初中数学速算
① 初中数学计算公式(比如:(a+b)(a-b).)要多一些
这个就是平方差公式的逆运算,属于因式分解部分
a^2-b^2=(a+b)(a-b)
初中要求的因式分解的公式版有三个:
平方权差公式
:a^2-b^2=(a+b)(a-b)
完全平方公式:(a+b)^2=a^2+b^2+2ab
(a-b)^2=a^2+b^2-2ab
和十字相乘法:x^2+(p+q)x+pq=(x+p)(x+q)
② 初中数学全部计算公式
初一初二初三全部的吗……,哎,考验我的记忆力
我就把我知道的给你吧,勾股定理(毕达哥拉斯定理):a平方+b平方=c平方
平方差:(a+b)(a-b)=a平方-b平方
完全平方和:(a+b)平方=a平方+2ab+b平方
完全平方差:(a-b)平方=a平方-2ab+b平方
(ab)n次方=an次方bn次方
(an次方)m次方=an+m次方
还有一些实在不记得了,你记得叫什么名字就来问我吧
③ 初中数学计算
=1/2{(1/2-1/4)+(1/4-1/6)+……+(1/198-1/200)} =1/2(1/2-1/200)=99/400
④ 初中数学六大基本运算
初中数学六大计算公式技巧
从小时候我们刚接触数字的时候,就开始背诵加减法以及乘法口诀了。但是你有学过乘法技巧吗?下面我们就来看看怎样计算的更快。
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解:1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。3.第...
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
以上的公式,同学们记熟了,对考试可以节省不少时间哦!
⑤ 初中数学特殊计算公式
虽然不太懂要这个的目的
不过1除任何3的倍数都是除不尽的
以我过来人觉得这个是不需要被的
初中提倡用分数表示
数学里面化了小数有时候还有可能算错
⑥ 初中数学计算公式(比如a+b*a-b=)
这个就是平方差公式的逆运算,属于因式分解部分
a^2-b^2=(a+b)(a-b)
初中要求的因式分解的公式有三个:
平方差公式 :a^2-b^2=(a+b)(a-b)
完全平方公式:(a+b)^2=a^2+b^2+2ab
(a-b)^2=a^2+b^2-2ab
和十字相乘法:x^2+(p+q)x+pq=(x+p)(x+q)
⑦ 如何提高初中生的数学计算能力
很多的学生对于数学都感到头痛,因为数学的分数每次都不高,并且很多的知识点都不太懂,那么初中数学怎么样学才可以有效的提升分数?
初中数学怎么样学可以有效提高分数?
知识框架图
相信只要做到以上的几点基本上这个科目的分数就会有一些改变,当然在学习当中计划是必不可少的,无论复习还是学习都需要制定一个专业的计划来帮助自己学习,在加上以上的几点,数学分数会有相当大的进步,在学习当中如果遇到了自己解决不了的问题需要及时的像老师或者比自己好的同学求教,以便于自己可以解决难点,不会对以后的学习有影响,以上就是初中数学怎么学的内容,相信你做好这几点,各个科目整体的分数都会出现上涨.
⑧ 初中数学计算题(技巧)
1、按部就班,环环相扣
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题,一定要把每一个环节都学牢。
2、概念记清,基础夯实
千万不要忽视最基本的概念、公理、定理和公式,每新学一个定理或者定义的时候,都要在理解的基础上去深挖每一个字眼,有时候少说一两个字,都可能导致结果的不同。要在刚开始学概念的时候就弄清楚,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
3、适当做题,巧做为主
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉中考的题型,训练要做到有的放矢。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要"埋下头去做题,抬起头来想题",在做题中关注思路、方法、技巧,要"苦做"更要"巧做".考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
4、记录错题,避免再犯
俗话说,"一朝被蛇咬,十年怕井绳",可是同学们常会一次又一次地掉入相似甚至相同的"陷阱"里。因此,建议大家在平时的做题中就要及时记录错题,更重要的是还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,中考或者在平时考试当中是"分分必争",一分也失不得。这样在复习时,这个错题本也就成了宝贵的复习资料。
5、集中兵力,攻下弱点
每个人都有自己的"软肋",如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成"瘸腿".
