当前位置:首页 » 语数英语 » 数学基本活动经验

数学基本活动经验

发布时间: 2021-08-25 08:03:41

① 简述基本数学活动经验的涵义及其特征。

一、数学基本活动经验的涵义
首先是“数学”的,所从事的活动要有明确的数学目标,没有数学目标的活动不是“数学活动”。小学数学是研究最基本的数量关系、图形关系、随机关系(主要是统计关系)的。
其次是“经验”的,经验是一种感性认识,包含双重意义,一是经验的事物,二是经验的过程。数学经验是数学的感性认识,是在数学活动中积累的。
再次是“活动”的,苏联著名数学教育家斯托利亚尔认为:数学教学是数学活动的教学,也是思维活动的教学。那么包括抽象思维、数学证明、数学解题在内的整个数学教学活动都是“数学活动”,这样就过于泛化。我理解的“数学活动经验”所指的“活动”其特定含义主要是对数学材料的具体操作和形象操作探究活动。
至于“基本”,《数学课程标准》把数学知识、数学技能、数学思想、数学活动都冠以“基本”,称作“四基”。
“获得数学基本活动经验”作为教育目标指出,是基于“动态的数学观”,把数学看成是人类的一种活动,是一种充满情感、富于思考的经历体验和探索的活动。这样的数学观必然影响着数学教育观。
首先,数学教学的目标,并非单纯体现于学生接受的数学事实,而更多的是通过对数学思想方法的感悟,对数学活动经验的积累,将“经验材料组织化”“数学材料逻辑化”。数学知识不仅包括定义、公式、法则、定理等数学事实的“客观性知识”,而且包括从属于学生自己的“主观性知识”,即带有个体认知特点的个人知识和数学活动经验,它是经验性的、感性的、不那么严格“隐性知识”。
其次,数学教学不仅是结果的教学,更重要的是过程的教学。数学课堂教学必须结合具体内容让学生在数学学习活动中去“经历过程”。
再次,数学课堂教学应该是开放的。数学活动经验不像事实性知识那样“看得见、摸得着”,而且表述是唯一的。学生在数学活动中对某一数学对象的认识是有个性特征的,在认识的过程中所获得的经验又是多样的,学生的发展也因此而不同。这就决定了数学课堂教学不能封闭式灌输,而要开放式地组织活动。每个学生在学习过程中都有一定的自主性,老师应给各种不同意见以充分表达的机会,积极拓展学生的学习空间。
二、数学基本活动经验的特征:
1 主体性。经验是存在于个体头脑中而无法直接观察的心智表征或心智结构。学生作为主体,参与到社会生活实际或教师创设的情境当中,亲身体会形成自己个体的经验。因此数学基本活动经验是基于学习主体的,属于特定的学习者自己,它带有明显的主体性特征。例利用画画、剪剪、拼拼、凑凑、量量的办法,让学生去发现关于“三角形内角和等于1800”命题的学习,就是一种学生积极主动获取知识的发现学习。学生通过动脑、动手、洞口,充分调动多种感官协同活动,从多个渠道有效得获得数学活动经验。比如在教学中教师合理地运用操作性的教具与学具,通过实物操作、观察、体验来建立对数学的感觉,形成对学习对象的数学经验。由于经验是在主客体相互作用的基础上,主体反映客体时所产生的主观产物,因此,经验的接受和占有不能像接受实物那样,在既不改变性质也不改变存在形式的状态下进行。经验的接受过程是主体重建经验结构的过程,也即是一个主体心理结构的构建过程,主体必须处于一种十分主动的状态,积极地进行一系列复杂的心理运作,才能完成构建过程,真正地“接受”相应的经验。因此,学生的学习,从结果看是“接受”了已有经验,而从过程看则是一个积极主动的经验建构过程。
2 实践性。经验离不开活动,数学活动是经验产生的源泉,因此离开了数学活动,就根本不会形成有意义的数学活动经验,只有亲身经历体验了才能形成经验,经验具有明显的实践性。中小学生学习形式化的数学时,基本上与自己的生活实际结合起来进行学习。例如小学生学习小数,很自然地联系到自己购物时的商品标价;学到百分数,就会联想到本班同学体育锻炼达标的合格率。低年段学生的生活阅历浅,实践能力弱,只有切实经历有效的实践活动,才能掌握活动的步骤、方法,才能逐步积累活动经验,形成积极的情感体验。如在《角的认识》中,教师有意创设了这样一个情境,给每个同学一个不口袋,口袋里面放了一些物品,让学生从中摸出一个角。在学生纷纷举着自己摸出的角之后,老师说:“看看你们摸得这么好,我也想摸摸。你们能给我说说是怎么摸出来的吗?”孩子们说,“角有一个尖点,扎得慌。”教师伸手摸出一个图钉;孩子们又说,“角还有两边”。教师伸手摸出的确实一支削得很间尖的铅笔;孩子们急忙又补充说,“角是平的”。教师摸出一片树叶,“尖尖的,平平的,怎么没有角?”孩子们回答说,“两条边应该是直的”,这回教师摸出了一个三角板,教师真诚地对同学们说,“谢谢你们帮助我找到了摸角的感觉。”明显看到教师是在有意识引导学生进行体验,使学生认识并抓住角的关键特征。
