数学与图片
① 请问数学: 上面的图片计算方法和下面一样吗下面是同乘“4”,只不过下图的“-4”写成
可以使用同一种方法,将分母约去
② 数学家的故事与图片
图片:http://image..com/i?tn=image&ct=201326592&lm=-1&cl=2&word=华罗庚
华罗庚出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师。
少年时期的华罗庚就特别爱好数学,但数学成绩并不突出。19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来。从此在熊庆来先生的引导下,走上了研究数学的道路。晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生! 华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物。下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏: 有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色。
3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子。
聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“ 为了解决上面的伺题,我们先考虑”2人1顶黑帽,2顶白帽”问题.因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽.但他踌躇了一会,可见我戴的是白帽。这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了.假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子. 看到这里。同学们可能会拍手称妙吧.后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解.他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃。
③ 数学上是“图像”还是“图象”有的写图像
区别:没太大区别
查汉语词典得:
图象
[解释]:1.画像;描绘。 2.画成的人物形象;肖像。
图像
也作“图象”。
①画成、摄制、印制或映现的形象:电视机的图像很清晰。
②物体的形象:眼睛的基本功能是感受光的刺激、识别图像。
图像:
图像是客观对象的一种相似性的、生动性的描述或写真,是人类社会活动中最常用的信息载体。或者说图像是客观对象的一种表示,它包含了被描述对象的有关信息。它是人们最主要的信息源。据统计,一个人获取的信息大约有75%来自视觉。
广义上,图像就是所有具有视觉效果的画面,它包括:纸介质上的、底片或照片上的、电视、投影仪或计算机屏幕上的。图像根据图像记录方式的不同可分为两大类:模拟图像和数字图像。模拟图像可以通过某种物理量(如光、电等)的强弱变化来记录图像亮度信息,例如模拟电视图像;而数字图像则是用计算机存储的数据来记录图像上各点的亮度信息 。
国际图像艺术推广机构君友会对图像处理流程的阐述是:图像处理是对图像进行分析、加工和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的模拟图像处理方法依然占有重要的地位。图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。几十年前,图像处理大多数由光学设备在模拟模式下进行。由于这些光学方法本身所具有的并行特性,至今他们仍然在很多应用领域占有核心地位,例如全息摄影。但是由于计算机速度的大幅度提高,这些技术正在迅速的被数字图像处理方法所替代。从通常意义上讲,数字图像处理技术更加普适、可靠和准确。比起模拟方法,它们也更容易实现。专用的硬件被用于数字图像处理,例如,基于流水线的计算机体系结构在这方面取得了巨大的商业成功。今天,硬件解决方案被广泛的用于视频处理系统,但商业化的图像处理任务基本上仍以软件形式实现,运行在通用个人电脑上。
图象:
1.画成,摄制或印制的形象。
2.画像;描绘。 汉 王充 《论衡·雷虚》:“如无形,不得为之图象。”《后汉书·列女传·叔先雄》:“为 雄 立碑,图象其形焉。”
3.画成的人物形象;肖像。《三国志·魏志·臧洪传》:“故身著图象,名垂后世。” 蔡元培 《美术的起源》:“由静的美术,过渡到动的美术,是舞蹈,可算是活动的图象。”
纠正:因为用“图像”一词时过多错误地使用成了“图象”,“图象”是指数学上的一个概念,就是图片+象限,所以简称“图象”
④ 数学函数和图像是哪一本书
北师大版是必修一
⑤ 数学题,题目和问题和图都在图片上
易证△DOF≌△AOE
∴DF=AE
设AE=x,那么AF=a-x
∴S△AEF
=x(a-x)÷2
=-1/2x²+1/2ax
=-1/2(x²-ax+a²/4)+a²/8
=-1/2(x-a/2)²+a²/8
当x=a/2时
S最大=a²/8
⑥ 数学几何概念及图像 什么是等角,什么是同角(最好有图)
等角——相等的角,
同角——同一个角.
上图:∠1=∠2,∠1与∠是等角,
下图,∠1与∠2互余,
∠1与∠3互余,
那么∠2、∠3就是:一个角(∠1)的余角.
⑦ 二年级数学画报寻找生活中的数学图片和文字表示怎么填
⑧ 数学,高中数学图片中
数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;函数与方程函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。 笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。 转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。 著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。 等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免搬硬套题型。 在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;
⑨ 怎样制作小学一年级数学与生活图片
想想一下数学的题目,再根据生活中熟悉的东西组成图片,形成了生活中的数学图片了。