数学高考大纲
A. 高考数学考试大纲
高考数学考试大纲,
省市不同,大纲会有些许不同的,
建议你直接问你们数学老师,这样才不会走冤枉路的。
B. 2018年高考理科数学考试大纲都有哪些
Ⅰ. 考核目标与要求
根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容.
一、知识要求
知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.
各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.
对知识的要求依次是了解、理解、掌握三个层次.
1. 了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.
2. 理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.
3. 掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
二、能力要求
能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.
1. 空间想象能力:能根据条件做出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.
空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.
2. 抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.
抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.
3. 推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.
中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.
4. 运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.
运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.
5. 数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.
数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.
6. 应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.
7. 创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
三、个性品质要求
个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
四、考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.
1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.
2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.
3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.
对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.
4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.
5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.
(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.
3. 数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
(十九) 数系的扩充与复数的引入
1. 复数的概念
(1)理解复数的基本概念.
(2)理解复数相等的充要条件.
(3)了解复数的代数表示法及其几何意义.
2. 复数的四则运算
(1)会进行复数代数形式的四则运算.
(2)了解复数代数形式的加、减运算的几何意义.
祝考生们高考取得好成绩!
C. 2021年全国一卷高考数学考纲
当然不是,教育部每年都要公布最新一年高考的考试大纲,2011年高考不可能使用2018年高考考试大纲的。
D. 山东2010数学高考大纲
2010年山东省数学高考大纲及考试说明
数学(文史类) 注重数学素养考查鼓励多角度思考
命题体现数学学科的性质和特点,注重对数学基础知识、基本技能、数学思想和方法的考查,注重对考生数学素养和解决问题能力的考查,鼓励考生多角度、创造性地思考和解决问题。
考试的能力要求包括运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力,以及应用意识和创新意识。其中,推理论证能力指能够根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性;创新意识指能够独立思考,灵活和综合地运用所学的数学知识、思想和方法,创造性地提出问题、分析问题和解决问题。
考试范围是《普通高中数学课程标准(实验)》中的必修课程内容和选修系列1的内容,内容如下:
数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。
数学2:立体几何初步、平面解析几何初步。
数学3 :算法初步、统计、概率。
数学4:基本初等函数Ⅱ(三角函数)、平面上的向量、三角恒等变换。
数学5:解三角形、数列、不等式。
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。
选修系列4的内容,在2009年暂不被列入数学科目的命题范围。
考试形式:考试采用闭卷、笔试形式,考试限定用时为120分钟,考试不允许使用计算器。
