中学数学教法
浅谈中学数学课堂教学模式
教学一般可分为概念教学、命题教学、解题教学,这就决定了中学数学课分为新授课、习题课、复习课.所以中学数学课堂教学模式可分为新授课模式、习题课模式、复习课课模式.下面谈谈我对这三种教学模式的探讨.
一、新授课模式
数学知识是不断变化发展的.在数学课的课时安排中,新授课占了大多数.新授课主要向学生讲授数学的概念、公理、定理、公式等.因此,新授课的自主教学模式为:①设计疑问,提出问题;②讨论概括,解决问题;③练习巩固,熟练运用;④总结评价,不断完善.
1.设计疑问,提出问题
俗话说:“温故而知新.”所有新知识都是在旧有的知识基础上发展衍变的,对学生来说,他们从来没有接触过,对新知识表现出极大的热情.作为教师,就要激发学生的兴趣.所以设立有吸引力的问题很重要.
例如:在讲“三角形边角关系定理:在一个三角形中,如果两条边不等,那么它们所对角也不等,大边所对的角较大”时,可以这样引入:
学生学习数学,对知识掌握得如何,能力提高到什么程度,可从作业等反映出来.教师布置作业,选题要有针对性,针对所学知识的重点、难点选编;要有全面性,覆盖面尽可能广,难度可适当加大,分量适中,富于思考性,以课本为主,适量补充一些课外较常见的题型.
通过作业,不但使学生所学知识得到巩固,学以致用,而且举一反三,培养了灵活综合运用的能力.
三、复习课模式
复习课是在教师的指导下,通过归纳、整理,对所学的知识加深理解记忆,并使之系统化,同时达到查漏补缺、解决疑难问题的目的.其自主发展教学的一般模式为:①复习纲要,系统整理;②重点讲解,详略有当;③总结归纳,加深巩固;④布置作业,培养能力.
1.复习纲要,系统整理
复习提纲是教师事先准备好的,在上课一开始就向学生指出,然后引导学生边回忆边看纲要;或者,为了使学生在复习中获得系统知识和分析综合、抽象概括的能力,课前可指定范围让他们去独立钻研.课堂上,用一连串精心设计好的提问,引导学生依次回答,在回答中把这一部分教材所包括的主要知识以及各个项目之间的逻辑联系揭示出来,然后根据学生的回答,系统地作出总结.
例:讲完“四边形”一章后,几种特殊四边形的关系就可系统化如下:
2.重点讲解,详略有当
重点讲述或讨论的内容应通过课前进行深入细致的研究来确定,了解学生已经牢固地掌握了哪些知识,已经解决了哪些疑难问题,还有哪些地方不懂或理解得不透彻,哪些方法还不熟练以及哪些东西需要补充等,然后归纳出几个主要的、基本的问题,在复习课上重点讲述或组织讨论,以便堵漏补缺,解决疑难,加深对基础知识的理解和数学方法的掌握.
例:复习全等三角形,让学生用一副纸板来拼出由两个全等三角形组成的基本图形:先把两个全等三角形完全重合在一起,然后将其中一个作平移、翻折、旋转等变换,这样两个三角形所组成的基本图形可拼成如图所示的各种形式.
平移平移绕C点[]旋转180°绕BC边[]翻折
平移绕B′C′边[]翻折平移 ……
3.总结归纳,加深巩固
总结应该以更全面、概括的方法,揭示各基础知识之间的内在联系,并指出理解和运用这些知识方面应注意的问题,以及在理解的基础上记忆有关知识的方式、方法等.
例:利用二次函数y=ax2+bx+c(a>0)与x轴的交点来推导一元二次方程ax2+bx+c=0根的情况,学生在熟悉之后,用下列去掉纵坐标的草图来帮助理解记忆.
4.布置作业,培养能力
复习课布置的作业比一般新授课的作业更应带有综合性.让学生运用多种知识去解决数学问题,把对知识的理解引向深层次.培养思维能力、运算能力,加深对知识的掌握程度.
俗话说“教无定法”.以上所讲述的自主发展教学模式,还需要经过一段时间的实践操作,在实践中不断加以修改,并借鉴其他教师的教学方法,使之更完善.此外,还需要继续刻苦钻研教材,精心设计教学的每一个环节,紧跟时代发展的潮流,开展多媒体辅助教学,以生动的演示、严谨的逻辑、准确的说理,让学生在轻松、愉快的气氛下进行学习活动,自主地掌握数学知识和技能以及科学的学习方法.相信通过这样的学习,学生自主学习的意识和能力都有很大的提高,可望取得可喜的成绩。
⑵ 中学数学教学目的包括哪些主要方面
2001 年教育部颁布的《标准》指出 高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为 未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
(1)获得必要的数学基础知识和基础技能,理解基本的数学概念、数学结论的本质,了 解概念、结论产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后继学习 中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
(2)提高空间想像抽象概括、推理论证、运算求解、数据处理等基本能力。
(3)提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交 流的能力,发展独立获取数学知识的能力。
(4)发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和 作出判断。
(5)提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
(6)具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判 性的习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辨证唯物主义和历 史唯物主义世界观。
⑶ 中学数学教学方法有哪些
要提供宽松学习氛围
宽松、民主、和谐的学习气氛能消除学生恐惧的心理障碍。学生只有在轻松愉快、毫无顾忌、毫无压力的情感氛围下才能对所学的知识、所研究的问题产生浓厚的兴趣,才能积极主动地参与到“探究、尝试、发现、创新”的学习过程中,才能在有自己的想法和见解时敢说敢做。
