当前位置:首页 » 语数英语 » 七年级上册数学难题

七年级上册数学难题

发布时间: 2021-08-21 12:29:28

1. 初一上册数学稍难题(至少10道)

1.小伟和小明交流暑假中的活动情况,小伟说:“我参加了科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出发的吗?”小明说:“我假期到舅舅家住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的吗?
列方程解决小伟和小明的问题~

2、从两块重量为12千克和8千克,并且含铜量不同的合金上切下一样重的两块,把切下的每块与另一块剩下的合金一起熔炼,炼后两块含铜的百分数相同,求所切下的合金重量?

3.有一水库,在单位时间内有一定量的水流量,同时也向外放水。按现在的放水量,水库中的水可使用40天。因最近库区降雨,使流入水库的水量增加20%,如果放水量也增加10%,那么仍可使用40天。问:如果按原来的放水量放水,可使用多少天?

4.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,同时将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等。已知丙班第一组有2名女生,问甲、乙两班第一组各有多少女生?

5.把1,2,3,4,……,1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数?

6.设2002x3=2003y3=2004z3,x>0,y>0,z>0,且
3√2002x2+2003y2+2004z2 = 3√2002 =3 √2003 =3 √2004
求1/x+1/y+1/z

7.有俩个牧童.各有x只羊,甲说:乙,如果你分一只羊给我,我的羊的数量就是你的两倍,乙说:还是你把你的羊分一只给我,我们的数量就一样多.问甲乙各有几只羊?

1> 第一问:设出发那天为X号
X+X+1+X+2+X+3+X+4+X+5+X+6=84
X=9
小伟是9号出发的

第二问:因为是暑假里的活动,所以只能是7或者8月份
设回来那天为X号
列示为
7+X+X-1+X-2+X-3+X-4+X-5+X-6=84
或者
8+X+X-1+X-2+X-3+X-4+X-5+X-6=84

第一式解出X=14
第二式结果不为整数

所以只能是7月14号到家

2> 设两块的含铜量分别为m和n 设切下的质量为x
则有[(12-x)m+xn]/12=[(8-x)n+xm]/8 可以直接解得x=4.8
3> 设水库总水量为x 一天的进水量和出水量分别为m和n
则有x/(n-m)=40=x/[n(1+10%)-m(1+20%)] 要求x/[n-m(1+20%)]
可以先化简得n=2m x=40m 带入第二个式子即可得到x=50天
4> 设甲乙两班第一组的女生分别有m和n个 丙班女生有x个乙班就有x+1个,甲班就有x+5个 平均x+2个 (利用改变量来计算)丙班:-2+n=(x+2)-x
甲班:+2-m=(x+2)-(x+5) 可以得出 m=5 n=4
5> 第一圈划数是只留3k+1的数 第二次可以将所有数都变为3k+1的形式 再来分析k第二次则只留k为3p+2的数 再分析p 一直类推 可得最回一个数为1987
http://www.czsx.com.cn/sort.asp?AClassID=104&NClassID=0&GClassID=0
1.x-y的平方-x-y的平方 过程
-mn的平方+3n的平方m-5mn的平方= 还是要过程
已知:|m+n-2|+(mn+3)的平方=0,求:2(m+n)-3[2(m+n)-3mn]的值
计算:n个99...9*n个99...8+n个199...9
若ab>0,则a分之|a|+b分之|b|-ab分之|ab|=
(1)已知:a-b=2,b-c=-3,c-d=5,求(a-c)(b-d)/(a-d)的值
2.某中学七年级数学兴趣小组中,女生人数比男生人数的3分之2少2人,如果女生增加3人,男生减少1人,那么女生的人数比全组人数的3分之1多3人,求原来数学兴趣小组的人数。

3.小丁骑自行车从家去小周家,先以12km/h的速度下山,然后又以9km/h的速度走过一段平路,到小周家共用了55min;回来时,他用8km/h的速度通过平路,又以4km/h的速度上山回家,共用了1.5h,求小丁家与小周家的距离。\
4.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)
5.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)
.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)
.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)
从两块重量为12千克和8千克,并且含铜量不同的合金上切下一样重的两块,把切下的每块与另一块剩下的合金一起熔炼,炼后两块含铜的百分数相同,求所切下的合金重量?
某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,同时将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等。已知丙班第一组有2名女生,问甲、乙两班第一组各有多少女生?

把1,2,3,4,……,1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数?

有俩个牧童.各有x只羊,甲说:乙,如果你分一只羊给我,我的羊的数量就是你的两倍,乙说:还是你把你的羊分一只给我,我们的数量就一样多.问甲乙各有几只羊?