试卷结构:试卷包括第Ⅰ卷和第Ⅱ卷,满分为150分。第Ⅰ卷为单项选择题,主要考查数学的基本知识和基本技能,共12题,60分。第Ⅱ卷为填空题和解答题,主要考查数学的思想、方法和能力。填空题共4题,16分。填空题只要求直接填写结果,不必写出计算过程或推证过程。解答题包括计算题、证明题和应用题等,共6题,74分。解答应写出文字说明、演算步骤或推证过程。
数学(理工农医类) 考试能力注重应用意识和创新意识
命题体现数学学科的性质和特点,注重对数学基础知识、基本技能、数学思想和方法的考查,注重对考生数学素养和解决问题能力的考查,鼓励考生多角度、创造性地思考和解决问题。
考试范围是《普通高中数学课程标准(实验)》中的必修课程内容和选修系列2的内容以及选修系列4-5的部分内容,内容如下:
数学1:集合、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)。
数学2:立体几何初步、平面解析几何初步。
数学3:算法初步、统计、概率。
数学4:基本初等函数Ⅱ(三角函数)、平面上的向量、三角恒等变换。
数学5:解三角形、数列、不等式。
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。
选修2-3:计数原理、统计案例、概率。
选修4-5:不等式的基本性质和证明的基本方法。
考试形式:考试采用闭卷、笔试形式,考试限定用时为120分钟,考试不允许使用计算器。
试卷结构:试卷包括第Ⅰ卷和第Ⅱ卷。试卷满分为150分。第Ⅰ卷为单项选择题,主要考查数学的基本知识和基本技能,共12题,60分。第Ⅱ卷为填空题和解答题,主要考查数学的思想、方法和能力。填空题共4题,16分。填空题只要求直接填写结果,不必写出计算过程或推证过程。解答题包括计算题、证明题和应用题等,共6题,74分。解答应写出文字说明、演算步骤或推证过程。
E. 大纲版和新课标版高考数学有什么不同
【导读】大纲版和新课标版高考数学是不同的,新课标主要是基础知识考察,需要大家多做古诗词、阅读题和写作这方面的题,如果大家不是很了解,那么5年高考3年模拟想必大家都听过吧,其分为A版和B版(B版有当年的高考题),那么大纲版和新课标版高考数学有什么不同呢?一起来看看吧。
1、大纲版高考与新课标版数学卷面不同。新课标版共24道题,前21道是必修,后三道是选修,三选一,大纲版只有22道题,每道题都要做,没有选修。
2、大纲版没有选修,只有必修,共分为以下几个部分,集合与逻辑,函数,数列,三角函数,平面向量,不等式,直线与圆的方程,圆锥曲线,立体几何,排列组合,概率统计。文科没有复数,也没有新课标版的极坐标与参数方程。
3、新课标版分为五册必修,还有一些选修,其中必修删去了排列组合,加上了复数,函数部分加上了幂函数,立体几何删掉了空间向量,圆锥曲线中的双曲线和抛物线只是了解内容,不出大题,另外加上了极坐标与参数方程、平面几何和不等式,这三本选修出三道题,选一道做就可以了。
4、理科的大纲版与文科差不多,但在概率统计那里比文科多学一些,比如期望、分布列,还有复数。
5、新课标版的理科数学比新课标版文科数学多学一个积分,概率那里也比文科多学期望、分布列,圆锥曲线中的三类曲线都做重点要求,都可能会出大题,立体几何中对空间向量也做了一些要求。
6、新课标要学的东西比大纲版学的多一些,但把大纲版的难点删掉了很多,所以如果你考大纲版的卷子而学的是新课标,那么你得注意有所倾向,最好买一本大纲版的考试大纲,买一些大纲版的高考题做。
关于大纲版和新课标版高考数学的不同,就给大家介绍到这里了,希望对大家能有所帮助,目前,高中湖北、四川、重庆、贵州、河北、云南、内蒙古部分学生和广西、青海所有学生使用大纲版,其他地区均使用课标版。
F. 大纲版高考与新课标版数学的区别
新课标比较注重培养学生的动手能力,自学能力,而且内容也增加了不少(有一部分内容高考不考),不过老师上课讲课的密度将增大,新课标注重基础知识,但是,学生学习的时候也要注重基础知识,因为自从教新课标后高考也注重基础知识了.新课标更好的培养学生的灵活性.
而大纲教材能更好的让学生自学,内容全面,更容易掌握,(如果要预习,最好还是选择大纲教材)
“大纲版”跟“课标版”相对,“大纲版”是目前还没有实行新课程(新课标)地区所用的版本。 “人教版”是指人民教育出版社出版的教材版本。由于2000年以前,我国中小学教材基本都是人教社出版的,所以“大纲版”也就基本上与“人教版”成了同义词。“课标版”就很多了,新课程以来,更多的出版社参与了教材编写和出版,所以目前不是人教社唯一一家在出中小学教材了。
G. 高中文科数学高考范围有哪些
高中文科数学高考范围有三角函数、向量、概率与统计、立体几何、数列、圆锥曲线、函数、导数与不等式等。
1、三角函数、向量、解三角形
(1)三角函数画图、性质、三角恒等变换、和与差公式。(2)向量的工具性。(3)正弦定理、余弦定理、解三角形背景。
2、概率与统计
(1)古典概型。(2)茎叶图。(3)直方图。(4)回归方程(2x2列联表)。(5)(理)概率分布、期望、方差、排列组合。
3、立体几何
(1)平行。(2)垂直。(3)角a:异面直线角b:(理)二面角、线面角。(4)利用三视图计算面积与体积。
4、数列
(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。(2)错位相减法、裂项求和法。(3)应用题。
5、圆锥曲线(椭圆)与圆
(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。(2)圆的方程,圆与直线的位置关系。
6、函数、导数与不等式
(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。(2)利用基本不等式、对勾函数性质。
三角函数/数列:一般全国卷第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。
概率:一般全国卷第18题会考概率题。概率题相对比较简单,也是必须得分的题,主要还是对作图和识图能力考查比较多。
解析几何:一般全国卷第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。
H. 求高中数学【 新课标 人教版】 高考大纲考试范围
理2-1,2--2,2--3,4--5
文1--1,1--2,4--5-
I. 高考数学知识点有哪些
高考数学知识点,
这个题目太大了。
可上你省教育考试院官网,
查看高考各学科大纲。
最直接的是问你的数学老师。