要建立一种新型和谐的师生关系 这种关系体现在教师要参与学生的活动,了解、指导学生的探索研究,经常用商量的语气与学生交流,如“谁想说”“谁愿意说”“我很荣幸,我和某某同学想到一块了”等。要尊重、理解、信任、热爱每一名学生,形成师生间的思想交流、情感沟通的关系。师生关系融洽与否,主要取决于教师。教师应把自己和学生的关系定位于朋友的关系,用尊重、相信、平等、友好的情感去感染学生,使课堂充满“爱”的气氛,使师生感情融洽。教师应充分利用时间和学生交流,让学生敢于当着老师的面说出自己的生活和学习情况,在课堂上能大胆地充分发表自己对教学的意见和想法,尽量用自己的想法和自己的方法去解决数学问题。
采取小组合作学习的方法,促进学生之间的合作和交流 把优、中、学困的学生按“一二一”或“二二二”的比例进行异质合理搭配,组成学习小组进行合作学习,让不同层次的学生交流个人想法,一起质疑探究,同时及时反馈纠错,再把小组不能解决的问题在全班进行交流,并在教师的启发指导下加以解决。
要鼓励学生敢于说“不”
在数学教学中,教师应当适当“创造”机会,鼓励学生发现老师授课时的“错误”,用非常简单的理由指出老师的“错误”,进而发展到让学生即使在对自己的想法尚不确定时,也敢于说出来,再由同学们来判断是否正确,从而进一步加深对知识的理解和掌握。例如,教学两步计算应用题,“植树小组每人每天种8棵树,照这样计算,5人4天一共种多少棵树?”(用两种方法解答)所用方法是:第一种,先求出5人1天种多少棵,再求5人4天种多少棵;第二种,先求出每个人4天种多少棵,再求5人4天种多少棵。教师故意在教学过程中强调用两种方法解决,等教学完所用方法后,提问学生:学完这道题,你们还有什么疑问吗?这时学生就会提出问题:是否只有这两种方法呢?教师就可以引导学生讨论是否还有其他方法。经过讨论后得出结论。
要创设各种创新机会
1.创设情境,激发创新意识。教学要激发学生的创新意识,首先要能调动学生的学习主动性。教师可在教学中创造一定的情境,使学生处于一种主动、好奇、活泼的能动状态。例如,教学加减法的简便运算(连减,把两个减数合并为一个减数的简便运算),教师可创设这样一个情境:全班同学手上都有100元,去商店买东西。商店的规则是:售货员每次同时卖两种物品,哪个同学先算出他用100元买两种物品后所剩的钱,那两种物品就卖给他。售货员出示物品的价格为:(1)16元和34元;(2)53元和27元;(3)29元和31元;(4)15元和75元;(5)28元和42元。学生在此情境中,自然而然地产生创新意识,使计算变得简便。
2.动手操作,培养创新能力。在教学活动中,教师应尽量让学生参与整个学习过程,给他们动手操作的机会,让他们在学习活动中边思维、边创造,在活动中获取知识,发展智力,提高能力。例如,教学平行四边形和梯形的特征时,教师可以把平行四边形和梯形合起来教。上课前,教师发给学生几组大小、形状各异的图形:普通的四边形、长方形、正方形、平行四边形、梯形各两个,要求学生对这些图形进行比一比、量一量,然后分类,说说哪几类已经学过,哪几类没有学过。教师说明没有学过的是平行四边形和梯形,再要求学生动手量一量,比一比,找出平行四边形和梯形的特征。最后,要求就这几类图形说说它们之间有什么关系,画图表示它们的关系。
总之,我们要遵循学生学习数学的心理规律,关注学生的情感态度,把学生作为主动的求知者,让他们用创新的精神去主动学习,主动探求,主动合作,主动应用,并在获取知识的同时提高学习能力和创新能力。
⑷ 中学数学教学如何进行学情分析
1、初中 数学教学如何进行学情分析
初中数学教学如何进行学情分析?全面分析学生学习的基础、需求、方法和习惯等,才能制定科学、合理的教学目标,设计有针对性的教学方案,灵活地驾驭课堂教学,作为一线教师,只有不断地探索、实践、改革、创新,才能使我们的课堂更加精彩有效。 今天,朴新小编给大家带来数学教学方法。
1.基于学情分析,确定教学目标
教学目标对教学有方向性的指导作用,它是教学的出发点也是归属点,学情分析是教学目标设定的基础,没有学情分析基础的教学目标是不科学的,科学的教学应通过分析学生的“已知”和“未知”来确定教学目标。例如,笔者曾在教人教版七年级上册《正数和负数》这一章节时,先进行这样的学情分析:学生已经学习过整数和分数(包括小数),对数的概念有了一定的了解,但是对生活中数的应用理解不深。针对这一情况,笔者将本节课的教学目标设定为:整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;能区分两种不同意义的量,会用符号表示正数和负数;体验数学发展的一个重要原因是生活生产的需要,激发学生学习数学的兴趣。这一教学目标不但重视问题解决的结果,而且重视问题解决的过程以及学生在问题解决过程中的体验等。
2.基于学情分析,唤起学生学习数学的兴趣
只有当学生对所学内容产生了兴趣,形成了内在的需要和动机时,他才能具有达成目标的主动性,由“要我学”变为“我要学”。如在学习《椭圆》一节时,首先我让一位学生按照课本要求在黑板上用事先准备好的材料自主画椭圆,其余学生观察椭圆的形成过程,通过学生的观察和实践,培养学生探究问题和动手操作的能力,加之在学习本课之前,学生已经学习了《曲线与方程》部分内容,这就为得出椭圆的定义和标准方程做了铺垫。就学情而言,本节课的重点是掌握椭圆的定义、几何图形、标准方程及简单性质,了解椭圆在刻画现实世界和解决实际问题中的作用。学生自主动手操作的过程直观性强,吸引了全班学生的眼球,一下子点燃了学生的思维火花,从而为本课数学的高效教学奠定了坚实的基础。
3.基于学情分析,培养学生的学习能力
“学习需要”和“学习准备”都是学情分析的重点内容,在上每一节新课之前,都要分析本班学生的整体学习能力和特殊群体的学习能力,并在教学中采取相应的措施。譬如普通高中课程标准实验教科书《数学》(必修2)《直线、平面平行的判定及其性质》一节中所涉及的定理、性质较多,且所任教班级大部分学生基础比较薄弱。教学时笔者鼓励较为积极的学生上台讲解,教师退居倾听者和引导者的角色,让学生成为课堂的主角。这就促使上台讲解的同学必须先理清思路,组织语言;台下听讲的同学对这一新颖的方式感到新奇,促使他们认真听讲,积极思考,参与的热情高涨。这一变化不仅激发了讲课学生的积极性,也给听课的学生注入了一支强心剂,引起学生对数学的兴趣,提升课堂教学效果的同时,对于学生培养数学思维和锻炼语言表述能力也大有裨益。
