五上数学小报
『壹』 五年级上数学手抄报
参考资料:
•1.失明的数学家欧拉
• 欧拉的惊人成就并不是偶然的。他可以在任何不良的环境中工作,经常抱着孩子在膝上完成论文,也不顾较大的孩子在旁边喧哗。欧拉在28岁时,不幸一支眼睛失明,过了30年以后,他的另一只眼睛也失明了。在他双目失明以后,也没有停止过数学研究。他以惊人的毅力和坚韧不拔的精神继续工作着,在他双目失明至逝世的十七年间,还口述著作了几本书和400篇左右的论文。由于欧拉的著作甚多,出版欧拉全集是十分困难的事情,1909年瑞士自然科学会就开始整理出版,直到现在还没有出完,计划是72卷。
• 欧拉在他的886种著作中,属于他生前发表的有530本书和论文,其中不少是教科书。他的著作文笔流畅、浅显、通俗易懂,读后引人入胜十分令读者敬佩。尤其值得一提的是他编写的平面三角课本,采用的记号如sinx,cosx,……等等直到现今还在用。
• 欧拉1720年秋天入巴塞尔大学,由于异常勤奋和聪慧,受到约翰•伯努利的尝识,给以特别的指导。欧拉同约翰的两个儿子尼古拉•伯努力和丹尼尔•伯努利也结成了亲密的朋友。
• 欧拉19岁写了一篇关于船桅的论文,获得巴黎科学院的奖金,从此开始了创作生涯。以后陆续得奖多次。1725年丹尼尔兄弟赴俄国,向沙皇喀德林一世推荐欧拉,于是欧拉于1727年5月17日到了彼得堡,1733年丹尼尔回巴塞尔,欧拉接替他任彼得堡科学院数学教授,时年仅26岁。
• 1735年,欧拉解决一个天文学的难题(计算慧星轨道)。
• 这个问题几个著名数学家,几个月的努力才得以解决,欧拉却以自已发明的方法,三日而成。但过度的工作使他得了眼病,不幸右眼失明,这时才28岁。
• 2.数学家的故事——苏步青
• 苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
• 那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
• 杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
• 17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
• 这就是老一辈数学家那颗爱国的赤子之心
• 3.数学家的墓志铭
• 一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
• 古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
• 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷•伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
• 4.祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
• 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
• 祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
• 祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
• 5.数学奇才——伽罗华
• 1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。
• 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
• 1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。
• 称量皇冠的难题
• 6.王冠的重量
• 在一般人看来,阿基米德是个“怪人”。用罗马历史学家普鲁塔克的话说:“他象是一个中了邪术的人,对于饭食和自己的身体全不关心。”有时候,饭摆在桌子上叫他吃饭,他好象没听见,仍旧在火盆的灰里画他的几何图形。他的妻子,要时时看守他。譬如他用油擦身的时候,便呆坐着用油在自己身上画图案,而忘记原来是作什么事的了。他的妻子更怕送他到浴堂里去洗澡,这个笑话是因为国王的一个新冠冕而引起的。
• 国王在前不久,叫一个工匠替他打造一顶金皇冠。国王给了工匠他所需要的数量的黄金。工匠的手艺非常高明,制做的皇冠精巧别致,而且重量跟当初国王所给的黄金一样重。可是,有人向国王报告说:“工匠制造皇冠时,私下吞没了一部分黄金,把同样重的银子掺了进去。”国王听后,也怀疑起来,就把阿基米德找来,要他想法测定,金皇冠里掺没掺银子,工匠是否私吞黄金了。这次,可把阿基米德难住了。他回到家里苦思苦想了好久,也没有想出办法,每天饭吃不下,觉睡不好,也不洗澡,象着了魔一样。
• 有一天,国王派人来催他进宫汇报。他妻子看他太脏了,就逼他去洗澡。他在澡堂洗澡的时候,脑子里还想着称量皇冠的难题。突然,他注意到,当他的身体在浴盆里沉下去的时候,就有一部分水从浴盆边溢出来。同时,他觉得入水愈深,则他的体量愈轻。于是,他立刻跳出浴盆,忘了穿衣服,就跑到人群的街上去了。一边跑,一边叫:“我想出来了,我想出来了,解决皇冠的办法找到啦!”