3 内隐性(缄默知识)。人作为一个个体是通过日常生活、与人交往或其他活动形成大量的个体经验,拓展最近发展区,并通过意义建构把最近发展区变成现实的发展。通过建构获得经验,同时凭借经验也获得建构。经验是属于个体的,依赖于特定的活动,离开了活动,何谈经验。所有的知识都是在个体与经验世界的对话中建构起来的,都必须以个体的认知过程为基础。经验是不能传递的,譬如说“60°的水是热的”,那么就是作为知识传递下来的,如果说“60°的水是烫的”,那么就是个经验问题,如果没有体验过,不会形成烫的经验。建构主义认为知识不是通过感觉或交流而被个体被动地接受的,而是由认知主体主动地建构起来的,建构是通过新旧经验的相互作用而实现的。认识的技能是适应自己的经验世界,帮助组织自己的经验世界,而不是去发现本体论意义上的现实。经验作为一种心理现象,是属于个人的,是隐藏在一个人的内心深处的。数学活动经验反映的是学习者在特定的学习环境中或某一学习阶段对学习对象的一种经验性的认识,这种经验性认识更多的时候是内隐的。正是因为经验的内隐性,使得我们难于把握,难以琢磨。
4 多样性。对同一个数学活动,即使外部条件相同,针对同一对象,每一个学生仍然可能具有不同的理解,形成不同的经验。学生通过动脑、动手、洞口,充分调动多种感官协同活动,从多个渠道有效得获得数学活动经验。比如在教学中教师合理地运用操作性的教具与学具,通过实物操作、观察、体验来建立对数学的感觉,形成对学习对象的数学活动经验。正是由于经验的多样性,才产生了数学学习的差异性。作为一名学生的学习是基于经验而又超越经验,就是说他们具有了超越经验、超越实践的眼光、能力和素养,他们有更高的追求和理想,具有更高的品位与境界,通过不断地阅读自我、认识自我、超越自我而成为真正的教育教学的主宰者。真正的经验不能传授,经验是个情绪体验,只有多经历,才能辨别真伪。水是热的,水是烫的,烫是经验,热是知识,只有你亲手经历体验才能知道。数学教育活动是作为一种实践活动,必须非常重视“经验”的作用。教育研究指向实践,在相当程度上就是在研究“经验”,或是一种以“经验”为对象的研究。研究“经验”本身确实需要“经验”,没有“经验”无法研究“经验”,这就要求研究者深入教育教学第一线,以形成亲身经历和体验,这也是有成就的教育研究者获得研究成功的基本经验之一。
5 指导性。凡是有学习的地方都存在着经验。学生通过基本数学活动,获得的经验要能进行反思提炼,形成对以后类似情境与活动的指导作用。指导性可以这样理解“学生头脑中已有的认知结构对新的数学学习活动的影响。”经验能在现实基础上预料以后情况的发生,并做出适当的安排计划。如围棋能手一下子能看出五步甚至更多步的棋来,这就需要他的前四步棋完全如他所料的那样出现,依靠经验。经验成为沟通学生已有的认知结构和新的数学学习活动的桥梁。再如在数论中有时候根据经验来猜测的结果,比如哥德巴赫猜想、费马大定理等等。面对新的情境、新的问题,学生需要调动自己已有的、适当的经验去同化这个新的情境与新的问题,把它与自己原有的知识形成合理和本质的联系。情境认知理论认为知识是通过经验而情景化的。学生在A活动中所得到的最新经验,并不是直接同现在的B活动的刺激——反应成分发生相互作用,而只是由于它影响原有的认知结构的有关特征,从而间接地指导活动B的解决。学习了“数”的运算规则可以有效指导学习“式”的运算规则;学习了平面上求轨迹的方法可以有效地指导空间求轨迹。
6 过程性。从知识的角度上讲,经验是一种过程性知识,是在实践活动中所形成的一种“活动图式”。它主要由三种成分组成,一是知识性成分,是指在活动过程中所建构的关于活动主客体的个人意义,包括操作的直观感知、建立的新旧知识之间的联系以及对活动过程的感悟等,是人们在活动过程中所悟出的道理,是对活动过程的直观把握,其合理性主要由活动的有效性来保证,如“老马识途”;二是体验性成分,是指在活动过程中所产生的情绪体验,包括成就感与失败感、自我调节心态的体会等,如“大赛经验”;三是观念性成分,是指活动过程所形成的意识和信念,如应用意识、创新意识、做事的信心与信念等等。[6]经验注重过程,启发思考。使学生探究的过程、思考的过程、抽象的过程、预测的过程、推理的过程、反思的过程等都可能成为经验的组成部分。实际上当学生参与某项数学活动会形成的某种图式是建立在他的认知结构中进行登记,然后开始考虑其逻辑依据,与先前的相关内容发生联系,使得与本人的数学认知结构趋于和谐,当到一定阶段,经验会在他面临不同具体情境时逐步获得反馈消息,以加深经验的体验。
希望能对你有所帮助!