2、提高数学课堂效率
设计问题
“好奇”是兴趣的基础,如果把难以理解的数学问题设计成与学生日常生活有联系的问题,然后呈现给学生,这样他们会很容易由好奇心引起需要,引起求知欲望和学习兴趣,不仅调动了他们的学习兴趣,也同时加深了学生对问题的理解记忆。
我曾经就有过这样的经历,在学习整式加减这部分的时候,我们遇到了这样一道题:x-y=2,求3y-3x+2(x-y)的值。对于这样的题,学生会觉得很难,没有思路。通过老师的讲解后,再次遇到还是不会。我们通常是说明y-x与x-y是互为相反数的,学生不感兴趣就记不住。如果我们把x-y看成是一家人,他们家的门牌号是2,那么y-x这家人的门牌号正好相反,说明这两家人是有联系的,他们是亲属关系,互为相反数。这样讲学生会认为很有意思,并记忆深刻。
设计实验
学生是学习的主体。如果教师设计的内容再精彩,学生不听、不学,也没有兴趣,也会事倍功半。上课前设计与本节课内容相关的小故事或是小实验,以此来集中学生的注意力,让学生养成关注数学的习惯,学生就会对数学产生兴趣和期待,在每节课上课前就已经期待老师会有什么样的惊喜,这样学生就会不知不觉地喜欢上数学。
所以,我尝试用与众不同的方式来吸引学生。我曾在学习等式性质这节课时,首先拿出了天枰,然后拿出了两个完全一样的棒棒糖放在天枰上,使天枰平衡,学生马上就能说出两边相等。我又拿出了两块完全一样的巧克力,同时放在天枰上,天枰依然平衡。学生通过小组合作可以探究出等式的性质,并且哪一组最先探究出结果,哪一组就能获得这些奖励。这样做不仅集中了学生的注意力,并且调动了学生学习的积极性,培养了学生小组合作的能力,从而提高了课堂教学效率。
3、数学教学方法
改变传统的教学模式,增强课堂教学的趣味性
“良好的开端,是成功的一半”。如何诱发学生产生与学习内容、学习活动本身相联系的直接学习兴趣,使学生从新课伊始就产生强烈的求知欲望,是至关重要的。如教学“三角形内角和”可用“猜”的办法。课前让学生每人准备一个任意三角形,并量出每一个内角的度数。上课时,随意叫学生说出三角形中的两个内角的度数以后,教师猜第三个内角的度数。教师每次都能猜对,学生惊奇之余,急切地想探寻其中的奥秘,于是就会积极投入到新知识的学习当中去。低年级学生年龄小、好胜心强,教学中可以充分利用学生的这一特点,让学生体验通过自己的努力而获得成功的喜悦。如在教学“乘法竖式计算”时,教师对学生说:“这节课我们要学的乘法竖式与以前学的加法竖式写法基本相同,只是把原来的加号变为乘号。”教师继续问:“现在谁能帮助老师把这个竖式写出来?”这样一个新问题通过学生自己的努力就解决了,教师没有过多地讲解,学生却陶醉于成功的喜悦之中。
从生活中的例子和学生熟悉的事物入手,简化复杂的数学问题
数学知识原本就比较抽象,要使抽象的内容变得具体易懂,就得从生活中挖掘素材,在日常生活中发现数学知识,利用数学知识来提高学习的兴趣。例如,讲“概率”这一节时,这个概念的描述非常抽象,学生不易理解,在教学中笔者做了如下改进:模仿一个商场的活动设置了个转盘,让学生体验中奖的可能性,极大地吸引了学生的兴趣。最后,笔者还准备了一份“丰厚”的奖品,让学生仿照上面的例子设计一个游戏方案,使自己尽可能地获得这份奖品,这时,学生兴趣正浓,一定会想:怎么设置方案自己机会才大呢?游戏与数学概念无形中连在了一起,此时此刻,思维的火花不点自燃。
用精彩的问题设置吸引学生,诱发求知欲
在现代教学过程中,学生是教学的主体,教师需要做的是引导和规范。美国著名心理学家布鲁纳说:“学习者不应是信息的被动接受者,而应是知识获取过程中的主动参与者。”因此,笔者决定把课堂还给学生,让他们真正成为课堂的主人。课堂提问是启发学生积极思维的重要手段,教师要善于运用富有吸引力的提问激发学生的兴趣。
4、数学思维培养
把握教材是高效教学的重要前提
我们在听课中经常发现,教师上课,就题讲题,就事论事,分不清轻重缓急,平均使用力量,照本宣科。发生这种现象的主要原因,在于教师没有把握教材。把握教材要从全局着眼,从整体上去认识教材,并用联系的观点系统地分析教材。首先在理解《标准》基本理念的前提下读懂教材。通过反复阅读教材,查阅有关教学参考资料,了解全册教材的编写特点,明确各部分教学内容的目的要求和在全套教材体系中的地位,了解它们之间的内在联系;研究全册教材的所有知识点在各单元的分布情况;还要研究每个单元和每节课的教学目标。
其次,要熟练地掌握教材的知识体系、逻辑结构和编排意图。确定出每个单元和每节课的教学重点和难点,并制定出相应的教学目标。第三,把握教材中的知识结构转化为教师的认识结构,只有到了这一步才算把握了教材,教学中才能驾轻就熟,寓繁于简。
创造性地使用教材是高效教学的关键
教材只是为学生的学习活动提供了基本线索,是实现课程目标,实施教学的重要资源,而不是唯一资源。实验教材为广大教师提供了一个创造性使用的广阔空间。如,有的教学内容在呈现方式上有一定的弹性,便于大家灵活使用。但实验教材处于实验阶段,可能还存在这样或那样的不足,所以,我们在教学教程中,要依据《标准》的精神,结合本地本校及学生的实际情况,创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材。
下面提供几点创造性地使用教材的建议:1、可以根据情况重新调整知识的顺序。2、可以结合本地和学生熟悉的生活实际,提出能达到同样教学目的的有思考价值的问题,让学生在解决问题的过程中,体会数学的价值,学习解决问题的策略。3、可以扩大例题的思维空间,体现知识的整体效应,突出知识的内在联系和数学思想方法。4、可以根据实际需要适当补充或删减有关教学内容,但是也应注意,在创造性地使用教材的过程中,不要随意降低或拨高教学要求。