1> 第一问:设出发那天为X号
X+X+1+X+2+X+3+X+4+X+5+X+6=84
X=9
小伟是9号出发的

第二问:因为是暑假里的活动,所以只能是7或者8月份
设回来那天为X号
列示为
7+X+X-1+X-2+X-3+X-4+X-5+X-6=84
或者
8+X+X-1+X-2+X-3+X-4+X-5+X-6=84

小伟和小明交流暑假中的活动情况,小伟说:“我参加了科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出发的吗?”小明说:“我假期到舅舅家住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的吗?
列方程解决小伟和小明的问题~

2. 求七年级上册数学较难题50道

七年级数学上期期末复习1
一、填空题(每题3分,共30分)
1、如果+5cm表示某水库水位上升5cm,那么–9cm表示 .
2、据统计,全球每分钟有8500000吨污水排入江河湖海,这个排污量用科学记数法表示
为 吨.
3、–5的相反数是 .
4、请写出三个立体图形的名称 .
5、计算:
6、如图所示,图中共有 个长方形.
7、多项式 的最高次项是 ;最高次项的系数是 ;把
多项式按字母 的升幂排
列为 .
8、从装有8个白球、3个红球的袋子里任意取出一个球, 球被取出的可能性大.
9、如图,已知:AB//CD, ,则
10、有一个正方体木块,它的六个面分别标有数字l-6,上图是这个正方体木块从不同面
所观察到的数字情况.请问:数字1对面的数字是 ;数字5对面的数字是 ;
数字2对面的数字是 .
二、选择题(每题3分,共24分)
11、在 中,负数的个数是…………………………( )
A、l个 B、2个 C、3个 D、4个
12、下列图形中,不属于三棱柱的展开图的是…………………………( )

13、下列事件中,必然发生的事件是………………………………………( )
A、随意翻一本书,翻到的页数是偶数 B、2008年奥运会在中国举办
C、太阳从西边升起 D、任意踢出的球会射进球门
14、化简: ,结果是……………………………………………( )
A、 B、 C、 D、
15、下列计算中正确的是………………………………………( )
A、 B、
C、 D、
16、如图,C、D是线段AB上的两点,则下列关系式中,错误的是……………( )
A、AB=AC+BC B、AC=AD–CD C、CD=AB–BD D、BC=CD+ BD

17、如果 =0,那么代数式 的值为……………………( )
A、 B、 C、 D、
18、某商人不了解市场行情,进了一批过时的服装,定价比进价只高出20%,结果卖不
出去,只好将定价降低20%出售,这样每件只卖96元,该商人每卖出一件服装( )
A、不赔不赚 B、赚8元 C、赚4元 D、赔4元
三、解答题
19、(本题6分)计算
(1)–18+6+7–5 (2)
20、(本题6分)先化简,再求值.
,其中
21、(本题8分)
某公司股票上星期每股27元,下表为本星期内每日该股票的涨跌情况:

(1)星期三收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低价是每股多少元?
(3)用折线统计图表示这一周该股票的涨跌情况.
22、(本题8分)
如图,已知: 与 互补, :求证:AB//CD

23、(本题8分)
下面是由火柴棒拼出的一列图形,第个图形组成,通过观察第一个图有4根火柴棒,第二个
图有7根火柴棒。问:①第3个图形中,火柴棒的根数?②第四个图呢?③第100个图形
呢?④第n个图形呢?

24、(本题10分)某地上网的两种收费方式,用户可以自选其一:
A、记时制:2.8元/时 B、包月制:60元/月
此外,每一种上网方式都加收通信费1.2元/时
(1)某用户上网20小时,选用哪一种上网方式比较合算?说明你的理由;
(2)某用户有120元钱用于上网(一个月),选用哪种方式合算?说明你的理由;
(3)请你为用户设计一个方案,使用户能合理地选择上网方式.
智能题
1、将正奇数1,3,5,7,9,……按下表排成五列.
则2003在哪一列?哪一行?

2、在一个直径为d米的地球仪赤道上打一个箍,需要多长铁丝?如果要把这个箍向外扩大
1米,(即直径增加2米),需要增加多长铁丝?
假设地球的赤道也是一个圆,在地球的赤道的也有一个铁箍,同样把这个铁箍扩张一米
需要增加多长铁丝?试比较这两次增加的铁丝的长短?

3. 求100道初一上学期数学难题(带答案)

你是什么教材
如果可以我帮你

初一奥数练习题一
甲多开支元,三年后负债600元.求每人每年收入多少?
S的末四位数字的和是多少?



4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.

5.求和:

6.证明:质数p除以30所得的余数一定不是合数.

8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.
9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.
解答:



所以 x=5000(元).

所以S的末四位数字的和为1+9+9+5=24.

3.因为

a-b≥0,即a≥b.即当b

≥a>0或b≤a<0时,等式成立.
4.设上坡路程为x千米,下坡路程为y千米.依题意则



由②有2x+y=20, ③
由①有y=12-x.将之代入③得 2x+12-x=20.
所以x=8(千米),于是y=4(千米).
5.第n项为

所以



6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.
7.设

由①式得(2p-1)(2q-1)=mpq,即
(4-m)pq+1=2(p+q).
可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.
(1)若m=1时,有

解得p=1,q=1,与已知不符,舍去.
(2)若m=2时,有

因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.
(3)若m=3时,有

解之得

故 p+q=8.
8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.
9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以


上述两式相加

另一方面,
S△PCD=S△CND+S△CNP+S△DNP.
因此只需证明
S△AND=S△CNP+S△DNP.
由于M,N分别为AC,BD的中点,所以
S△CNP=S△CPM-S△CMN
=S△APM-S△AMN
=S△ANP.
又S△DNP=S△BNP,所以
S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.

