一次函数

1、画函数图象的一般步骤:

第1步列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值);

第2步描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点);

第3步连线(依次用平滑曲线连接各点——按横坐标由小到大的顺序)。

2、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

3、若两个变量xy间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量y为因变量)。特别地当b=0时称y是x的正比例函数。

八字方针:正撇负捺(K),上加下减(b)

具体图象:大大不过四,小小不过一,大小不过二,小大不过三

4、正比列函数一般式:y=kx(k≠0),其图象是经过原点(00)的一条直线。

5、正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限y随x的增大而增大(增函数),当k0时y随x的增大而增大;当kn)。 学习方法

2、在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数所以法则中a≠0。

②任何不等于0的数的0次幂等于1即 如 (-2.50=1)则00无意义.

③任何不等于0的数的-p次幂(p是正整数)等于这个数的p的次幂的倒数即 ( a≠0p是正整数) 而0-10-3都是无意义的;当a>0时a-p的值一定是正的;当a

F. 初二数学都有哪些知识点

归纳如下:

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子: a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2 =(a+b)2

a2-2ab+b2 =(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m+ n)

=(m +n)•(a +b).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.

2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

一次项的系数.

2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

① 列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数.

3.将原多项式分解成(x+q)(x+p)的形式.

(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

2.分式进行约分的目的是要把这个分式化为最简分式.

3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,

(x-y)3=-(y-x)3.

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

4.通分的依据:分式的基本性质.

5.通分的关键:确定几个分式的公分母.

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

12.作为最后结果,如果是分式则应该是最简分式.

(九)含有字母系数的一元一次方程

1.含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

(6)八年级数学内容扩展阅读:

概念口诀

有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。

有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则

同号得正异号负,一项为零积是零。

合并同类项

说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。

去、添括号法则

去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

解方程

已知未知闹分离,分离要靠移完成。

移加变减减变加,移乘变除除变乘。

平方差公式

两数和乘两数差,等于两数平方差。

积化和差变两项,完全平方不是它。

完全平方公式

二数和或差平方,展开式它共三项。

首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。

完全平方公式

首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。

解一元一次方程

先去分母再括号,移项变号要记牢。

同类各项去合并,系数化“1”还没好。

求得未知须检验,回代值等才算了。

解一元一次方程

先去分母再括号,移项合并同类项。

系数化1还没好,准确无误不白忙。

G. 数学八年级重点内容

第一章 全等三角形

一.知识框架

二.知识概念

1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:

(1)“边角边”简称“SAS”

(2)“角边角”简称“ASA”

(3)“边边边”简称“SSS”

(4)“角角边”简称“AAS”

(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第二章 轴对称

一.知识框架

二.知识概念

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

第三章 实数

一.知识框架

二.知识概念

1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。

5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

第四章 一次函数

一.知识框架

二.知识概念

1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。

4.已知两点坐标求函数解析式:待定系数法

一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

第五章 整式的乘除与分解因式

一.知识概念

1.同底数幂的乘法法则: (m,n都是正数)

2.. 幂的乘方法则: (m,n都是正数)

3. 整式的乘法

(1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:

5.完全平方公式:

6. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

④运算要注意运算顺序.

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法

分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

H. 初二数学课程内容

每个学校教的顺序都不一样吧
我们就是学了一半跳到后面几何去,函数都没学啊

I. 初二数学主要是学什么

初二数学主要学:分式、反比例函数、勾股定理、四边形、数据分析。其中:

  1. 分式版包括分权式运算和分式方程。

  2. 反比例函数包括实际问题与反比例函数。

  3. 勾股定理包括勾股定理的证明与勾股定理的逆定理。

  4. 四边形包括平行四边形以特殊的平行四边形与梯形。

  5. 数据包括数据代表和数据波动。

(9)八年级数学内容扩展阅读

初二指初中二年级,九年义务教育中的八年级也可叫做初二,初中二年级,八年级。科目为:语文、数学、英语历史地理、政治、生物、物理、体育、音乐(10科)。

九年义务教育中的八年级也可叫做初二,初中二年级,八年级。

科目为:语文、数学、英语、历史、地理、政治、生物、物理、体育、音乐(10科);

浙江等省份为语文、数学、英语、科学(物理、生物、化学部分基础内容)、社会(历史、地理、政治)

J. 初二数学的内容是什么

m76085767656 - 见习魔法师 二级的忠告很好,希望你不要过早的接触初二的数学,跨度太大,收益很小,不合算。可以看一些简单的趣味性的入门类的内容,长见识。

热点内容
香港历史剧 发布:2025-06-18 11:41:54 浏览:536
教师资格报考入口 发布:2025-06-18 11:01:30 浏览:802
至班主任一封信 发布:2025-06-18 09:47:44 浏览:481
制取氢气的化学方程式 发布:2025-06-18 08:12:49 浏览:426
煤的历史 发布:2025-06-18 07:46:05 浏览:909
课堂教学效率 发布:2025-06-18 05:00:11 浏览:389
物理培优补差工作计划 发布:2025-06-18 04:45:06 浏览:773
南师教育 发布:2025-06-18 03:29:49 浏览:932
合肥航太电物理 发布:2025-06-18 02:33:21 浏览:104
四年级上册语文期中复习 发布:2025-06-18 01:54:42 浏览:168