• 他进皇宫后,对国王说:“请允许我先做一个实验,才能把结果报告给你。”国王同意了。阿基米德将与皇冠一样重的金子、一块银子和皇冠,分别一一放在水盆里,看金块排出的水量比银块排出的水量少,而皇冠排出的水量比金块排出的水量多。
• 阿基米德对国王说:“皇冠掺了银子!”国王看了实验,没有弄明白,让阿基米德给解释一下。阿基米德说:“一公斤的木头和一公斤的铁比较,木头的体积大。如果分别把它们放入水中,体积大的木头排出的水量,比体积小的铁排出的水量多。我把这个道理用在金子、银子和皇冠上。因为金子的密度大,而银子的密度小,因此同样重的金子和银子,必然是银子的体积大于金子的体积。所 以同样重的金块和银块放入水中,那么金块排出的水量就比银块的水量少。刚才的实验表明,皇冠排出的水量比金块多,说明皇冠的密度比金块的密度小,这就证明皇冠不是用纯金制造的。”阿基米德有条理的讲述,使国王信服了。实验结果证明,那个工匠私吞了黄金。
• 很多滴沥~ ~ ~ ~我找了六个,希望你认真看看~ ~ ~ 1。从一加到一百
• 高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。
• 高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。
• 高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。
• 七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98= 101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
• 2。波兰伟大的数学家伯格曼(Stefan Bergman,1898-1977年)离开波兰后,先后在美国布朗大学、哈佛大学和斯坦福大学工作。他不大讲课,生活支出主要靠各种课题费维持。由于很少讲课,他的外语得不到锻炼,无论口语还是书面语都很晦涩。但伯格曼本人从不这样认为。他说:“我会讲12种语言,英语最棒。”事实上他有点口吃,无论讲什么话别人都很难听懂。有一次他与波兰的另一位分析大师用母语谈话,不一会对方提醒他:“还是说英语吧,也许更好些。”
• 1950年国际数学大会期间,意大利一位数学家西切拉(Sichera)偶然提起伯格曼的一篇论文可能要加上“可微性假设”,伯格曼非常有把握地说:“不,没必要,你没看懂我的论文。”说着拉着对方在黑板上比划起来,同事们耐心地等着。过了一会西切拉觉得还是需要可微性假设。伯格曼反而更加坚定起来,一定要认真解释一下。同事们插话:“好了,别去想它,我们要进午餐了。”伯格曼大声嚷了起来:“不可微—不吃饭。”(No differentiability, no lunch)最终西切拉留下来听他一步一步论证完。
• 有证据表明伯格曼总在考虑数学问题。有一次清晨两点钟,他拨通了一个学生家里的电话号码:“你在图书馆吗?我想请你帮我查点东西!”
• 还有一次伯格曼去西海岸参加一个学术会议,他的一个研究生正好要到那里旅行结婚,他们恰好乘同一辆长途汽车。这位学生知道他的毛病,事先商量好,在车上不谈数学问题。伯格曼满口答应。伯格曼坐在最后一排,这对要去度蜜月的年轻夫妇恰巧坐在他前一排靠窗的位置。10分钟过后,伯格曼脑子里突然有了灵感,不自觉地凑上前去,斜靠着学生的座位,开始讨论起数学。再过一会,那位新娘不得不挪到后排座位,伯格曼则紧挨着他的学生坐下来。一路上他们兴高采烈地谈论着数学。幸好,这对夫妇婚姻美满,有一个儿子,还成了著名数学家。
• 3。哥德尔(Kurt Godel,1906-1978年)的举止以“新颖”和“古怪”著称,爱因斯坦是他要好的朋友,他们当时都在普林斯顿。他们经常在一起吃饭,聊着非数学话题,常常是政治方面的。麦克阿瑟将军从朝鲜战场回来后,在麦迪逊大街举行隆重的庆祝游行。第二天哥德尔吃饭时煞有介事地对爱因斯坦说,《纽约时报》封面上的人物不是麦克阿瑟,而是一个骗子。证据是什么呢?哥德尔拿出麦克阿瑟以前的一张照片,又拿了一把尺子。他比较了两张照片中鼻子长度在脸上所占的比例。结果的确不同:证毕。