初一奥数练习题二
1.已知3x2-x=1,求6x3+7x2-5x+2000的值.
2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?
3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.

4.已知方程组

的解应为

一个学生解题时把c抄错了,因此得到的解为
求a2+b2+c2的值.
5.求方程|xy|-|2x|+|y|=4的整数解.
6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)

7.对k,m的哪些值,方程组 至少有一组解?

8.求不定方程3x+4y+13z=57的整数解.
9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?
解答:
1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.
2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则
y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.
所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.
3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以
∠ADC+∠BCD=180°,
所以 AD∥BC.①又因为 AB⊥BC,②
由①,② AB⊥AD.

4.依题意有


所以a2+b2+c2=34.
5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,
所以(|x|+1)(|y|-2)=2.
因为|x|+1>0,且x,y都是整数,所以


所以有



6.设王平买三年期和五年期国库券分别为x元和y元,则

因为y=35000-x,
所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,
所以 1.3433x+48755-1.393x=47761,
所以 0.0497x=994,
所以 x=20000(元),y=35000-20000=15000(元).
7.因为 (k-1)x=m-4, ①

m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.
当k=1,m≠4时,①无解.
所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.

8.由题设方程得

z=3m-y.

x=19-y-4(3m-y)-m =19+3y-13m.

原方程的通解为 其中n,m取任意整数值.

9.设苹果、梨子、杏子分别买了x,y,z个,则

消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.
代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.

x=20,y=8,z=12.

因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.

初一奥数练习题三

1.解关于x的方程

2.解方程

其中a+b+c≠0.
3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.
4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.
5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.
6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.
7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.
8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?
9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且

求证:n是4的倍数.
解答:
1.化简得6(a-1)x=3-6b+4ab,当a≠1时,



2.将原方程变形为

由此可解得x=a+b+c.
3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.


依题意得

去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,


5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].
由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.
又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.
6.如图1-105所示.在△PBC中有BC<PB+PC, ①
延长BP交AC于D.易证PB+PC<AB+AC. ②
由①,② BC<PB+PC<AB+AC, ③
同理 AC<PA+PC<AC+BC, ④
AB<PA+PB<AC+AB. ⑤
③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).

所以

7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千

米.依题意得


由①得16y2=9x2, ③

由②得16y=24+9x,将之代入③得

即 (24+9x)2=(12x)2.解之得

于是

所以两站距离为9×8+16×6=168(千米).
8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.


又因为

所以,k是偶数,从而n是4的倍数.

初一奥数练习题四
1.已知a,b,c,d都是正数,并且a+d<a,c+d<b.
求证:ac+bd<ab.
2.已知甲种商品的原价是乙种商品原价的1.5倍.因市场变化,乙种商品提价的百分数是甲种商品降价的百分数的2倍.调价后,甲乙两种商品单价之和比原单价之和提高了2%,求乙种商品提价的百分数.
3.在锐角三角形ABC中,三个内角都是质数.求三角形的三个内角.
4.某工厂三年计划中,每年产量递增相同,若第三年比原计划多生产1000台,那么每年比上一年增长的百分数就相同,而且第三年的产量恰为原计划三年总产量的一半,求原计划每年各生产多少台?


z=|x+y|+|y+1|+|x-2y+4|,
求z的最大值与最小值.
8.从1到500的自然数中,有多少个数出现1或5?
9.从19,20,21,…,98这80个数中,选取两个不同的数,使它们的和为偶数的选法有多少种?
解答:
1.由对称性,不妨设b≤a,则ac+bd≤ac+ad=a(c+d)<ab.
2.设乙种商品原单价为x元,则甲种商品的原单价为1.5x元.设甲商品降价y%,则乙商品提价2y%.依题意有1.5x(1-y%)+x(1+2y%)=(1.5x+x)(1+2%),
化简得1.5-1.5y+1+2y=2.5×1.02.所以y=0.1=10%,
所以甲种商品降价10%,乙种商品提价20%.
3.因为∠A+∠B+∠C=180°,所以∠A,∠B,∠C中必有偶数.唯一的偶质数为2,所以∠C=2°.所以∠A+∠B=178°.由于需∠A,∠B为奇质数,这样的解不唯一,如

4.设每年增产d千台,则这三年的每一年计划的千台数分别为a-d,a,a+d依题意有

解之得

所以三年产量分别是4千台、6千台、8千台.

不等式组:



所以 x>2;



无解.



6.设原式为S,则

所以






<0.112-0.001=0.111.
因为

所以 =0.105.

