数学小学难题
㈠ 小学六年级数学难题
这还用说吗,当然是歌德巴赫猜想咯!其他的像费马大定理、混沌数学、四色定理等不仅知道的人少,而且呵呵!在中国他们不吃香啊!
所以首推哥德巴赫猜想,其次费马大定理(因为当初费马自己证出来却没写,而经过百多年的研究,还只是徘徊在边缘,但却因它发展了很多数学分支!所以第二个就是它了)。
哥德巴赫猜想(Goldbach Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个n ³ 6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个n ³ 9之奇数,都可以表示成三个奇质数之和。
这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,
16 = 5 + 11, 18 = 5 + 13, . . . . 等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) ¾ “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称 “s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。
1924年,德国的拉特马赫(Rademacher)证明了 “7 + 7 ”。
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。
1937年,意大利的蕾西(Ricei)先后证明了 “5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。
1938年,苏联的布赫 夕太勃(Byxwrao)证明了 “5 + 5 ”。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。
1948年,匈牙利的瑞尼(Renyi)证明了 “1 + c ”,其中c是一很大的自然 数。
1956年,中国的王元证明了 “3 + 4 ”。
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”,
中国的王元证明了 “1 + 4 ”。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了 “1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。
㈡ 小学数学难题大全
小学数学公式大全一、小学数学几何形体周长 面积 体积计算公式长方形的周长=(长+宽)×2 C=(a+b)×2 正方形的周长=边长×4 C=4a 长方形的面积=长×宽 S=ab 正方形的面积=边长×边长 S=a.a= a 三角形的面积=底×高÷2 S=ah÷2 平行四边形的面积=底×高 S=ah 梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 直径=半径×2 d=2r 半径=直径÷2 r= d÷2 圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 圆的面积=圆周率×半径×半径三角形的面积=底×高÷2。 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。长方体的体积=长×宽×高 公式:V=abh 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V=aaa 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。二、单位换算(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1吨=1000千克 1千克= 1000克= 1公斤 = 2市斤(5)1公顷=10000平方米 1亩=666.666平方米(6)1升=1立方分米=1000毫升 1毫升=1立方厘米(7)1元=10角1角=10分1元=100分(8)1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒三、数量关系计算公式方面 1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数四、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。五、特殊问题和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者 和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: (1)如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) (2)如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数(3)如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题(1)一般公式: 顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 (2)两船相向航行的公式: 甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度 (3)两船同向航行的公式: 后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%) 工程问题 (1)一般公式: 工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间 (2)用假设工作总量为“1”的方法解工程问题的公式: 1÷工作时间=单位时间内完成工作总量的几分之几 1÷单位时间能完成的几分之几=工作时间
㈢ 数学难题(小学)
小华到新华书店买了一套名著和一本工具书,再付款时,把名著价格个位上的“零”漏掉了,他就准备给营业员37元取书。这是营业员说:“你看错了,应付91元才对。”请帮小华算一算:这套名著是多少元?这本工具书多少元?
91-37=54
54/9=6
6*10=60
91-60=31
丢番都生命的1/6是童年,再活了1/12度过了青年,又度过了一生的1/7他结了婚,再过5年他得了儿子。不幸儿子只活了父亲寿命的一半,比父亲早死四年。根据这些信息,丢番都的一生到底是多少岁呢?
设:丢番都的一生到底是X岁
1/6x+1/12x+1/7x+5+1/2x+4=x
3/28x=9
x=84
㈣ 小学六年级的数学难题(是上册的),至少20题,100个财富值,值了!
1、 某工厂2月份比元月份增产%,3月份比2月份减产10%, 问3月份比2月份是增产了还是减少了。
2、 育红小学六年级举行数学竞赛,参加竞赛的女生比男生多28 人。根据成绩,男生全部获奖,而女生则有25%的人未获奖。获奖总人数是42人,又知参加竞赛的是全年级的5 2 .六年级学生共有多少人?
3、 水果批发部里的苹果比梨多20吨,梨比苹果少20%,梨是多 少吨?
4、 六年级有学生146人,达到《国家体育锻炼标准》的有124 人。求这个年级的达标率。(百分号前保留一位小数)
5、 一种半导体收音机,现在售价165元,比去年降低了85元, 降低了百分之几?
6、 甲乙两人分别从A、B两地同时相向而行,4时相遇,这时甲 行了全程的40%。两人继续前进,当乙到达A地时,甲还需行全程的几分之几就可以到达B地了?
7、一个工人由于改进生产技术,生产一个零件的时间由12分减到8分,以前每天生产40个零件,现在的生产效率比以前生产效率提高了百分之几?