• 哥德尔一生花了很大精力想搞清楚连续统假设(CH)是否独立于选择公理(AC)。在60年代早期,一个初出茅庐的年轻数学家柯恩(Paul J.Cohen),与斯坦福大学的同事们聊天时扬言:他也许可以通过解决某个希尔伯特(Hilbert)问题或者证明CH独立于AC而一举成名。实话说,柯恩当时只是傅里叶分析方面的行家,对于逻辑和递归函数,他只摆弄过不长时间。柯恩果然去专攻逻辑了,大约用了一年的时间,真的证明了CH与AC独立。这项成果被认为是20世纪最伟大的智力成就之一,他因此获得菲尔兹奖(Fieids Medal,比自然科学界的诺贝尔奖还难获得)。柯恩的技术是“力迫”(forcing)法,现已成为现代逻辑的一种重要工具。
• 当初的情形是:柯恩拿着证明手稿去高等研究院找哥德尔,请他核查证明是否有漏洞。
• 哥德尔起初自然很怀疑,因为柯恩早已不是第一个向他声明解决了这一难题的人了。在哥德尔眼里,柯恩根本就不是逻辑学家。柯恩找到哥德尔家,敲了门。门只开了6英寸的一道缝,一支冷冰冰的手伸出来接过手稿,随后门“砰”地关上了。柯恩很尴尬,悻悻而去。不过,两大后,哥德尔特别邀请柯恩来家里喝茶。柯恩的证明是对的:大师已经认可了。
• 4。维纳(1894-1964年)是最早为美洲数学赢得国际荣誉的大数学家,关于他的轶事多极了。维纳早期在英国,有一次遇见英国著名数学家李特尔伍德(Littlewood)时说:“噢,还真有你这么个人。我原以为Littlewood只是哈代(Hardy)为写得比较差的文章署的笔名呢。”维纳本人对这个笑话很懊恼,在自传中极力否认此事。此故事的另一种版本说的是朗道(Edmund Laudau):朗道很怀疑李特尔伍德的存在性,为此专程去英国亲自看了这个人。
• 维纳后来赴美国麻省理工学院任职,长达25年。他是校园中大名鼎鼎的人物,人人都想与他套点近乎。有一次一个学生问维纳怎样求解一个具体问题,维纳思考片刻就写出了答案。实际上这位学生并不想知道答案,只是问他“方法”。维纳说:“可是,就没有别的方法了吗?”思考片刻,他微笑着随即写出了另一种解法。维纳最有名的故事是有关搬家的事。一次维纳乔迁,妻子熟悉维纳的方方面面,搬家前一天晚上再三提醒他。她还找了一张便条,上面写着新居的地址,并用新居的房门钥匙换下旧房的钥匙。第二天维纳带着纸条和钥匙上班去了。白天恰有一人问他一个数学问题,维纳把答案写在那张纸条的背面递给人家。晚上维纳习惯性地回到旧居。他很吃惊,家里没人。从窗子望进去,家具也不见了。掏出钥匙开门,发现根本对不上齿。于是使劲拍了几下门,随后在院子里踱步。突然发现街上跑来一小女孩。维纳对她讲:“小姑娘,我真不走运。我找不到家了,我的钥匙插不进去。”小女孩说道:“爸爸,没错。妈妈让我来找你。”
• 有一次维纳的一个学生看见维纳正在邮局寄东西,很想自我介绍一番。在麻省理工学院真正能与维纳直接说上几句话、握握手,还是十分难得的。但这位学生不知道怎样接近他为好。这时,只见维纳来来回回踱着步,陷于沉思之中。这位学生更担心了,生怕打断了先生的思维,而损失了某个深刻的数学思想。但最终还是鼓足勇气,靠近这个伟人:“早上好,维纳教授!”维纳猛地一抬头,拍了一下前额,说道:“对,维纳!”原来维纳正欲往邮签上写寄件人姓名,但忘记了自己的……。
• 5。苹果树下的例行出步
• 希尔伯特在海德尔堡上了一学期以后,接下来的一个学期,本来可以允许他再转到柏林去听课,但他深深地依恋自己的家乡,于是他又回到了哥尼斯堡大学.再下一个学期——1882年春天,希尔伯特仍决定留在哥尼斯堡.
• 这时赫尔曼•阅可夫斯基从柏林学习了三个学期后也回到了哥尼斯堡大学.闽可夫斯基从小就数学才能出众,据说有一次上数学课,老师因把问题理解错了而“挂了黑板”,同学们异口同声叫道:“闭可夫斯基去帮帮忙!”在柏林上学时,他因为出色的数学工作曾得到过一笔奖金.这时,年仅17岁的阅可夫斯基正沉浸在一项很深奥的研究之中——解巴黎科学院出榜征解的一个问题:把一个数表成五个平方数的和.一年后,1883年春天,18岁的阅可夫斯基和英国著名的数学家史密斯共享巴黎科学院的这项大奖.这件事轰动了整个哥尼斯堡.希尔伯特的父亲因此曾告诫自己的儿子不要冒冒失失地去和“这样知名的人”交朋友.但由于对数学的热爱和共同的信念,希尔伯特和比他小两岁的闽可夫斯基很快成了好朋友.