7.由|x|≤1,|y|≤1得 -1≤x≤1,-1≤y≤1.
所以y+1≥0,x-2y+4≥-1-2×1+4=1>0.
所以z=|x+y|+(y+1)+(x-2y+4)=|x+y|+x-y+5.
(1)当x+y+≤0时,z=-(x+y)+x-y+5=5-2y.
由-1≤y≤1可推得3≤5-2y≤7,所以这时,z的最小值为3、最大值为7.
(2)当x+y>0时,z=(x+y)+(x-y+5)=2x+5.
由-1≤x≤1及可推得3≤2x+5≤7,所以这时z的最小值为3、最大值为7.
由(1),(2)知,z的最小值为3,最大值为7.
8.百位上数字只是1的数有100,101,…,199共100个数;十位上数字是1或5的(其百位上不为1)有2×3×10=60(个).个位上出现1或5的(其百位和十位上都不是1或5)有2×3×8=48(个).再加上500这个数,所以,满足题意的数共有
100+60+48+1=209(个).
9.从19到98共计80个不同的整数,其中有40个奇数,40个偶数.第一个数可以任选,有80种选法.第一个数如果是偶数,第二个数只能在其他的39个偶数中选取,有39种选法.同理,第一个数如果是奇数,第二个数也有39种选法,但第一个数为a,第二个为b与第一个为b,第二个为a是同一种选法,所以总的选法应该折半,即共有

种选法.

初一奥数练习题五
1.一项任务,若每天超额2件,可提前计划3天完工,若每天超额4件,可提前5天完工,试求工作的件数和原计划完工所用的时间.
2.已知两列数
2,5,8,11,14,17,…,2+(200-1)×3,
5,9,13,17,21,25,…,5+(200-1)×4,
它们都有200项,问这两列数中相同的项数有多少项?
3.求x3-3px+2q能被x2+2ax+a2整除的条件.

4.证明不等式

5.若两个三角形有一个角对应相等.求证:这两个三角形的面积之比等于夹此角的两边乘积之比.
6.已知(x-1)2除多项式x4+ax3-3x2+bx+3所得的余式是x+1,试求a,b的值.
7.今有长度分别为1,2,3,…,9的线段各一条,可用多少种不同方法,从中选用若干条,使它们能围成一个正方形?
8.平面上有10条直线,其中4条是互相平行的.问:这10条直线最多能把平面分成多少部分?
9.边长为整数,周长为15的三角形有多少个?
解答:
1.设每天计划完成x件,计划完工用的时间为y天,则总件数为xy件.依题意得


解之得

总件数xy=8×15=120(件),即计划用15天完工,工作的件数为120件.
2.第一列数中第n项表示为2+(n-1)×3,第二列数中第m项表示为5+(m-1)×4.要使2+(n-1)×3=5+(m-1)×4.
所以

因为1≤n≤200,所以


所以m=1,4,7,10,…,148共50项.
3.


x3-3px+2q被x2+2ax+a2除的余式为3(a2-p)x+2(q+a3),

所以所求的条件应为


4.令

因为

所以


5.如图1-106(a),(b)所示.△ABC与△FDE中,

∠A=∠D.现将△DEF移至△ABC中,使∠A与∠D重合,DE=AE',DF=AF',连结F'B.此时,△AE'F'的面积等于三角形DEF的面积.

①×②得


6.不妨设商式为x2+α·x+β.由已知有
x4+ax3-3x2+bx+3
=(x-1)2(x2+α·x+β)+(x+1)
=(x2-2x+1)(x2+α· x+β)+x+1
=x4+(α-2)x3+(1-2α+β)x2+(1+α-2β)x+β+1.
比较等号两端同次项的系数,应该有

只须解出

所以a=1,b=0即为所求.
7.因为

所以正方形的边长≤11.
下面按正方形边的长度分类枚举:
(1)边长为11:9+2=8+3=7+4=6+5,
可得1种选法.
(2)边长为10:9+1=8+2=7+3=6+4,
可得1种选法.
(3)边长为9:9=8+1=7+2=6+3=5+4,
可得5种选法.
(4)边长为8:8=7+1=6+2=5+3,
可得1种选法.
(5)边长为7:7=6+1=5+2=4+3,
可得1种选法.
(6)边长≤6时,无法选择.
综上所述,共有1+1+5+1+1=9
种选法组成正方形.
8.先看6条不平行的直线,它们最多将平面分成
2+2+3+4+5+6=22个部分.
现在加入平行线.加入第1条平行线,它与前面的6条直线最多有6个交点,它被分成7段,每一段将原来的部分一分为二,故增加了7个部分.加入第2,第3和第4条平行线也是如此,即每加入一条平行线,最多增加7个部分.因此,这些直最多将平面分成
22+7×4=50
个部分.
9.不妨设三角形的三边长a,b,c满足a≥b≥c.由b+c>a,a+b+c=15,a≥b≥c可得,15=a+(b+c)>2a,所以a≤7.又15=a+b+c≤3a,故a≥5.于是a=5,6,7.当a=5时,b+c=10,故b=c=5;当a=b时,b+c=9.于是b=6,c=3,或b=5,c=4;当a=7时,b+c=8,于是b=7,c=1,或b=6,c=2,或b=5,c=3,或b=4,c=4.
所以,满足题意的三角形共有7个.