什么是“数学基本活动经验”

基本活动经验是在学生参与数学学习的活动中积累起来的.如果把数学基础知识和丛本技能的学习看作是显性的话,那么基本活动经验的积累就具有隐性的特征.\x0d首先,数学基本活动经验的积累要和过程性目标建立联系.《标准(2011年版)》确定的目标有两类,一类是结果性目标,一类是过程性目标.一般来说,结果性目标是指向基础知识与基本技能的.过程性目标更多地指向数学基本思想和基本活动经验,而数学基本活动经验主要是过程性目标的体现.如《标准(2011年版)》规定,经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能;经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能;经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能;参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验.在具体的课程内容中,也有一些过程性的描述:结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性;经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并能用自己的方式(文字、图画表格等)呈现整理数据的结果.这些过程性目标和内容实现的主要标志就是学生形成活动经验,学生在经历相关的数学活动中,了解数学知识发生发展的过程,体会数学知识和方法的探究.\x0d其次,数学基本活动经验的积累依靠丰富多样的数学活动的支撑.这里的数学活动是指伴随学生相应的数学知识学习而设计的观察、试验、猜测、验证、推理与交流、抽象概括、数据搜集与处理、问题反思与建构等.数学活动的设计与相应的知识技能有关,但其目的不只是为了完成数学知识技能的学习,还是学生数学活动经验积累的重要途径.以数据的搜集整理和分析相关的活动设计为例.《标准(2011年版)》在第一、二、三学段分别用了3个相似的例子说明如何设计和组织有关的活动.第一学段的例19,对全班同学的身高进行调查分析;第二学段的例38,对全班同学的身高数据进行调查分析;第三学段的例70,比较自己班级与别的班级同学的身高状况.这几个例子的设计,一方面让教师结合不同学段学生的发展和学习内容的深入,用具有一定连续性的例子,使学生体会数据搜集整理的过程;另一方面使学生在这个过程中不断积累获得数学信息、整理与分析数据的活动经验,了解到统计的知识与方法主要是从现实的问题中产生的,具有现实意义.同时,在这个过程中逐步形成数据分析观念.设计有效的数学活动是学生积累活动经验的保障.数学知识的探索、数学建模的设计与组织、数学探究活动等都是很好的数学活动.如,探索物体长度的测量和长度单位的建立过程,探究不同的树叶长宽之比,探索小数点的移动使数值发生的变化,探索三角形的三边关系等都可以设计成数学活动.学生通过自己的操作、猜测、验证,发现问题、研究问题和解决问题.在这个过程中,学生获得的不仅仅是认识相关的知识,得出相应的结论,而且积累了如何去探索、发现,如何去研究的经验.\x0d第三,数学基本活动经验的积累是一个长期的过程.活动经验要靠积累,积累需要一个过程,不能指望一两次活动就能完成.因此,应当把活动经验的积累看作是一个长远的目标,持续不断地组织学生参与数学探究的过程,逐步形成数学活动经验.