8、东乡去年春季植树450棵,成活率为80%,去年秋季植树的成活率为90%,已知去年春季比秋季多死了18棵,这个乡去年一共种活了多少棵树?
9、某校选派360名学生参加夏令营,结果发现男生占40%,为了使
男生占50%,又增派了一批男生,问被增派的男生有多少名?
10、一根铁丝全长4.8米,第一次用去全长的3 1 ,第二次用去余下的60%,最后还剩下多少米?
11、修一条长2400米的公路,如果由甲工程队单独修建,需要20天;乙工程队单独修建,需要30天。现在由甲乙两工程队合修,需要多少天?
12、一项工程,由甲单独修做12天可以完成。甲队做了3天后,另有任务,余下的工程由乙队做15天完成,由乙队单独做这项工程要多少天?
13、老刘和小李合做一件工作,要12天完成,如果让老刘先做8天,剩下的工作由小李单独做,小李还要14天才能完成,小李单独做这件工作需几天完成。
14、甲.乙两队开挖一条水渠。甲队独做8天完成,乙队独做12天完成。现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。乙队挖了几天?
15、加工一批零件,甲独做20天完成,乙独做30天完成。现两人合作来完成任务,合作中甲休息了2.5天。乙休息了若干天,这样共14天完工。乙休息了几天?
16、抄一本书稿,甲每天的工作效率等于乙、丙两人每天的工作效率的和;丙的工作效率相当于甲、乙每天工作效率和的1/5;如果3人合作只需要8天就完成了,那么乙一人单独抄需要多少天才能完成?
17、一项工程,甲队单独承建要20天完,乙队单独承建要30天完,如果两队合做,多少天才能完成全部工作的3/4?
18、甲从A地出发到B地去,2小时走了全程的1/3,乙从B地到A地去,2小时走了全程的1/2,两人同时出发相向而行,几小时相遇?
19
、一项工程由甲、乙合做9 88天可以完成,若甲先独做8天后再由乙独做10天可完工,问这项工程由甲、乙单独做各要几天完工?
20、一项工程,甲单独做要12小时可以完成,现在甲、乙两人先合做2
小时,剩下的工作乙又用了2 15小时完成。如果这件工作全都由乙来做,需要几小时才能完成?
21、一项工程甲单独做24小时完成,乙单独做36小时完成,现要求20小时完成,且两人合作的时间尽可能少;问甲、乙合作几小时完成?
22、修一条马路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成。现在由甲、乙两队合修4天后,余下的由丙队修,还需要几天才能修完?
23、一件工程,甲、乙两人合做8天可以完成,乙、丙两人合做6天可以完成,丙、丁两人合做12天可以完成,那么甲、丁两人合做多少天可以完成?
24、一项工程,甲单独做要3小时完成,乙单独做要5小时完成,两
人合做这项工程的5 4,需要几小时完成?
25、甲、乙两人共同加工一批零件,8小时可以完成任务。如果甲单独加工,便需要12小时完成,现在甲、
乙两人共同加工了5 2 2小时后,甲被调出做其他工作,由乙继续加工了420个零件才完成任务,问乙
一共加工零件多少个?
26、有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要8天,单独完成乙工作要20天。如果每项工作都可以由两人合做,那么这两项工作都完成最少需要多少天?
㈤ 小学数学难题有那几个
小学数学重点有三个(本人认为)
一个是代数,第二个平面几何和立体几何,第三个是统计与一些杂题。
代数主要包括方程,还有一些数学的基础,例如什么质数合数什么的。特别是方程,要重点复习。
平面几何主要包括小学学的基础图形,还要记住基础概念,例如什么三角形具有稳定形,还要背公式,最总要的一点是灵活灵用。
立体几何,这是小学的难点,建议多做题。
统计等,这些都很简单,可以简要看一看
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高 s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
希望能给你帮助! 谢谢....
㈥ 一道小学数学难题
设晨晨批发了x只,则小童批发了8/17x-2,再设晶晶批发了y只
已知8/17x-2>y
(8/17x-2)+y+x=120
25/17x+y=122 又因为25/17x一定为整数 所以x为17的倍数 且8/17x-2>y =》 8/17x>y
代一下 可得出x只能等于68 则y=24
即晨晨批发了68只 小童批发了30只 晶晶批发了22只
如果你真是小学生,那么我说的这些你可以忽略,因为估计这些你都看不懂
如果你真是小学生,那么我说的这些你可以忽略,因为估计这些你都看不懂
㈦ 小学数学6大难题!!!!