⑸ 中学数学教学有哪几大原则
第一节 中学数学的教学原则
教学原则是教学规律的反映,教学经验的结晶,是指导教学工作的基本要求,也是教师在教学工作中必须遵守的基本准则。
我国教育界在教学论中确定的一般教学原则有:科学性与思想性相结合的原则,理论联系实际的原则,教师的主导作用与学生的自觉性、积极性相结合的原则,感知与理解相结合的原则,循序前进性与系统性原则,掌握知识技能的巩固性原则,符合学生年龄特点和接受能力的原则,统一要求与因材施教的原则。
在一般教学原则的指导下,由于各科教学还有其特殊性,所以各学科的教学还应遵循符合本学科特点和学生年龄特征的学科教学原则。
在以传授知识为主的时代,我国广大的数学教育工作者和数学教师根据中学数学的特点、教学实践经验和中学生的年龄特征,总结出了许多行之有效的中学数学教学原则,其中影响最大的是:严谨性与量力性相结合的原则,抽象与具体相结合的原则,理论与实践相结合的原则,巩固与发展相结合的原则。
一.严谨性与量力性相结合的原则
1.数学理论的严谨性
严谨性是数学科学理论的基本特点之一,其涵义主要是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。它主要表现在以下两个方面:其一,概念(除原始概念外)必须定义;其二,命题(除公理外)都要证明。因此,
(1)每个数学分科所包含的数学概念都分为两类:原始概念和被定义过的概念。原始概念是这个学科中定义其他概念的出发点,其本质属性在该学科中无法用定义方式来表述,只能用公理来揭示;被定义的概念都必须确切的、符合逻辑要求。
(2)每个数学分科所包含的真命题也分为两类:公理和定理。公理是本学科中被挑选出来作为证明其他真命题的正确性的原始依据,其本身的正确性不加逻辑证明而被承认。但是,它们作为一个体系,必须满足相容性(无矛盾性)、独立性和完备性;定理都必须经过逻辑证明。
(3)每个数学分支的概念和真命题按一定的逻辑顺序构成一个体系。在该体系中,每个被定义的概念必须用前面已知的概念来定义;每个定理必须由前面已知其正确性的命题推导出来。
(4)概念和命题的陈述以及命题的论证过程日益符号化、形式化。
但是,数学的严谨性是相对的,是逐步发展的。严谨性并不是各数学分支发展初期就具有的,只是到了最后完善阶段才能达到。例如,函数概念经历了七个发展阶段才逐步严谨起来。欧氏几何直到19世纪末希尔伯特公理体系建立后才真正严谨起来。数学的严谨性还有另一方面的相对性。例如侧重于理论的基础数学和侧重于应用的应用数学,二者对于严谨性的要求是不尽相同的。前者要求高,而后者则相对地要求较低一些。
2.对中学生的量力性
在掌握数学科学的严谨性方面,必须根据中学生的知识水平和接受能力量力而行。对中学生的量力性,应该注意以下几点:
(1)对数学严谨性的要求,只能逐步适应,中学生在由低年级到高年级的学习过程中逐步达到。开始学习时往往都是不够严谨的,理解上依赖于直观,解题中依赖于模仿。例如,在小学和初中的数学教材中渗透了集合与对应的思想,但直到高中阶段才作初步的研究,进入理性认识阶段,才能逐步达到严谨的要求。因此,在教学中必须顺应学生认识的发展规律,要求恰当,量力而行。要有计划、有步骤地逐步提高要求,才能达到逐步理解和掌握教学严谨性的要求。
(2)对数学严谨性的认识具有相对性。由于数学的严谨性是相对的,人类认识数学的严谨性又经历了相当长期的过程。而且,中学生的学习本身也是一种认识活动,学习数学就是对人类经过漫长历史认识所获得的成果进行认识,这一认识过程不必要也不可能重复历史,而是在教师的指导下,遵循由低级到高级、由简单到复杂、由浅入深、逐步深入的一般认识规律进行的。再加上中学的数学课时和学生原有的基础知识与能力都有限,因此,中学生只可能认识数学的最基本的内容和方法,相应地,对数学严谨性的认识也只可能是基本的、相对的和初步的。
(3)中学生智力发展的可塑性很大。中学阶段正是青少年智力迅速发展的时期,中学生接受知识的能力既有局限,可塑性也很大,应该充分估计到他们认识上的潜力。在教学中应恰当地诱发他们的积极性,发挥他们的潜能,促进他们的思维发展。
3.严谨性与量力性相结合
数学科学是严谨的,中学生认识数学科学又要受量力性原则的制约,因此,在数学教学中,既要体现数学科学的本色,又要符合学生的实际,这就是严谨性与量力性相结合的原则对数学教学的总要求。这条原则的实质就是数学教学要兼顾严谨性与量力性这两方面的要求,一方面对数学教学的各个阶段要提出恰当而又明确的目的任务,另一方面要循序渐近地培养学生的逻辑思维能力。
在数学教学中,主要是通过下列的各项要求来贯彻严谨性与量力性相结合的原则的。
(1)教学要求应恰当、明确。这就是说,根据严谨性与量力性相结合的原则,妥善处理好科学数学体系与作为中学教育科目的数学体系之间的关系。
(2)教学中要逻辑严谨,思路清晰,语言准确。这就是说,在讲解数学知识时,要有意识地渗透形式逻辑方面的知识,注意培养逻辑思维,学会推理论证。数学中的每一个名词、术语、公式、法则都有精确的涵义,学生能否确切地理解它们的涵义是能否保证数学教学的科学性的重要标志之一,而学生理解的程度如何又常常反映在他们的语言表达之中。因此,应该要求学生掌握精确的数学语言。
为了培养学生语言精确,教师在数学语言上应有较高的素养。新教师在语言上要克服两种倾向:一是滥用学生还接受不了的语言和符号。例如对初一学生讲“每一个概念的定义中包含的判定性质是充分必要的”,并用双箭头符号表示。二是把日常流行而又不太准确的习惯语言带到教学中。如在讲授分式的约分时,常说:“约去上面的和下面的公因式。”这些话容易引起学生的误解,以致出现下面的错误:
因此,数学教师的语言应该既简练、又精确,力争达到规范化的要求。要防止随意制作定义,乱下判断的现象在教学中出现,不能为了通俗易懂,就用含义不十分确切的生活用语来代替数学术语。
(3)教学中注意由浅入深、由易到难、由已知到未知、由具体到抽象、由特殊到一般地讲解数学知识,要善于激发学生的求知欲,但所涉及的问题不宜太难,不能让学生望而生畏,这样才能取得好的教学效果。