③ 数学课标中“基本思想”和“基本活动经验”具体指什么

课标中的数学思想
《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的: 基础知识、基本技能、基本思想、基本活动经验。
     “基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线, 是最上位的思想。 演绎和归纳不是矛盾的,其教学也不是矛盾的, 通过归纳来预测结果,然后通过演绎来验证结果。 在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳。 之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。 每一个具体的方法可能是重要的,但它们是个案,不具有一般性。 作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了。 这里所说的思想,是大的思想, 是希望学生领会之后能够终生受益的那种思想方法。
史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论。 我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力。而这正是归纳推理的能力。
就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容。与演绎推理相反,归纳推理是一种“从特殊到一般的推理”。 借助归纳推理可以培养学生“预测结果”和“探究成因”的能力,是演绎推理不可比拟的。从方法论的角度考虑,“双基教育”缺少归纳能力的培养,对学生未来走向社会不利,对培养创新性人才不利。
一、什么是小学数学思想方法
所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。
所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。
数学思想是宏观的,它更具有普遍的指导意义。而数学方法是微观的,它是解决数学问题的直接具体的手段。一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。如常用的分类思想和分类方法,集合思想和交集方法,在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。
二、小学数学思想方法有哪些
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法:
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法:
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12、代换思想方法:
他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少
13、可逆思想方法:
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
14、化归思维方法:
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
15、变中抓不变的思想方法:
在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
16、数学模型思想方法:
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法:
对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。
三、怎样教给学生数学的思想方法:
1、深入钻研教材,认真挖掘教材中渗透的数学思想方法因素。
2、在知识的发生、形成、发展过程中,适时地进行数学思想方法的渗透。
3、注意在知识的小结、复习过程中运用对比、归类的方法,帮助学生整理出比较清晰的、常用的一些数学思想方法。
4、引导学生应用数学的思想方法去解决一些生活中的实际问题。
5、考试时要适当设计一些题目,考查学生对数学思想方法理解、应用的能力。

④ 如何培养学生的数学基本活动经验

《数学课程标准》(2011版)明确把数学教学中的“双基”发展为“四基”,即除了“基本数学知识”和“数学基本技能”之外,又增加了“数学基本思想”,以及“数学基本活动经验”。可见,“数学活动经验”是学生个人经验的重要组成部分,是学生学习数学、提高数学素养的重要基础。那么,如何开展有效的数学活动,才能帮助学生积累数学基本活动经验呢?
一、提供观察、操作活动机会,在亲历体验中积累经验。
学生在观察、动手操作活动过程中,能够获得直接经验和亲身体验。因此,在教学过程中,要充分相信学生,留给学生足够的时间和空间,放手让学生自己去观察、操作、实验,使学生动脑、动手又动口。例如:在教学“千克的认识”
时,我先让学生观察现两袋盐的外包装,了解它的质量正好是1千克。再让学生动手去用台称称一下两袋盐的质量,知道两袋盐正好重1千克;每位同学掂一掂两袋盐的质量,感受1千克有多重;在此基础上,让学生拿出一个塑料袋装苹果,掂一掂,估计一下大约几个苹果是1千克,然后再称一称,看看与实际相差多少;
最后让学生以千克为单位说说生活中熟悉的物品和质量。这样,通过看一看、称一称、掂一掂、估一估、说一说等丰富多彩的活动,让学生在亲历中体验,在体验中积累,能够有效获取数学活动经验。
二、提供探究、思考活动机会,在猜想、验证中积累经验。
探究经验的积累必须是在一种真实的情境中,对数学知识进行的思考、探索、研究。在探究、思考活动中取得经验,其实就是一个不断猜想、验证的过程。
比如在教学“可能性”这一内容时,先从“抛硬币”游戏导入,初步感知。师:同学们先猜一猜,硬币落下后哪面会朝上?生1:正面会朝上。生2:反面会朝上。师:到底哪面朝上,我们验证一下。学生小组活动,再汇报交流。活动后小结:是正面朝上还是反面朝上,我们是不能确定的。因此,我们说:(
)正面朝上,( )会反面朝上。师:你会用一个词语填空吗?引导学生说出:可能。
再活动探究,1.体验“可能”:师:在装有3个白球和3个红球的盒子里摸球,请同学们先猜一猜每次摸到的会是什么颜色的球,再摸球。学生再分组活动,教师巡视,然后小组汇报。师:从各组汇报的摸球情况中,你发现了什么?2.体验“不可能”:师:从刚才的盒子里能摸出黑球吗?为什么?3、体验“一定”:教师出示一盒球,摇均,请学生先猜再摸球。师:下面请几位同学来摸球,验证一下大家的猜想。生1摸出的是白球。生2摸出的还是白球。生3摸出的依然是白球。生4答:我知道下来摸出的还是白球,因为盒子里装的全是白球。师:怎么装球,摸出的一定是白球?生:盒子里装的全是白球。