• 1884年春天,年轻的数学家阿道夫•赫维茨从哥廷根来到哥尼斯堡担任副教授,年龄还不到25岁,在函数论方面已有出色的研究成果.希尔伯特和闽可夫斯基很快就和他们的新老师建立了密切的关系.他们这三个年轻人每天下午准5点必定相会去苹果树下散步.希尔伯特后来回忆道:“日复一日的散步中,我们全都埋头讨论当前数学的实际问题;相互交换我们对问题新近获得的理解,交流彼此的想法和研究计划.”在他们三人中,赫维茨有着广泛“坚实的基础知识,又经过很好的整理,”所以他是理所当然的带头人,并使其他两位心悦诚服.当时希尔伯特发现,这种学习方法比钻在昏暗的教室或图书馆里啃书本不知要好多少倍,这种例行的散步一直持续了整整八年半之久.以这种最悠然而有趣的学习方式,他们探索了数学的“每一个角落”,考察着数学世界的每一个王国,希尔伯特后来回忆道:“那时从没有想到我们竟会把自己带到那么远!”三个人就这样“结成了终身的友谊.”
• 正如徐利治教授所指出的,良师益友间的互相切磋讨论对希尔伯特的成长发展也起了十分重要的作用,可以想见那段时间是希尔伯特才、学、识获得迅速成长的重要阶段,假如没有这段经历,那么希尔伯特在1900年竟能在许多重要领域中一次提出那么多著名难题,倒是不易想象的了.有关希尔伯特散步的这个小故事告诉我们,师生除了在课堂上的活动以外,师生在课外的交流以及同学间的课外交流,也是一种重要的学习方式,对数学学习非常有益。而且,在散步中交流因为没有书本,也不用纸和笔,因此没有繁琐的推导和计算,只能交谈那些能用话“说出来”的东西,即对问题的理解,分析总是中的思想和方法,挖掘统帅形式推导的灵魂,......而这些对学好数学非常重要。同学们不妨经常邀几位要好的同学一起散步交谈,肯定会其乐无究的。
『贰』 五年级数学手抄报怎么画 一等奖
五年级所有单元手抄报 一单元:《分数乘法》
分数乘法(一)
知识点:1、理解分数乘整数的意义.分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算.
2、分数乘整数的计算方法.分母不变,分子和整数相乘的积作分子.能约分的要约成最简分数.
3、计算时,可以先约分在计算.
分数乘法(二)
知识点:1、结合具体情境,进一步探索并理解分数乘整数的意义,并能正确进行计算.
2、能够求一个数的几分之几是多少.
3、理解打折的含义.例如:九折,是指现价是原价的十分之九.
分数乘法(三)
知识点:1、分数乘分数的计算方法,并能正确进行计算.
分子相乘做分子,分母相乘做分母,能约分的可以先约分.计算结果要求是最简分数.
2、比较分数相乘的积与每一个乘数的大小.
真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数.
二单元:《长方体(一)》
长方体的认识
知识点:1、认识长方体、正方体,了解各部分的名称.
2、长方体、正方体各自的特点.
顶 点 面 棱
个 数 个 数 形 状 大小关系 条数 长度关系
8 6 都是长方形,特殊的有两个相对的面是正方形,其余四个面是完全一样的长方形. 相对的面是完全一样的长方形. 12 可以分为三组,相对的棱平行且相等.
8 6 都是正方形. 每个面都是正方形. 12 长度都相等.
3、知道正方体是特殊的长方体.
4、能计算长方体、正方体的棱长总和.
长方体的棱长总和=(长+宽+高)*4或者是长*4+宽*4+高*4
正方体的棱长总和=棱长*12
灵活运用公式,能求出长方体的长、宽、高或是正方体的棱长.
展开与折叠
知识点:1、认识并了解长方体和正方体的平面展开图.
2、了解正方体平面展开图的几种形式,并以此来判断.
长方体的表面积
知识点:1、理解表面积的意义.是指六个面的面积之和.
2、长方体和正方体表面积的计算方法.
3、能结合生活中的实际情况,计算图形的表面积.
露在外面的面
知识点:1、在观察中,通过不同的观察策略进行观察.
如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起.
2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律.
三单元:《分数除法》
倒数
知识点:1、发现倒数的特征并理解倒数的意义.
如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数.倒数是对两个数来说的,并不是孤立存在的.