1.甲有80元钱,是乙和丙所有钱的1/8,乙的钱数是甲和丙钱数的2倍,乙有多少钱?
1+8=9,1+2=3,80/(1/9)*(2/3)=480(元)
2.两车共同运一批货物,已知甲车运了货物总量的5/9,乙车比甲车少运20吨。甲车运了多少吨货物?
20/〔5/9-(1-5/9)〕*(5/9 )=100(吨)
3.客车从甲站开往乙站,货车同时从乙站开往甲站,客车行到全程的9/17的地方与货车相遇。如果客车每小时行45千米,货车8小时行完全程。求甲乙两站的路程。
45*〔(1-9/17)/(1/8)〕/(9/17)=320(千米)
4.王明看一本60页的书,上午看了1/4,下午看了20%,剩下的第二天看完,第二天看了多少页?
60*(1-1/4-20%)=33(页)
5.房屋出租要交4%的房产税和17%的营业税。如果一个单位房屋收入每月15万元,那么每月应交这两种税共多少万元?
15*(4%+17%)=3.15(万元)
6.修路队修一条公路,如果由甲队单独修要15天,乙队每天可以修44米。当两队共同修完这段公路时,甲队修了全长的60%,这段公路全长多少米?
44*[60%/(1/15)]/(1-60%)=990(米)
㈧ 小学数学所有的难题
假设地球上的新生成的资源的增长速度是一定的,科学家照此推算,地球上的资源可供110亿人生活90年,或供90亿人生活210年.为了使人类能够不断地繁衍,地球最多可养活多少亿人?
设一亿人一年消耗的是单位“1”
那么一年新生的是:[90*210-110*90]/[210-90]=75单位
地球上原有资源是:110*90*1-90*75=3150单位
要保证地球上人不断地生存,就要使得每年消耗的资源不能超出新生的。
即地球最多的人是:75/1=75亿。
0、1、4、15、56、(209)
用一根长100cm的铁丝做一个长方体框架模型,知长是12CM,问高是多少???
用一根长100cm的铁丝做一个长方体框架模型,知长是12CM,问高是多少???
长方体由长宽高分别等长的各四条棱组成.
只要(长+宽+高)*4=100,就能满足要求,已知长为12CM是一个不变的量,宽和高是可变化的.
在正整数范围内有:
(长+宽+高)*4=100
(12+12+1)*4=100
(12+11+2)*4=100
(12+10+3)*4=100
(12+ 9+4)*4=100
(12+ 8+5)*4=100
(12+ 7+6) *4=100
(121+6+7)*4=100
(12+5+ 8)*4=100
(12+4+ 9)*4=100
(12+3+10)*4=100
(12+2+11)*4=100
(12+1+12) *4=100
共有12个答案.
如果不限定为正整数,答案就是无穷多个了,如:
(12+12.1+0.9)*4=100
(12+12.2+0.8)*4=100
(12+12.3+0.7)*4=100
也就是说,只要满足(宽+高)=13的两个数中的"高"值,都是正确的答案.这样的数有无穷多个.
有三个一样大小的立方体,每个立方体的六个面上都分别标有1-6这六个数字,那么当任意摆放时,三个立方体向上的三个面的数字之和有( )种不同的取值。
有三个一样大小的立方体,每个立方体的六个面上都分别标有1-6这六个数字,那么当任意摆放时,三个立方体向上的三个面的数字之和有( )种不同的取值。
每个立方体的六个面上都分别标有1-6这六个数字,
共可组成 6*6*6=216个不同的三位数.
由1-6这六个数字,每三个一组求和:
1+1+1=3
2+2+2=6
3+3+3=9
4+4+4=12
5+5+5=15
6+6+6 =18
其中,最小和为3,最大和为18.从3到18,共有3-18共16种不同的取值,就是本题的答案.
一只平果的重量等于一只桔子家上一只草莓的重量,而一只苹果家上一只桔的重量等于9只草没的重量,问,一只桔子的重量等于几只草霉的重量?
依题意:苹果=桔+草莓 又:苹果+桔=(9)草莓 即:苹果=(9)草莓-桔
所以:桔+草莓=(9)草莓-桔 (2)桔=(8)草莓 桔=(4)草莓
答: 一只桔子的重量等于4只草霉的重量.