4. 求七年级上册数学难题30道!要答案详解。没30道,10题也行!

偶在网络和你聊了
七年级数学上册应用题测试试题
(分值:100 时间:90分)
列方程解应用题(每题10分,共100分)
某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈利20% ,乙种成衣卖价也是120元但亏损20% ,问该商店在本次销售中实际上是盈还是亏,盈或亏多少钱?

2.甲、乙两人分别在相距50km的地方同向出发,乙在甲的前面,甲每小时走16km,乙每小时走18km,如果乙先走1小时,问甲走多少时间后,两个人相距70km?

3.某中学组织七年级学生春游,如果租用45座的客车,则有15个人没有座位,如果租用同样数量的60座的客车,则除多出一辆外,其余车恰好坐满。已知租用45座的客车每日租金为每辆车250元,60座的车每日租金每辆300元,问租用哪种客车更合算?租几辆车?

4.某商店的冰箱先按原价提高40% ,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚了270元,试问冰箱的原标价是多少元?现售价是多少元?

5.某种商品的进价为100元,若要使利润率达20% ,则该商品的销售价格应为多少元?此时每件商品可获利润多少元?

6.一个两位数,把两位数的个位数字与十位数字交换位置,所得的数减去原数,差为72,求这个两位数。

7.某车间有60名工人,生产某种由一个螺栓与两个螺母为一套的配套产品,每人每天平均生产螺栓14个或螺母20个,问应分配多少人生产螺母,多少人生产螺栓,才能使每天生产出的螺栓与螺母恰好配套?

8.商店对某种商品作调价,按原价8折出售,此时商品的利润率是10%,此商品的进价为1600元,那么商品的原价是多少?

9.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务已知甲每小时比乙多加工2个零件,求甲、乙两人每小时各加工多少个零件?

10.一件工作,甲单独完成需7.5小时, 乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?

解答提示
解:设甲种成衣的成本为x元,乙种成衣的成本为y元
x(1+20%)=120 x=100
y(1-20%)=120 y=150
∵ x+y=250
实际的销售价为120×2=240(元)
240-250=-10
∴在这次销售中亏了10元钱

设甲走了X小时,现两人相距70km
50+18×1+18x=16x+70
x=1

3.设原计划租用x辆45座客车
45x+15=(x-1)×60 x=5
(1)(5+1)×250=1500(元) (2)4×300=1200(元)
而15000>1200,因此,租用60座的客车更合算,需租4辆

设原标价为x元,则现售价为(x+270)元
x(1+40%)×80%-x=270 x=2250 x+270=2520

5. 设该商品的销价为x元
x-100=100×20% x=120 120-100=20(元)

6.
7.设应分配x人生产螺母
14×(60-x)×2=20x x=35 60-x=25

8.
9.设乙每小时加工x个零件
4x+9(x+2)=200 x=14 x+2=16

解答提示
解:设甲种成衣的成本为x元,乙种成衣的成本为y元
x(1+20%)=120 x=100
y(1-20%)=120 y=150
∵ x+y=250
实际的销售价为120×2=240(元)
240-250=-10
∴在这次销售中亏了10元钱

设甲走了X小时,现两人相距70km
50+18×1+18x=16x+70
x=1

3.设原计划租用x辆45座客车
45x+15=(x-1)×60 x=5
(1)(5+1)×250=1500(元) (2)4×300=1200(元)
而15000>1200,因此,租用60座的客车更合算,需租4辆

设原标价为x元,则现售价为(x+270)元
x(1+40%)×80%-x=270 x=2250 x+270=2520

5. 设该商品的销价为x元
x-100=100×20% x=120 120-100=20(元)

6.
7.设应分配x人生产螺母
14×(60-x)×2=20x x=35 60-x=25

8.
9.设乙每小时加工x个零件
4x+9(x+2)=200 x=14 x+2=16

10. 设完成任务共需x小时
x=

1+2-3-4+5+6-7-8+......+2005+2006-2007-2
008的值?
每一组的结果是-4,总共是2008/4=502组
502*-4+-2008
某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%。求这个月的石油价格相对上个月的增长率。