⑨ 怎样提高初中数学计算能力
如下回答希望可以帮到你:
1、加强基础知识和基本技能的教学,提高运算的准确性
数学中的基础知识是算理的依据,对运算具有指导意义,基础知识混淆、模糊,基础知识不牢固,往往是引起运算错误的根本原因,所以加强和落实双基教学是提高运算能力的一个很现实的问题,具体要求学生做到:
(1)、熟记某些重要数据公式和法则,因为准确无误是运算的基本要求,正确的记忆公式和法则是运算准确的前提。数学概念、公式、法则、性质中,有的是运算的依据,说明了“为什么可以这样做”的理由,有的是运算的方法与步骤,给出了:如何做的程序,即算法,学生学习了有关的概念、性质、公式,在理解的基础上记忆、法则、步骤,然后通过一系列操作活动(即练习)逐渐形成某种运算技能。
(2)、正确理解概念、定义,并能掌握公式的推导,只有理解某些概念与公式的推导,才能做到公式的正用、反用和活用,从而提高运算能力。数学学习中运算不正确的原因常常是概念模糊,公式、法则遗忘、混淆或运用呆板的结果。
2、加强科学系统的推理训练,提高运算的迅速性
运算能力差往往是思维能力弱造成的,教学中要在学生掌握基础知识的基础上加强推理训练,平时练习就要求做到步步有根据、有充足的理由,并注意运算的顺序性。一般应注意以下几个方面:
⑴训练必须有序。练习必须有计划、有步骤的进行。在数学教学中,可把练习分为三个阶段:第一,模仿练习阶段。这是在新知识学习之后,在老师例题示范下进行的练习。所选习题难度不高,变化不大,要求学生按照例题的步骤和法则进行运算,以保证运算的正确性,这时不宜提出速度要求;第二,熟练掌握阶段。这是在学生初步掌握知识和技能的基础上组织的学习,习题的难度适当提高,习题形式多有变化,不仅要求学生能正确运算,而且要求学生在求得正确答案之后,对运算的过程、依据、方法进行总结与概括,促使操作方式上升到理论水平;第三,综合运用阶段。此时可选择具有一定难度的综合题目,训练学生确定运算方向、灵活运用法则的能力。
(2)、进行变式练习。要使学生的能力达到熟练地程度,必须组织变式练习。所谓变式练习就是在其他有效学习条件不变的情况下,概念和规则的变化。对于数学运算来说,就是改变问题的非本质特征,保留其结构成分不变。其中具体的方式有数学语句的表达变化,条件与结论互换,问题与背景的变化等。
(3)、及时了解练习效果,及时纠正练习错误。在能力练习中,让学生及时知道练习的效果,是提高练习效果的有效方法。心理学研究表明,如果针对正在进行能力训练的学生提供如下反馈信息:①知道每次练习的得分,②练习过程中不断予以鼓励、督促,③分析练习中出现的错误,那么练习效果就会显著提高。这是因为,学生一方面根据反馈信息获知问题之所在,从而调整学习活动,使练习更加有效;另一方面也为争取更好的成绩或避免再犯类似错误而增加了学习动机。
3、运算过程中思维灵活性的训练
由于数学运算是具有明确方向、合乎一定规则的智力操作,因此,经过一定数量的练习之后,这种操作经验便形成某种固定的反应模式,对后续学习中关于操作活动方向的选择发挥倾向性作用,这就是学习中的“定势”现象。当已形成的惯性思维与新问题的解决途径相一致时,就能迅速的作出反应,求得正确答案,运算过程出现“减缩”、“跳步”现象,这是定势的积极作用,也是学生熟练掌握知识和技能的标志。例如,通过“一元二次方程”的学习,学生掌握了运用公式法、因式分解法解一元二次方程的技能,在以后的二次函数学习中,遇到一元二次方程有关的运算,便会迅速的作出正确反应。当习惯思路与新问题的解决不完全一致或相悖时,不能用简洁、变通的方法求解,运算过程繁琐冗长从而导致问题的错误求解。这是定势的消极作用。在实际教学中,要克服、防止“定势”的消极作用,培养学生运算的灵活性。
4、注重培养学生运算合理性的能力
合理计算就是要充分运用运算律,运用积不变性质,商不变性质,改变运算的数据,运算顺序,使运算尽可能简便、快速、正确。培养学生简便运算能力不只是单一的提高运算能力,因为在培养的过程中,一定涉及观察能力、归纳能力等其它能力的培养,所以会不会简便运算,实际上是综合能力的培养。同时还要培养学生在进行数学运算时的大局观,学生在计算以前应该有大局观,整体把握运算分几步,先算什么,后算什么,题目中的数字有什么特点,有什么蕴含信息等等。