最后学生自己设计摸球游戏:袋子里放什么球1、一定是红球?2、可能是红球?3、不可能是红球?来进一步验证规律。
教师应提供这样适度开放的探究性活动,启发学生在猜想中拓宽思路,在验证中积累丰富的探究经验。
三、提供总结反思机会,在方法优化中积累经验。
学生学习数学,在经历观察、思考、比较的过程中,获取丰富的感性经验,再从许多数学事实或数学现象中,抽象出共同的本质属性。但总结的方法不一定是最优化,在反思中有概括、有比较、有推理、有驳证,因而,反思就是一种创造性的学习。
比如在教学“长方体的表面积”后,计算长方体的落水管的表面积,有的学生先求出六个面的面积,再减去上下两个面的面积。引导学生:上下两个面其实是空的,能否再简单些?学生受启发后,发现直接把四个侧面的面积相加的和

,就是表面积了。再进一步观察:这落水管的上下口,你又发现了什么?(是正方形),学生反思后得出:只要求一个侧面的面积,再乘4就可以求出落水管的表面积了……学生在反思中提高思维品质,在反思中方法优化,形成策略,从而积累数学活动经验。
四、提供课后延伸机会,在综合活动中积累经验。
“课后延伸”是数学教学改革过程中的一个重要环节,是数学学科内容的扩展和延伸。要设计科学合理的“课后延伸”题,让学生的体验得以进一步延续,习惯得以进一步培养,经验得以进一歩积累。
例如,在教学了“比的意义”后,引导学生收集生活中的“比”,学生通过上网查资料,知道了东方明珠塔、古埃及金字塔、维纳斯、雅典娜女神像等建筑物和艺术品,都蕴藏着“黄金分割点”,然后让学生自己创作一个“黄金分割点”的作品。再如学习完“人民币的认识”后,设计“小小超市”的情境活动:将学生的玩具展示成商品,帖上单价,让学生用自己准备的人民币自主购物,算一算“1元钱可以买什么?”“10元钱可以买什么?”“你最喜欢买什么?”“共要花多少钱?”……将枯燥的“人民币的认识”改为富有情境式的作业。在这样的综合活动中学生拓展了思维,增强了应用意识,真正实现“得利于课内,受益于课外”。
总之,教师应全面关注学生数学活动经验的积累,学生在观察、操作、实验、猜测、推理、交流等数学活动中,实现操作经验与思考经验、策略性经验的有机融合,积累丰富的数学活动经验。

⑤ 小学数学基本活动经验指哪些

世界无法解释的七大奇异景象 1.晚上2点32分点蜡烛的人会看到18世纪巫婆的惨死。 2。指甲涂一层黑,一层白,一层红还完好无损,就会有人向你表白。 3.夜里4点38分削苹果,如果苹果皮断了,96小时莫名其妙死亡。 4.0点照镜子,会照到自己的前世和你怎么死的。 5.夜里穿黑衣不梳头发的女孩没影子 6.将此贴转向5个以上贴坛,就不会被魔鬼缠身,且实现一个愿望。 7.不回帖会遭英国魔鬼.. ..