设上个月的石油进口量为a,上个月进口石油的费用为b,
则这个月的石油进口量为a(1-5%)=0.95a,这个月进口石油的费用为b(1+14%)=1.14b,
所以这个月的石油价格相对上个月的增长率=1.14/0.95-1=0.2=20%.
有这样一道题"当a=2,b=-2时,求多项式3a^3b^3-0.5a^2b+b-(4a^3b^3-0.25a^2b)+(a^3b^3+0.25a^2b)-2b^2+3的值",马小虎做题时把a=2错抄成a=-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由
3a^3b^3-0.5a^2b+b-(4a^3b^3-0.25a^2b)+(a^3b^3+0.25a^2b)-2b^2+3
=3a^3b^3-0.5a^2b+b-4a^3b^3+0.25a^2b+a^3b^3+0.25a^2b-2b^2+3
=(3a^3b^3-4a^3b^3+a^3b^3)+(-0.5a^2b+0.25a^2b+0.25a^2b)+b-2b^2+3
=b-2b^2+3,
多项式的值与a无关,所以虽然把a抄错,只要b没有抄错,没有计算
错,做出的结果都与正确结果相同。
1.BCD依次是线段AE上的三个点,已知,AE=8.9,BD=3,则以ABCDE为端点的所有线段长度之和等于多少?(启东作业本62页第15题)
2.某火车站的钟楼上有一个电子报时钟,在钟面的边界上,每一分钟的刻度处都装有一只小彩灯,晚上九时三十五分二十秒,时针与分针所夹的角内装有多少只小彩灯?(启东作业本64页第16题)

1、先在纸上作图 ▪ ▪ ▪ ▪ ▪
A B C D E
长度之和=AB+BC+CD+DE+AC+BD+CE+AD+BE+AE
=(AB+DE)+(BC+CD)+(AC+CE)+BD+(AD+BE)+AE
=(AE-BD)+BD+AE+BD+(AE+BD)+AE
=8.9-3+3+8.9+3+8.9+3+8.9
=41.6
2、27或33
分析:根据题画图,根据每一分钟的刻度处都装有一只小彩灯,得时针处每12分有一个小彩灯,是35分除以12得2余1,所以时针超过9两个彩灯,每两数字之间有5个彩灯,算出答案。因为时针与分针所夹的角可能是锐角,也可能是钝角,所以有两个答案。
设有理数a,b,c,满足a+b+c=0,及abc>0,若x=a÷IaI+b÷IbI+c÷IcI,
y=a(b分之一+c分之一)+b(c分之一+a分之一)+c(a分之一+b分之一),z为Ia-1I+Ia-3I的最小值,求x+2y+3z的值。
因为a,b,c,满足a+b+c=0,及abc>0
所以a,b,c中至少有两个为负数
x=a÷|a|+b÷|b|+c÷|c|=-1*2+1=-1
y=a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)
=a/b+a/c+b/c+b/a+c/a+c/b
=(b+c)/a+(a+c)/b+(a+b)/c
因a+b+c=0,所以b+c=-a,a+c=-b,a+b=-c,
所以y=(-a/a)+(-b/b)+(-c/c)=-3
z为|a-1|+|a-3|的最小值,所以a>0时有最小值,|a-1|+|a-3|=|2a-4|
所以当1<a<3时,z=|a-1|+|a-3|=2
所以x+2y+3z=-1+(-3*2)+2*3=-1
有点乱,不怪我吧

5. 七年级上册数学难题100题,要有答案的

1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).

4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?

6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.

7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?

8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

答案
1.解:设甲、乙一起做还需x小时才能完成工作.
根据题意,得 × +( + )x=1
解这个方程,得x=
=2小时12分
答:甲、乙一起做还需2小时12分才能完成工作.
2.解:设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×(9+x)=15+x
18+2x=15+x,2x-x=15-18
∴x=-3
答:3年前兄的年龄是弟的年龄的2倍.
(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)
3.解:设圆柱形水桶的高为x毫米,依题意,得
·( )2x=300×300×80
x≈229.3
答:圆柱形水桶的高约为229.3毫米.
4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为 分.
过完第二铁桥所需的时间为 分.
依题意,可列出方程
+ =
解方程x+50=2x-50
得x=100
∴2x-50=2×100-50=150
答:第一铁桥长100米,第二铁桥长150米.
5.解:设这种三色冰淇淋中咖啡色配料为2x克,
那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50
解这个方程,得x=5
于是2x=10,3x=15,5x=25
答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.解:设这一天有x名工人加工甲种零件,
则这天加工甲种零件有5x个,乙种零件有4(16-x)个.
根据题意,得16×5x+24×4(16-x)=1440
解得x=6
答:这一天有6名工人加工甲种零件.
7.解:(1)由题意,得
0.4a+(84-a)×0.40×70%=30.72
解得a=60
(2)设九月份共用电x千瓦时,则
0.40×60+(x-60)×0.40×70%=0.36x
解得x=90
所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000
即5x+7(50-x)=300
2x=50
x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000
3x+5(50-x)=1800
x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利
150×25+250×15=8750(元)
若选择(1)中的方案②,可获利
150×35+250×15=9000(元)
9000>8750 故为了获利最多,选择第二种方案.

6. 初一上数学难点

一、数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

二、相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

三、绝对值

1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

③有理数的绝对值都是非负数.