总之,在强调严谨性时,不可忽视学生的可接受性;在强调量力性时,又不可忽视内容的科学性。只有将两者有机地结合起来,才能提高教学质量。
二.抽象与具体相结合的原则
1.数学的抽象性
一切科学都具有抽象性,但是数学是对客观对象的空间形式和数量关系这一特性的抽象。这一特性是事物最一般的也是最本质的特性之一,因而,数学的抽象需要舍弃事物的其它一切特性,达到很高的抽象程度。
数学的抽象性还表现为高度的概括性和应用的广泛性。概括,就是把从部分对象抽象出来的某一属性,推广到同类对象中去的思维过程。例如,从解某类习题的过程中抽象出来的某一解题方法推广到解同类习题中去。抽象和概括是互相联系、不可分离的,数学的抽象程度越高,其概括性也越强,应用范围也越广。
数学的抽象性还表现为广泛而系统地使用了数学符号,具有词语、词义、符号三位一体的特性,这是其它学科所无法比拟的。例如“平行”这个词,其词义是表示空间直线与直线、直线与平面、平面与平面的一种特定位置关系,有专门符号“//”表示,并可用具体图形表示。
数学的抽象是一个逐级抽象、逐次提高,抽象再抽象的过程。数学教学中充分注意到这个特点,就能有效地培养学生的抽象概括能力。
2.学生抽象思维的局限性
中学生正处于形象思维、经验型抽象思维的水平,到了高中才逐步向理论型抽象思维过渡。由于受年龄、理解问题的能力、认识问题的方位等特点的影响,他们的抽象思维具有一定的局限性。其具体表现为:过分地依赖于具体素材,即从其中可以抽象出所学概念和结论的事例;具体与抽象相割裂,对抽象理论的理解与掌握有片面性、局限性,不能将抽象理论应用到具体问题中去;对抽象的数学对象间的关系不易掌握等方面。
3.抽象与具体相结合
数学理论的抽象性与中学生抽象思维的局限性是中学数学教学中的一对矛盾。如何处理好这对矛盾的关系,关键在于正确理解认识具体与抽象的基本关系——具体是抽象的基础,抽象又以具体为归宿,且有待于上升到高一级的抽象。
(1)从具体到抽象,培养和发展学生的抽象思维能力和创新意识。从具体到抽象在认识上是一个飞跃,是感性上升到理性的一个阶段。在中学数学教学中,应该注意从实例引入,通过实物(包括教具)直观、图象直观或语言直观,形成直观形象,提供感性材料,这是促进和发展学生抽象思维能力的有效途径,例如,通过温度的升降,货物的进出口等实例,引进意义相反的量;通过观察教室里墙面与墙面的交线和墙面与地面的交线之间的关系,引进异面直线垂直的概念等等。应注意从特例引入,讲解一般性的规律。例如,一元二次方程的解法,一般先学习x2=a型,后学习(x+a)2=b型,再学习ax2+bx+c=0型,这样学生比较容易接受。数形结合的方法可以作为直观化的一种重要手段,有利于学生分析、发现和理解。
在中学数学教学中,为了培养和发展学生的抽象思维能力,教师的主要任务在于创设具体的数学情境,启发引导学生积极参与教学活动,防止包办代替。
(2)从抽象到具体,形成技能和进一步培养学生的分析问题、解决问题的能力。从抽象到具体是认识的又一个阶段,它是在从具体的感性认识上升到抽象的理性认识的基础上的又一次飞跃,它属于整个认识过程的更重要的阶段,也就是应用数学理论去初步解决问题,使理性认识具体化的新阶段。
从抽象到具体,是让学生在掌握抽象的数学理论的基础上,用来解决具体的实际问题,并为进一步的从具体到抽象做好准备。解答数学题的过程,主要是抽象的数学理论的运用过程,是形成数学的相关技能的过程,同时,也是进一步培养和发展观察能力和分析、综合等逻辑思维能力的过程;在解答难度较大的数学题时,除了运用抽象理论外,还可能学到一些新的数学思想和方法,对于培养学生的创造性思维能力也有一定的作用。
抽象与具体将结合,是为了使学生对抽象的理论理解得正确、认识得深刻。具体、直观仅仅是手段,而培养抽象思维能力才是根本的目的。因此,只有不断地实施具体——抽象——具体,循环往复的过程,才能不断将学习向纵深发展,使认识逐步提高和深化。
三.理论与实践相结合的原则
1.数学理论与实践的辩证统一
数学理论的抽象性、严谨性都有实践基础,数学理论又具有广泛的应用性。这说明了数学理论既来自于实践,又反过来指导实践,在实践中接受检验和发展。这就是数学理论与实践的辩证统一。
数学理论来源于实践。通过把实践中多种多样的客观事物、现象,根据需要经过分析、综合,归纳出简单而又具有普遍性的道理,从而形成抽象形式的理论,这就是“由繁到简”的认识过程。例如,二次函数y=ax2就是将许多实际的数量关系抽象概括而来的,形成这一数学模型的抽象理论后,它就具有更大的普遍性。对其中的字母赋予不同的含义,就可以表示不同的数量关系,比如自由落体运动公式S=gt2、能量公式E=mv2、圆面积公式S=πr2等等。
正是由于数学理论的精而简和普遍性,才使得它能用来“以简驭繁”,指导实践,应用广泛地去解决问题,同时在解决问题的实践中检验理论、发展理论。
2.中学生学习数学的实际
中学生学习数学的过程,是一种特殊的认识与实践的过程。这就是在教师的指导下,以课堂教学形式为主、以学习间接知识为主的学习过程。
中学生学习的数学理论知识,是经过前人若干世纪的实践锤炼、整理而形成的。由于课堂教学时间有限,对中学数学中的基础知识,不可能也不必要都从实际开始,更不可能事事都让学生去发现。但是应该尽量让学生了解知识的实际背景,来龙去脉,参与知识的形成过程,从而逐步树立正确的数学观。
将生产实际、生活实际问题抽象出明确的数学问题,从而建立起清晰的数学模型,对中学生来说,是十分困难的问题。这也是造成许多学生害怕学数学,进而不愿学数学的重要原因。
中学生由于对数学原理不理解或理解不深刻,不善于具体分析,往往停留在死记硬背、生搬硬套的水平上,对数学问题中的数量关系往往分析不清楚,因此,在应用理论解决实际问题中,很难发挥理论的指导作用。
3.理论与实践相结合
理论与实践相结合,既是认识论与方法论的基本原则,又是教学论与学习论的基本原则。应用这一原则进行教学时,应该注意以下几方面:
(1)注重中学数学与实际的联系。在教学中,教师必须从实际出发,从学生熟知的生活、生产实际出发,创设适当的数学情境,逐步教会学生提出数学问题、解决数学问题,逐步达到数学知识与实践的统一。
(2)大力提高理论水平,强化理论的指导作用。理论联系实际的中心环节是深刻理解理论、发挥理论的指导作用。只有加深知识理解,提高中学数学教学的理论水平,才能牢固掌握有关的数学知识,使之应用到实践中去。应试教育的影响之大,一个重要的原因就是由于理论水平不高,缺乏理论指导,只讲算法不讲算理;不注重理解和系统掌握,满足于记忆加模仿;不注重科学的“通法”,追求所谓解题技巧等等。
(3)掌握好理论与实践相结合的度。在中学数学教学中,如何创设数学情境,使之与要学习的数学知识密切联系,从而有利于培养学生提出问题的能力;学生应当掌握哪些典型实际问题,根据数学情境提出数学问题应该达到什么程度与要求,根据数学建模的思想方法,通过从实际问题抽象出数学问题的训练,如何有计划地培养学生的抽象能力、分析与综合能力、类比能力等各种能力,进而建立数学模型,解决数学问题,从而解决实际问题,都需要有计划、经常化,全面地进行考虑。
四.巩固与发展相结合的原则
巩固与发展相结合,是科学的教学原则之一,它是由中学数学的课程目标、教学特点与规律所决定的,是受人的记忆发展的心理规律所制约的。巩固是为了发展知识,而发展了的知识反过来又可以促进知识的牢固掌握。
1.巩固所学的数学知识
知识的掌握包括感知、领会、巩固与应用四个有联系的层次和过程。感知是由不知到知,领会是由浅知到深知,巩固是由遗忘到保持,应用是由认识到行动的过程。掌握知识的目的在于应用,但如果所学的知识得不够巩固,应用也就成了空话。要巩固所学的知识,关键在于记忆,只有提高记忆力,才能牢固掌握数学基础知识和基本技能。
(1)理解是记忆的基础。数学知识只有在被深刻理解的基础上才能被牢固地记忆。在教学中,加强基础知识教学,从多方面揭示数学事实、数学概念和原理的本质,建立一定的逻辑体系,使学生深刻理解,这是增强记忆、巩固知识的有效办法;而善于引导学生理解事物间的联系,充分利用已有知识和经验,使新联系在已有联系的基础上建立,把新知识纳入相应的知识系统,不断充实和完善认知结构,也是使学生深入理解、牢固记忆的好办法。
(2)形象识记与逻辑识记有机结合。在教学中,充分揭示数学知识和客观实际的联系,新旧知识的关系和联系,各单元之间的内在联系,适当借助直观化手段,把理论知识与实际结合起来,有利于达到巩固知识的目的。因此,对定理、公式、法则的讲解,除了注意逻辑推理外,还应该注意采用适当的直观手段,比如实物、模型、图表、图解、图示等等,来说明其意义,帮助学生在头脑中形成直观的形象,从而促进记忆。
(3)通过归纳、类比,引起联想促进记忆。对于性质相近、形状相似的同类事物可以引起类似联想。对于具有相反特点的事物引起的对比联想,当矛盾的一方出现时,可以引起对矛盾的另一方的联想,从而提高记忆的效果。还可以从事物的因果关系、从属关系上进行关系联想。例如数的概念的扩充,其知识内容一环套一环,在逻辑上是因果关系,从属关系。理解这些关系,有利于记忆。
(4)识记与再现相结合,加速与巩固记忆。在教学中要让学生在学习中掌握遗忘规律,合理地组织复习,设法促进知识的再现。同时要注意复习方式的多样化,防止单调的机械重复,以提高巩固知识的效率。
2.注重发展学生思维
数学教学的目的不仅要使学生牢固地掌握系统的知识和技能,更重要的是培养学生的创新思维和实践能力。只有让学生的思维得到发展,才能更深刻地理解和巩固所学的知识,从而提高学生的实践能力。“数学是人类思维的体操”,说明数学教学必须发展学生的思维,而且有利于发展思维。
(1)在教学中要明确思维的目标与方向。学生的思维从问题开始,没有挑战性的问题,不能激发起学生的思维。因此,在教学中应该提出有启发性的问题,创设问题情境,使学生明确思维的方向,从而激发学习的兴趣,促进思维的发展,提出数学问题,进而解决数学问题,并能应用于实际中去,使学生的创新意识和实践能力都得到培养。
有一位教师在讲三角形的分类时,给出了如下三幅图
让学生根据图形中显然出的三角形的部分判别三角形的类型。学生在判别第一幅图中的三角形的类型时,产生了很大的争论,最后在教师的指导下统一了认识,获得了正确的结果,对学生思维的发展起到了促进的作用。
(2)给学生进行思维加工提供充足的原料。学生的思维过程,就是对输入信息加工的过程,因而,信息就是思维加工的原料。只有原料充足,思维加工才会有效地进行。在中学数学教学中,可供给学生的信息不外乎语言和表象。数学公式、符号等都属于语言信息,图象、模型、教具等属于表现信息。在教学中,只有不断丰富和积累这些数学语言和表象,明确这些思维加工原料的意义,才能促进思维的发展。
(3)要发展抽象思维形式。要发展思维,就要发展思维形式。抽象思维有概念、判断和推理三大形式,概念是基础,判断是概念的联接,推理是判断的组合。在中学数学教学中,首先要让学生掌握一系列的数学概念,才能在此基础上进行正确的判断,并进行正确的推理。只有这样,才能在不断掌握数学基础知识和一定的数学技能的过程中,发展学生的思维。
(4)要教会学生掌握思维的方法。中学数学中的思维方法一般有:分析与综合、比较与归类、抽象与概括、归纳与演绎、系统化与具体化、一般化与特殊化等。这些思维方法是互相联系、交织在一起的,在学习和运用的实践中,必须综合应用,才能正常地思维,才能理解和巩固所学知识,在实践中发现问题、解决问题。
3.巩固与发展相结合
巩固与发展相结合,就是要把牢固地掌握数学基础知识、基本技能和发展思维、提高能力结合起来。巩固知识的关键在于知识系统化和应用,发展思维的关键在于逻辑化和训练。因此,在教学中应该有效地组织复习,温故而知新,举一反三,触类旁通,使学生的知识系统化、不断深化,思维得到训练和发展,能力得到提高。
为了在教学中能够很好地贯彻巩固与发展相结合的原则,应该注意以下两方面:
(1)认真研究对学生所学知识、技能和方法进行复习巩固的工作。要全面系统地复习基础知识,让学生领会基本的数学思想和方法。适时地进行单元复习、总复习,使所学的知识系统化,形成有机的知识体系。领会了知识体系中数学思想方法,就不仅能举一反三、灵活应用,达到巩固和深化的目的,而且能够将这些知识系统逐渐内化,由量变到质变,从而引起和促进学生思维整体结构的发展,提高学习和应用数学的能力。
(2)围绕教学目的,着眼发展思维和培养能力,精心选配复习题。选配复习题不仅要具有概念性、基础性、典型性、针对性、综合性,而且还要有启发性、思考性、灵活性和创造性等特点。例如,利用成套题复习,有利于调动各种手段,贯通各种方法,提高学生应用数学知识的能力;利用一题多解的习题复习,有利于发展学生的求异思维,提高解题能力;利用变式题进行复习,有利于培养学生思维的灵活性和创造性;利用改错题进行复习,有利于培养学生思维的批判性,提高科学的辨别能力;利用引申题进行复习,可以培养学生思维的灵活性和深刻性,提高学生的数学能力。
⑹ 中学数学教学有哪几大原则
教学原则是教学规律的反映,教学经验的结晶,是指导教学工作的基本要求,也版是教师在教学工作中必须遵守的权基本准则。
我国教育界在教学论中确定的一般教学原则有:科学性与思想性相结合的原则,理论联系实际的原则,教师的主导作用与学生的自觉性、积极性相结合的原则,感知与理解相结合的原则,循序前进性与系统性原则,掌握知识技能的巩固性原则,符合学生年龄特点和接受能力的原则,统一要求与因材施教的原则。
在一般教学原则的指导下,由于各科教学还有其特殊性,所以各学科的教学还应遵循符合本学科特点和学生年龄特征的学科教学原则。
在以传授知识为主的时代,我国广大的数学教育工作者和数学教师根据中学数学的特点、教学实践经验和中学生的年龄特征,总结出了许多行之有效的中学数学教学原则,其中影响最大的是:严谨性与量力性相结合的原则,抽象与具体相结合的原则,理论与实践相结合的原则,巩固与发展相结合的原则。
⑺ 确定中学数学教学目的的依据是什么
确定学科教学的目的,必须服从于国家办教育的总方针,即把青少年培养成为什么样的人才能适应社会的需要。《中共中央关于教育体制改革的决定》中提出培养人才的总任务、总目标是“教育要面向现代化、面向世界、面向未来,为90年代以至下世纪初叶我国经济和社会的发展,大规模地准备新的能够坚持社会主义方向的各类合格人才”,“所有这些人才都应该有理想、有道德、有文化、有纪律,热爱社会主义祖国和社会主义事业,具有为国家富强和人民富裕而艰苦奋斗的献身精神,都应该不断追求新知,具有实事求是、独立思考、勇于创新的科学精神”。《中国教育改革与发展纲要》中指出:“教育改革和发展的根本目的是提高民族素质,多出人才,出好人才。各级各类学校要认真贯彻教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体全面发展的建设者和接班人的方针。”上述的总目标充分展现出党和国家对培养一代新人在政治思想、文化科学知识、能力等方面的要求。因此,为实现总目标而开设的中学教学科目都有传授知识、培养能力、进行思想情操教育这些方面的要求,数学教学的目的也不例外。普通中学的教育是属于基础教育的性质,是帮助受教育者打下文化知识基础和作好生活准备的教育。中学的主要任务是为高一级学校输送合格的新生,以及为四化建设培养优良的劳动后备力量。初中阶段,按照党的义务教育方针,对学生进行义务教育,即国民素质教育。普通高中仍然是基础教育,是义务教育阶段之后高层次的基础教育,不是职业技术教育,也不是专门定向教育。普通高中是为高校输送新生打基础,为当地经济发展打基础,在义务教育的基础上进一步提高学生的思想品德素质、文化知识素质、劳动技能素质及身心素质。基础教育的培养目标是:“使学生热爱社会主义,具有爱国主义精神、良好的道德行为规范,立志为人民服务。要使学生学好文化科学基础知识和基本技能,培养能力,发展智力;要使学生身心得到正常的发展,具有健康的体质;还要使学生有一定的审美能力,并初步掌握一些劳动技能、职业技术技能。”普通中学的性质和任务决定了中学数学教学传授给学生的是数学基础知识、基本的技能技巧和思想品德教育及美育,那种把目的提高到 “培养数学家”或 “传授知识越多越好,越深越好”,“能力要求越高越好”的做法是不符合基础教育性质的。
⑻ 中学数学教学教案主要包括哪些内容
基本框架是:一、教学目标(细分有三维五维)
二、重点、难点
三、教学准备(教学环境,教具等简单介绍,也可以不写)
四、教学设计过程(主要部分)
(1)导入(复习导入,情景导入等)
(2)热身训练(主要目的是为本节课教学难点重点做铺垫,帮助学生提前熟悉本节课所用到的基本数学方法和知识,题目简单,运算量适合,多为选择和辨析)
(3)教学展开或者提出主题。(一般是问题的抛出或者例题的开始)
(4)教学重点和难点的分析。新授课力求有梯度,由浅入深,深入浅出,务必给学生足够时间,理解消化)
(5)针对训练。
(6)互动环节。根据学生实际情况,若基础较好,学生状态很好,第五步,可以省去,直接进入互动环节,控制好课堂节奏,充分利用课堂上,师生,生生互动优势,事先设计好各种活动或者任务,展开对本节课教学目标的“狂轰滥炸”,
(7)总结,(方式不拘一格)
(8)达标测试(可以不涉及,也可以出示随堂作业和课后作业)
(9)总结和作业布置(教师或学生一定要在最后的总结陈词中,强调本节课的教学重点,纠正学生在知识和方法上的注意事项,有针对性设计作业,一般有目的的设计三套作业,随即适时的给出)
五、板书设计(力求简洁,明了,书写工整清晰)
六、教学反思
⑼ 如何理解和认识中学数学教学目的的基本要求
(1)长期以来,数学教学改革偏重于对教的研究,但是对于学生是如何学的,学的活动是如何安排的,往往较少问津。现代教学理论认为,教学方法包括教的方法和学的方法,正如前苏联教学论专家巴班斯基指出的那样:“教学方法是由学习方式和教学方式运用的协调一致的效果决定的。”即教学方法是受教与学相互依存的教学规律所制约的。为此,我在教学方法上进行了如下尝试。
一、明确数学教学目的,不断改进教学方法