『叁』 数学五年级上册的手抄报
1画些关于科技的图
2有一位老人,他有三个儿子和十七匹马。他在临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分。”
老人去世后,三兄弟看到了遗嘱。遗嘱上写着:“我把十七匹马全都留给我的三个儿子。长子得一半,次子得三分之一,给幼子九分之一。不许流血,不许杀马。你们必须遵从父亲的遗愿!”
这三个兄弟迷惑不解。尽管他们在学校里学习成绩都不错,可是他们还是不会用17除以2、用17除以3、用17除以9,又不让马流血。于是他们就去请教当地一位公认的智者。这位智者看了遗嘱以后说:“我借给你们一匹马,去按你们父亲的遗愿分吧!”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
3写些经典例题
4外加些数学家的故事
例如
数学家高斯的故事
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:
一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…
费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章
美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:
在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。
数学手抄报资料
一元钱哪里去了
三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了?
分苹果
小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。
小咪的爸爸是怎样做的呢?
小马虎数鸡
春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗? 『本文由第一范文网www.DiYiFanWen.com整理,版权归原作者、原出处所有。』
来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“
家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?
『肆』 数学小报(五年级)的内容
其实你可以现在上面写我们现在暂时学到的公式
然后再画些图片
你可以在网络那里查
看看别人是怎么画的
自己仿照一下
再写下本学期学的内容(到网上查)
再涂上颜色
就OK了
『伍』 求五年级上数学手抄报资料
求五年级上数学手抄报资料
查看全部9个回答
我来答
我来答 查看全部9个回答
ziyi86821846
LV.4 推荐于 2018-02-24
数学是无穷的科学。——赫尔曼外尔
数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。——高斯
在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。——康扥尔
只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示独立发展的终止或衰亡。——希尔伯特
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。——毕达哥拉斯
一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。——马克思
一个国家的科学水平可以用它消耗的数学来度量。——拉奥
数学的本质在於它的自由.——康扥尔(Cantor)
在数学的领域中,提出问题的艺术比解答问题的艺术更为重要.——康扥尔(Cantor)
没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明.——希尔伯特(Hilbert)
只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡.——希尔伯特
加减乘除(+、-、×(·)、÷(∶))等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们.别看它们这么简单,直到17世纪中叶才全部形成.
法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法.这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“—”表示不足.到1514年,荷兰的赫克首次用“+”表示加法,用“—”表示减法.1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“—”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用.
以符号“×”代表乘是英国数学家奥特雷德首创的.他于1631年出版的《数学之钥》中引入这种记法.据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的.后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认.
除法符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广.除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”.至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度.
1、点错的小数点
学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里. 美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.
点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.
2、蒲丰试验
一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。
3、数学魔术家
1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。
这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。
『陆』 五年级上册数学手抄报怎么做啊
画一些数字堆在一起,或数字插着翅膀在天空中飞,数字最好是彩色的,翅膀是白色的,也可以画一个问号,其余可以写一些关于数学家的故事,数字中的奥秘等等,你还可以花一些数学家的简单肖像画,主要是文字,画什么都无所谓,在文字后面可以轻轻地画一些花,草,也可以画一些简单的分数。
希望能够帮助你。
祝你好好学习天天向上 。
你也一定要选我哦,谢谢
『柒』 五年级数学手抄报资料
点错的小数点 学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.
美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.
点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.
『捌』 五年级数学手抄报内容
算术老师道:“这里有梨10只,吃去了6只,还剩多少?”一个贪食的学生答道:“我看把剩下的也一起吃掉吧。”
2、仔仔兴高采烈地从学校里回来,问妈妈:“爸爸呢?”妈妈看到仔仔兴奋的样子,奇怪地问:“爸爸在家,你找爸爸做什么?”“我向爸爸要5角钱。” “为什么?”妈妈问道。“在考数学以前,爸爸对我说‘如果考了100分,就给我1元钱,考80分给8角。’今天,我数学考了45分。“仔仔回答说。妈妈吃惊地问:“什么!数学才考45分?”仔仔得意地说:“是呀,数学上要4舍5入,因此,爸爸必须付5角钱。”
3、一位衣着时尚的女郎走进邮局汇款处,把汇款单填好后交给了营业员。营业员一看,把单退回说:“数字要大写。”女郎头一歪说:“大写?格子这么小,叫我怎么写得大?”
4、“爸爸,4路车来了!”“傻瓜,那不是4路,是31路!”“老师说,3+1=4!”小男孩理直气壮地说。