2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

7. 初一数学上册难题,越难越好,不要答案

1.某中学的学生自几动手整修操场,如果让初一的学生单独工作,需要7.5小时完成;如果让初2的学生单独工作,需要5小时完成.如果让初一,初2的学生一起工作一小时,再由初2的学生单独完成剩余部分,共需要多少时间?
2.一条山路,从山下到山顶,走了1小时还差1km,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km.
3.某人参加一场3000米跑,他以6米/秒的速度跑了一段路程后,又以4米/秒的速度跑完其余路程,一共10分钟,他以6米/秒的速度跑了多少米?
4.甲乙两种鞋去年共卖出12200双,今年甲种卖出的量比去年多6%,乙种鞋卖出的量比去年减少5%,两种鞋总削量增加了50双,去年甲乙两种鞋各卖了多少双?
5.若关于x的方程 mx+3xx+5x-nxx+3=3 求m、n的值?
6.已知三个非负数a,b,c满足3a+2b+c=5,2a+b-3c=1,若m=3a+b-7c,求m的最大值和最小值。
7.已知关于X与Y的方程组①ax+2y=1+a②2x+2(a-1)y=3 分别求出当a为何值时,方程组1.有唯一一组解 2.无解 3.有无穷多组解
8.若a 0,则a+ =
9.绝对值最小的数是
10.一个有理数的绝对值等于其本身,这个数是( )
A、正数 B、非负数 C、零 D、负数
11.已知x与1互为相反数,且| a+x |与 x 互倒数,求 x 2000—a x2001的值。
12.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将个位与百位上的数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数。
13.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,化简代数式|b|-|a+b|-|c-b|+|a-c|
14.已知(m+n)*(m+n)+|m|=m,|2m-n-2|=0,求mn的值
15.现有4个有理数3,4,-6,10运用24点游戏规则,使其结果得24.(写4种不同的)
16.由于-(-6)=6,所以1小题中给出的四个有理数与3,4,6,10,本质相同,请运用加,减,乘,除以及括号,写出结果不大于24的算式
17.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.
18.某学生在360米长的跑道跑了一圈,已知他在前一半时间的速度是5米/秒,后一半时间的速度是4米/秒,求他跑一半路程所需的时间?
19.小明在海边散步,一条船迎面驶来,从他身边开过用了3秒,过了一会儿该船又从后面追上小明,从他身边开过用了4秒,小明步行的速度是3米/秒,求船长?
20.一位老人养了17只羊,按比例分给3个儿子,大儿子分1/2,二儿子分1/4,三儿子分1/9,在分时不允许宰杀羊,问怎样分法,每个儿子分几只?
将一组以1开头的连续的正整数写在黑板上,擦去其中的一个数,则余下数的平均数为47由31分之17(47 17/31)。问:擦去的那个数是多少

难找啊!!!

8. 初一数学,难题及答案

初一数学上册难题和答案:1.若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?

设有x间宿舍
每间住4人,则有20人无法安排
所以有4x+20人
每间住8人,则最后一间不空也不满
所以x-1间住8人,最后一间大于小于8
所以0<(4x+20)-8(x-1)<8
0<-4x+28<8
乘以-1,不等号改向
-8<4x-28<0
加上28
20<4x<28
除以4
5<x<7
x是整数
所以x=6
4x+20=44
所以有6间宿舍,44人

2.甲对乙说:“你给我100元,我的钱将比你多1倍。”乙对甲说:“你只要给我10元,我的钱将比你多5倍。”问甲乙两人各有多少元钱?

设甲原有x元,乙原有y元.
x+100=2*(y-100)
6*(x-10)=y+10
x=40
y=170

3.小王和小李从AB两地,相向而行,80分钟后相遇,小王先出发60分钟后小李在出发,40分钟后相遇,问小李和小王单独走完这段距离需要多长时间?

解:设小王的速度为x,小李的速度为y
根据:路程=路程 ,可列出方程:
80(x+y)=60x+40(x+y)
解得y=1\2x
设路程为单位1,则:
80(1\2x+x)=1
解得x=1\120
所以y=1\240
所以小王单独用的时间:1*1\120=120(分)
小李单独用的时间:1*1\240=240(分)

4.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,马上就跑。猫每秒跑7米,用了10秒追上老鼠。老鼠每秒跑多少米?

解:设老鼠每秒跑X米

7*10=10X+20
10X=70-20
X=5

答:老鼠每秒跑5米。

5.一项工程,甲队做需要10天完成,乙队需要20 天完成,两队共同做了3天后,甲队采用新技术,工作效率提高了3分之1,求自甲队采用心技术后,两队还需合作多少天才能完成这项工程?

由已知得甲队每天做1/10,乙队每天做1/20,甲队采用新技术后每天做
1/10(1+1/3)=2/15,设还需要合作x天,列方程如下:

(1/10+1/20)*3+(2/15+1/20)x=1,解方程得

x=3天

所以还需要3天完成。
6.一项工程,甲单独做10天完成,乙单独做6天完成。先由甲先做2天,然后甲乙合作,问:甲乙合作还需要多少天完成工作?