⑥ 如何有效积累数学基本活动经验

一、引导学生经历自主、多样化的体验过程,积累探究性经验
积累探究经验不是通过简单的活动和思考就可以完成,它更强调的是一种真实的情境,对数学思想方法的学习和体验。因此,教师应精心创设问题情境,组织适度开放的探究性活动,启发学生拓宽思路,多方位、多角度地获取多样化的信息,积累丰富的探究经验。
教学《三角形的面积计算》,每桌学生准备两个信封,一个信封里装有4个不同的三角形(有等腰和不等腰的锐角三角形、直角三角形、钝角三角形),另一个信封里装有2个完全一样的三角形(锐角、直角或钝角三角形)。然后围绕“利用信封中的这些材料剪拼、加工成一个我们学过的图形”的要求,自由操作,自主探究,开放的环节赢得了丰富的课堂回报——有的学生把三角形沿着两边的中点剪开,然后再拼成一个平行四边形;有的先找到三角形两边的中点,然后沿两个中点分别作底边的垂线,再沿垂线剪下两个小的直角三角形,然后补在上面的三角形上成了一个长方形;有的把两个相同
的锐角、直角或钝角三角形拼成一个平行四边形。
从这个单元的教材编排体系来看,这节课具有承上启下的作用。“承上”就是巩固将一个图形割补转化成另一个图形的方法,“启下”就是下一节课将要学习用两个图形拼成一个学过的图形的方法,从学生的思维角度来看,这是两种完全不同的思维方式,可以引导学生从不同的角度思考问题。丰富的材料使得学生的探究更具价值,学生经历了如何割、拼图形进行图形转化的活动经验,积累了从特殊情况出发获得一般性结论的探究经验。
探究经验的获得是一个不断猜想、验证和思辨的过程。为学生创设多样化的、开放性的探究情境,引领学生在广阔的数学背景下自由驰骋,学生所积、累的探究经验将更科学、更丰富。
二、引导学生经历数学对接生活的过程,把生活经验转化为数学经验
学生在生活中已经积累了一些关于数学的原始、初步的经验。对于数学知识的认识和理解,有时需要具有丰富的生活经验背景,让生活经验和数学经验“有效对接”,使得日常生活经验“数学化”。因此,我们要善于捕捉生活中的数学现象,挖掘教学知识的生活内涵,将数学与生活密切联系,让学生亲身经历将生活经验转化为数学活动经验的过程,使学生充分积累“数学化”的活动经验。
学生学习《年、月、日》时,掌握年、月、日的时长不像“分、秒”那样可以现场体验。教师在教学时注意提取学生的生活经验,请学生用生活中经历的一些事情,描述一下一年、一月、一日有多长。学生们纷纷举手发言,有的说:“今年春节到明年春节是一年。”“今年5月7日是我的生日,再到明年的5月7日,我长大了一岁,也就是又过了一年。”“我爸爸这个月发工资到下个月再领工资的时间就是一个月。”“今天这时到明天这时就是一日。”……学生在日常生活中接触年、月、日的经验构成了其进一步学习新知的数学现实,
数学教学要基于学生的生活现实,把这些生活经验进行“数学化”处理,促进学生进行数学思考,以生成新的数学活动经验。生活经验用于帮助经历、体验新知识的形成过程,不仅简单明了,而且生动形象,有利于学生的经验从一个水平上升到更高水平,实现经验的改造或重组。
三、引导学生经历操作与思考的过程,积累有效操作的活动经验
“智慧自动作发端”,动手操作是学生学习数学的重要途径和方法。动手操作能把抽象的知识变成看得见、诽得清的现象,学生动手、动脑、动口参与获取知识的全过程,使操作、思维、语言有机结合,获得的体验才会深刻、牢固,从而积累有效的操作经验。
教学《长方形面积的计算》,教师课前为每个小组准备了一些1平方分米的正方形,然后引导学生展开如下研究活动——
师:在你们的桌上有一个长方形纸板,你们知道它的面积吗?怎样才能知道呢?
生:可以摆面积是1平方分米的正方形。
师:在摆的过程中要注意观察,看看能发现什么?
(学生操作。)
生:我们的摆法是,每行4个,可以摆3行,4乘3是12。那么这个长方形的长是4分米,宽是3分米,面积是12平方分米。
师:你是怎么知道长是4分米,宽是3分米的?
生:每个正方形的边长是1分米,横着摆了4个,所以长是4分米……
然后,教师发给每个小组4个同学大小不同的长方形,用摆正方形的方法求出长方形的面积,并要求学生将数据记录在表中,看看有什么发现。
长(分米)
宽(分米)