有三个人去投宿,店主只剩下一个房间了,开价30元,三个人每人出了10元住下了。物价部门来检查发现了店主多收了5元,因为一个房间一个晚上只需要25元,所以责令店主马上还5元给那三个住客。店主拿出5元钱给服务员,叫服务员还给那三个人。服务员拿到钱在想,5元分给三个人,这是没法分平均的,干脆自己拿掉2元,剩下3元给他们三个,也让他们好分。于是拿走2元,给了住客3元,每个住客拿回了1元。
问题来了,住客当初每人付了10元,服务员每人还了1元,也就是说,每个住客实际付了9元,三个客人应该是27元,如果加上服务员拿走的2元,那就是27+2=29元。那么剩下的1元去哪里了呢?
第一,应该这样算:三人每人付9元,总共是27元,老板得25元,服务员得2元。
第二,30元退回5元,三人得3元,服务员得2元。两者没有矛盾啊
甲乙丙丁4 个人有若干元,甲的钱数是其他三人总数的三分之一,乙的钱数是其他三人总数的四他之一,丙的钱数是其他三人总钱数的五分之一,丁有184元,求甲乙丙各有多少元?
甲的钱数是其他三人总数的三分之一,就是全部的四分之一.乙的钱数是其他三人总数的四分之一,就是全部的五分之一.丙的钱数是其他三人总钱数的五分之一,就是全部的六分之一那么:1/(1+4)=1/5 1/(1+3)=1/4 1/(1+5)=1/6 1-1/4-1/5-1/6=23/60 就是丁的分率184/ 23/60=480(元)这是总钱数 甲480*1/4=120(元) 乙480*1/5=90(元) 丙480*1/6=80(元)
一个长方形的长、宽、高分别是8、6、4分米,把它截成棱长为整分米数的小正方体,最少能截多少个,截成后表面积增加了多少平方分米?
要截得最少,则正方体的边长要最大,8、6、4的最大公约数是:2,所以正方体的边长是:2
那么截成:8/2*6/2*4/2=24个
一个正方体的表面积是:2*2*6=24平方厘米
则所有正方体的表面积是:24*24=576平方厘米
原来表面积是:2*(8*6+8*4+6*4)=208
增加:576-208=368平方厘米
、把10克水加到盐的质量分数为20%的50克盐水中,要使盐的质量分数为37.5%的盐水需要加盐多少克?
原来盐的质量是:50*20%=10克,水是:50+10-10=50克
那么现在的盐水重量是:50/[1-37。5%]=80克
即要加盐:80-(10+50)=20克
㈨ 小学数学难题
1.
车速提高20%,为原来的:
1+20%=6/5
行驶同样的路程,所用时间为原来的5/6
所以原定时间为:版
1÷(1-5/6)=6小时
车速权提高25%,为原来的:
1+25%=5/4
行驶同样的路程,所用时间为原来的4/5
所以提速后的路程,如果按原速度来行驶,需要:
40/60 ÷(1-4/5)=10/3小时
原速度行驶的120千米,用了:
6-10/3=8/3小时
原速度为每小时:
120÷8/3=45千米
甲乙相距:
45×6=270千米
2.
空余部分和水的体积比为12:10=6:5
水有:1430÷(6+5)×5=650升
3.
圆锥和圆柱水箱的底面积之比为:
15*15:30*30=1:4
零件的高和水箱下降高度的比为:
1×3÷1:1÷4=12:1
零件高:2.5×12=30厘米
4.
如果每天制136个奥特曼
每天制136×2=272个阿童木
阿童木和奥特曼同时制完
现在每天制作的阿童木少了272-230=42个
剩下了210个阿童木
所以一共制作了:210÷42=5天
阿童木:272×5=1360个
奥特曼:136×5=680个
㈩ 小学数学二年级难题
看了题目很困惑,本来我理解是不是申字形
A
BCD
EFG
HIJ
K
这样的话,第一步:第二三四行相加都为18,总和就是18*3=54
第二步:那么11个数的总和是66,第三步:也就是说A+K=66-54=12,
第四步:而每列的和18,就是A+C+F+I+K=18,第五步:C+F+I=6
第六步:C、F、K分别为1、2、3,第七部:显然A、K为4、8或5、7
但是后面就推算不出正确结果了,因为还有8、9、10三个数,应该在行列上完全分开,每行列和才不会大于18,但是中间一列的数字全都定下来了,不可能大于7,所以只能分在左右两列,那么必有一列和大于18,也就是结果是错误的。
不过想说一下,就是建议你按照前面第一步到第七步的顺序进行推理,就可以得出这个图的主线,然后把剩余的最大三个数分到不同的行列中去,其他数试算几次就可以了。它的原理应该和下面的数组是一样的
294
753
618
横竖斜相加都等于15,其实就是把平均数放在中心,把三个最大的数分在不同行也不同列,然后试算几次,就算出来了。加油