设甲乙合作一起还需要x天完成 总工程为1
甲先做了2天 他完成了总工程的2*1/10=1/5
那么此时还剩下为1-1/5=4/5
那么就有了(1/10+1/6)*x=4/5
解得x=3
即一起工作3天完成整个工作
思路 :主要是看每个完成的工作量跟整个的相对关系的。就用这个来看 。每工作一天他们都相应的完成了各自的1/10 和1/6 的工作量。工作几天就是多少。然后再跟总共的基数1做比较。完成一个等式

7.某商场经销一种商品,由于进货时价格比原来进价降低了6.4%,使得利润率增加了8个百分点,求经销这种商品原来的利润率是多少?

利润率=(售价-进价)/进价
解:设原进价为x元,售价为y元
108%*(y-x)/x=[y-(1-6.4%)x]/(1-6.4%)x
108%*(y-x)/x=(y-0.936x)/0.936x
108%*(y-x)=(y-0.936x)/0.936
1.01088(y-x)=y-0.936x
0.01088y=0.07488x
y=117/17x
原利润率=(y-x)/x=(117/17x-x)/x=100/17

8.某商场购进甲,乙两种商品50件,甲种商品进价每件35元,利润率是20%,乙种商品的进价每件20元,利润率是15%,共获利278元,问甲乙两种商品各购进了多少件

解设甲购进了x件,乙购进了(50-x)件
因为甲进价35元,利润率为百分之20,那么甲一件商品就获利35*20%=7元
乙进价20元,利润率15%,乙一件就赚20*15%=3元
甲购进x件,一件获利7元,甲一共获利7x元
乙购进(50-x)件,一件赚3元,乙一共赚3(50-x)元
一共为278元
所以7x+3(50-x)=278
x为32

9.时钟从9点走到9点25分,时针转过的角度是?分针转过的角度是?

:时针转过7.5°,分针转过150°。

10.现有某位储户按零存整取的存款方式每月存入500元,存期为3年,存入时三年期零存整取方式的月利率为1.725‰。此储户在期满时应得的本息和是多少元?

每元定额息=0.5 N(N+1)NAR÷NA
=0.5(N十1)R。
其中,N表示存入的期数,即月数;R为月利率。
如果一年期零存整取方式的月利率1.425‰。那么,我们可以计算出每元定额息为:0.5×(12+1)×1.425‰≈0.0093
若此储户每月存入100元,到期后本金共为:100×12=1200(元)
则利息为:1200×0.0093=11.16(元)

9. 初一上册数学难题带答案30道,急需++

1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?

2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?

3、有三个人去住旅馆,住三间房,每一间房10元,于是他们一共付给老板30元,第二天,老板觉得三间房只需要25元就够了于是叫小弟退回5元给三位客人,谁知小弟贪心,只退回每人1元,自己偷偷拿了2元,这样一来便等于那三位客人每人各花了9元,于是三个人一共花了27元,再加上小弟独吞了不2元,总共是29元。可是当初他们三个人一共付出30元,那么还有1元在哪里呢?

4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?

5、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?

6、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?

7、你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?

8、对一批编号为1~100,全部开关朝上(开)的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。

9、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?

10、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?

11、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?

12、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

我跟你一样是初一的,我很想喜欢数学,上面这些题是我偶然发现的,感觉做起来很有挑战性,所以发上来与君共勉,采纳我吧!(注:这些题目蛮出名的,答案上网查就有好多)希望能帮助到你,加油!

10. 七年级上册数学难题

3a^3b^3-0.5a^2b+b-(4a^3b^3-0.25a^2b)+(a^3b^3+0.25a^2b)-2b^2+3
=3a^3b^3-0.5a^2b+b-4a^3b^3+0.25a^2b+a^3b^3+0.25a^2b-2b^2+3
=(3a^3b^3-4a^3b^3+a^3b^3)+(-0.5a^2b+0.25a^2b+0.25a^2b)+b-2b^2+3
=b-2b^2+3,
多项式的值与a无关,所以虽然把a抄错,只要b没有抄错,没有计算
错,做出的结果都与正确结果相同。

热点内容
五年级教师家访记录 发布:2025-09-02 03:44:10 浏览:236
2008年考研数学二 发布:2025-09-02 01:20:54 浏览:430
不得不的英语 发布:2025-09-01 22:53:22 浏览:85
初三上册物理知识点 发布:2025-09-01 21:25:06 浏览:843
生物防治的缺点 发布:2025-09-01 20:13:53 浏览:176
如何进行英语教学 发布:2025-09-01 19:42:48 浏览:688
老师玩少年 发布:2025-09-01 19:03:20 浏览:519
上古卷轴5物理插件 发布:2025-09-01 18:25:33 浏览:497
初中语文仿句 发布:2025-09-01 18:10:17 浏览:553
百思达数学 发布:2025-09-01 17:44:11 浏览:359