面积(平方分米)
(学生操作。)
生1:我沿着长摆了5个正方形,沿着宽摆了3个正方形,所以长是5分米,宽是3分米,面积是15平方分米。
生2:我的摆法很快,只用了7个正方形,我沿着长摆5个,沿着宽再摆2个就行了,也能看出一共摆5乘3等于15个。面积兢是15平方分米。(师生评价)
生3:我这个长方形,长是3分米,宽是2分米,面积是6平方分米。
生4:我发现长方形的面积可能是用长乘宽,但不太确定。
师:我们通过动手摆,求出了这些长方形的长、宽和面积,还有同学对面积的计算方法提出了猜想。
学生“摆”长方形面积的过程,不仅丰富了感觉、知觉的经验,而且也为相互之间的思维碰撞提供了丰富的资源,动手操作不仅仅是直观、形象的“手指运动”,更是丰富、生动的思维活动,并在这一过程中实现操作经验与思考经验、策略性经验的有机融合,积累丰富的数学活动经验。
四、引导学生经历抽象概括的过程,积累抽象概括的经验
抽象概括是形成概念、得出规律的关键手段,也是建立数学模型最为重要的思维方法。学生学习数学,需要充分地经历观察、思考、比较的过程,获取丰富的感性经验,再从许多数学事实或数学现象中舍去个别的、非本质的属性,抽象出共同的本质属性。
教学“加法交换律”,师生通过一系列教学环节得到了如下算式:28+17= 17+28,4+3=3+4,20+40=40+20,82+0=0+82……之后,教师引导学生发现这些算式中共同的规律。
生:把相加的两个数交换之后,它们的结果相等,
师:交换了什么?在加法中的结果可以说成——和。谁来再说一下?
生:交换加数的位置,它们的和不变。
师:说得真好,两个数相加,交换加数的位置,它们的和不变。具有这样规律的等式你们还能写吗?能写出多少个?
生:能写,可以写无数个,
师:看来我们这辈子都无法写完,那怎么办?有更好的办法吗?想一想,也可以商量商量。
学生思考后讨论。
生:我用a+b=b+a表示。a表示加数,b也表示加数,位置交换之后结果还是相等。
师:如此好的办法,真不简单!掌声送给你。
……
许多数学问题在貌似不同的数学情景背后,往往具有相同的思维模型。因此,抽象概括可以加深学生对事物本质的把握,形成一般化的认识,积累了具体问题抽象化、形式化的经验。
五、引导学生经历反思推广的过程,积累情感、思想性经验
数学活动经验是属于学生自己的,带有明显的个性特征,就学习群体而言,数学活动经验又具有多样性,因此,数学活动经验的积累需要学生的自我反思,也需要与同伴展开积极的交流。
教学《平行四边形面积的计算》,在总结环节教师引导:这节课我们研究了平行四边形面积的计算,回忆一下,我们是怎样研究的,中间你有没有遇到哪些困难,又是怎样克服的?学生纷纷发言:我一开始是用数方格的方法计算面积,但太繁了,后来就觉得应该研究更简便的方法;我一眼就看出了从平行四边形中剪下一个三角形,平移到另一边,就转化成长方形,这样通过长方形面积得出平行四边形面积就方便多了;只要沿着高剪开就能转化为长方形,所以不一定是剪三角形,也可以剪梯形;我把平行四边形转化成长方彤后,误以为长方形的长和宽分别相当于平行四边形的两条边,后来在同桌的帮助下发现错了,看来以后学习中还是要细心观察。接着,教师用课件演示将平行四边形转化成长方形的过程,提出问题:下节课我们学习三角形的面积计算,你准备怎么研究?
我们的教学目标不能仅限于一节课,应有长远的眼光,立足使学生终身受益。在平时的数学学习过程中,要引导学生检查自己的思维活动,反思自己是怎样发现、解决问题的,运用了哪些基本的思考方法和技能技巧,有什么好的经验……使学生对数学的理解实现从量的积累到质的飞跃,这种经历生成的思想经验才是最具价值的同时,越是复杂的数学活动越需要积极的情感意志相伴,这种体验性成分也是学生基本数学活动经验不可或缺的组成部分,它对于良好人格的塑造具有不可替代的作用。
数学教学需要让学生亲身经历学习过程,从而获得最具数学本质的、最具价值的数学活动经验。著名教育家陶行知作了这样一个比喻:我们要有自己的经验做“根”,以这经验所发生的知识做“枝”,然后别人的知识才能接得上去,别人的知识方才成为我们知识有机体的一个部分,因此,要让学生在亲历中体验,在体验中累积,让经验的“根”长得更深。

⑦ 什么是“数学基本活动经验”

基本活动经验是在学生参与数学学习的活动中积累起来的。如果把数学基础知识和丛本技能的学习看作是显性的话,那么基本活动经验的积累就具有隐性的特征。 首先,数学基本活动经验的积累要和过程性目标建立联系。《标准(2011年版)》确定的目标有两类,一类是结果性目标,一类是过程性目标。一般来说,结果性目标是指向基础知识与基本技能的。过程性目标更多地指向数学基本思想和基本活动经验,而数学基本活动经验主要是过程性目标的体现。如《标准(2011年版)》规定,经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能;经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能;经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能;参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验。在具体的课程内容中,也有一些过程性的描述:结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性;经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并能用自己的方式(文字、图画表格等)呈现整理数据的结果。这些过程性目标和内容实现的主要标志就是学生形成活动经验,学生在经历相关的数学活动中,了解数学知识发生发展的过程,体会数学知识和方法的探究。 其次,数学基本活动经验的积累依靠丰富多样的数学活动的支撑。这里的数学活动是指伴随学生相应的数学知识学习而设计的观察、试验、猜测、验证、推理与交流、抽象概括、数据搜集与处理、问题反思与建构等。数学活动的设计与相应的知识技能有关,但其目的不只是为了完成数学知识技能的学习,还是学生数学活动经验积累的重要途径。以数据的搜集整理和分析相关的活动设计为例。《标准(2011年版)》在第一、二、三学段分别用了3个相似的例子说明如何设计和组织有关的活动。第一学段的例19,对全班同学的身高进行调查分析;第二学段的例38,对全班同学的身高数据进行调查分析;第三学段的例70,比较自己班级与别的班级同学的身高状况。这几个例子的设计,一方面让教师结合不同学段学生的发展和学习内容的深入,用具有一定连续性的例子,使学生体会数据搜集整理的过程;另一方面使学生在这个过程中不断积累获得数学信息、整理与分析数据的活动经验,了解到统计的知识与方法主要是从现实的问题中产生的,具有现实意义。同时,在这个过程中逐步形成数据分析观念。设计有效的数学活动是学生积累活动经验的保障。数学知识的探索、数学建模的设计与组织、数学探究活动等都是很好的数学活动。如,探索物体长度的测量和长度单位的建立过程,探究不同的树叶长宽之比,探索小数点的移动使数值发生的变化,探索三角形的三边关系等都可以设计成数学活动。学生通过自己的操作、猜测、验证,发现问题、研究问题和解决问题。在这个过程中,学生获得的不仅仅是认识相关的知识,得出相应的结论,而且积累了如何去探索、发现,如何去研究的经验。 第三,数学基本活动经验的积累是一个长期的过程。活动经验要靠积累,积累需要一个过程,不能指望一两次活动就能完成。因此,应当把活动经验的积累看作是一个长远的目标,持续不断地组织学生参与数学探究的过程,逐步形成数学活动经验。

⑧ 新课标提出数学基本活动经验内涵是什么它包括哪些内容

基本活动经验是在学生参与数学学习的活动中积累起来的.如果把数学基础知识和丛本技能的学习看作是显性的话,那么基本活动经验的积累就具有隐性的特征.\x0d首先,数学基本活动经验的积累要和过程性目标建立联系.《标准(2011年版)》确定的目标有两类,一类是结果性目标,一类是过程性目标.一般来说,结果性目标是指向基础知识与基本技能的.过程性目标更多地指向数学基本思想和基本活动经验,而数学基本活动经验主要是过程性目标的体现.如《标准(2011年版)》规定,经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能;经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能;经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能;参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验.在具体的课程内容中,也有一些过程性的描述:结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性;经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并能用自己的方式(文字、图画表格等)呈现整理数据的结果.

热点内容
2017年四川数学卷 发布:2025-05-18 00:16:14 浏览:719
中国社会科学院暑期 发布:2025-05-17 23:31:35 浏览:687
简单广场舞教学 发布:2025-05-17 20:37:48 浏览:13
二级学科博士点 发布:2025-05-17 19:10:15 浏览:125
永兴教师招聘 发布:2025-05-17 19:10:15 浏览:664
高中教师资格证考试用书 发布:2025-05-17 16:29:17 浏览:52
小学教师的条件 发布:2025-05-17 16:21:01 浏览:419
教育学教育心理学题库 发布:2025-05-17 16:14:16 浏览:819
夏威夷群岛地理位置 发布:2025-05-17 16:10:46 浏览:949
奴隶老师漫画全集 发布:2025-05-17 16:01:34 浏览:911