现行初中数学的教学目的,就明确提出了要“运用所学知识解决题”,“在解决实际问题过程中要让学生受到把实际问题抽象成数学问题的训练”,“形成用数学的意识”。
作为数学教师,必须对教学目的有明确的认识,并紧紧围绕教学目的展开教学。必须全面、深刻地掌握数学教学目的,并在教学过程中,经常以此来检查和评价自己的教学水平和教学效果,从而不断改进数学教学方法。
(1)激发学习动机,即激励学生主体的内部心理机制,调动其全部心理活动的积极性。首先,以数学的广泛应用,激发学生学好数学的热情。其次,以我国在数学领域的卓越成就,培养学生的爱国主义思想,激发学习动机。再次,挖掘数学中的美育因素,使学生受到美的熏陶。此外,教师还可以在教学过程中,根据教学的内容,选用生动活泼、贴近学生生活的教学方法引起学生的兴趣,使学生产生强烈的求知欲;教师还可以运用形象生动、贴近学生、幽默风趣的语言来感染学生;教师还可以安排既严谨又活泼的教学结构,形成热烈和谐的氛围,使学生积极主动、心情愉快地学习,充分调动学生学习的积极性和主动性。
(2)锻炼学习意志。心理学家认为:“意志在克服困难中表现,也在经受挫折、克服困难中发展,困难是培养学生意志的‘磨刀石’。因此,数学教学中要经常给学生安排适当难度的练习题,让他们付出一定的努力,在独立思考中独立解决问题(但注意难度必须适当,因为太难会挫伤学生的信心,太易又不能锻炼学生的意志)。
(3)养成良好的学习习惯。第一,针对不同层次的学生提出不同的要求;第二,反复训练,持之以恒;第三,树立榜样,激发自觉性;第四,评价表扬,鼓励发展;第五,建立学习规章制度,严格管理;第六,创造良好学习环境,如搞好校风、学风、教风、班风建设。
二、切实抓好课堂教学,进一步提高教学效果
长期以来,许多学校的课堂教学存在一个严重问题,即只注重教师与学生之间的“教”与“学”,而忽视了学生与学生之间的交流和学习,从而导致学生自主学习空间萎缩。表现为:教师权威高于一切,对学生要求太严太死;课堂气氛紧张、沉闷,缺乏应有的活力;形成了教师教多少,学生学多少,教师“主讲”,学生“主听”的单一教学模式。违背了“教为主导、学为主体”的原则。长此以往,学生在学习上依赖性增强,缺乏独立思考问题和解决问题的能力,最终导致厌学情绪,致使学习效率普遍降低。因此,要充分发挥学生的主体作用,就必须做到:
(1)创设情境,活跃思维而精彩的课堂开头,往往给学生带来新异、亲切的感觉,不仅能使学生迅速地由抑制到兴奋,而且,还会使学生把学习当成一种自我需要,自然地进入学习新知识的情境。因此,创设一个学生学习情境,不但激发学生学习兴趣,激起学生好奇的心理,促使学生由“好奇”转化为强烈的求知欲望,而且还活跃学生的思维,从而尽快地进入最佳的学习状态。比如讲初二几何“平行线等分线段定理”时,向同学们亮出1根1米长的竹竿问:“同学们,能在不用刻度的情况下,迅速将这根竹竿五等分吗?”这样一来,创设了探究问题的情境,激起了学生学习这节课的兴趣,活跃了学生的思维,很快进入最佳的学习状态,积极主动参与课堂学习之中,对问题进行实践性的探究活动。这节课的学习效果非常明显,达到了预期的教学目标。
(2)使学生进行独立思考和自主探索
教学应为学生提供自主探索的机会,让学生在讨论的基础上发现知识。比如讲授“轴对称图形”时,出示松树、衣服、蝴蝶、双喜等图形,让学生讨论这些图形具有的性质。学生经过讨论得出“这些图形都是沿一条直线对折;左右两边都是对称的,这些图形的两侧正好能够重合……”。学生自己得出了“轴对称图形”这个概念。为了加深学生的理解,当学习了“轴对称图形”之后,可以让学生两两提问生活中的(比如数字、字母、汉字、人体、教师中的物体等)“轴对称图形”。学生在自主探索的过程中,经历了观察、实验、归纳、类比直觉、数据处理等思维过程。
(3)鼓励学生合作交流
为了促使学生合作交流,在教学组织形式和教学方法上要变革,由原来单一的班级授课制转向班级授课制、小组合作学习多种教学的自制形式。教师可指导学生在小组中从事学习活动,借助学生之间的互动,有效地促进学生的学习,并以团体的成绩为评价标准,共同达成教学目标。在教学中,应注意如下几个方面:首先,合理分组。为了促进学生进行小组合作学习,首先应对全班同学适当分组。分组时要考虑学生的能力、兴趣、性别、背景等因素。一般讲,应遵循“组内异质、组间同质”的原则,保证每个小组在相似的水平上展开合作学习。其次,明确小组合作的目标。合作学习由教师发起,教师不是合作中的一方。这种“外部发起式”的特征决定了学生对目标的理解尤其重要。只有理解了合作目标的意义,才能 使合作顺利进行。因此,在教学中,每次合作学习,教师大致应明确提出合作的目标和合作的要求。
在教学中要鼓励学生大胆创新,自主探究,敢于挑战教材,挑战教师。如果每一节课学生都能对所学的知识多问几个为什么,甚至能对一些概念、定理、公式提出独特的看法,这样才会不断有新思想涌现,久而久之,他们才会逐渐树立创新意识。在数学教学中,不断地改进教学方法,更新教学观念,培养学生创新意识,才能提高学生学习数学的兴趣。
(2)课堂教学是一种艺术,它要靠教师多年的实践总结,并在教学中检验和完善。我在多年的教学工作中摸索出一些方法:①基本知识系统讲解;②重点知识不断重复和加强;③教学时间适当把握。这三点有其内在联系,是一个统一的整体,基本出发点是解决“不理解、易遗忘”这个学生感到棘手的间
(3) 我们要知道“新课程教学模式”、“教学特点”和“教学建议”等有关新课程课堂教学的大道理,可以去翻阅有关新课程教师学科培训丛书。但是现在老师们面对的这些学生大多是不会学数学,或者根本就找不到数学之门,所以老师们迫切需要的新课程具体应该怎么教的“新课程教学方法”,我们仍不得而知,因为这些培训丛书上没有关于新课程教学方法的内容,令老师们感到困惑。
⑽ 如何确定中学数学教学目的
数学教育目标是指数学教育的总目标,即通过数学教育在培养学生方面实现教育目的和教育方针的规格和标准,也就是通过中学数学教学,要求学生在数学的基础知识、基本技能、数学能力、个性品质、思想情操等方面所应达到的目标。社会期望数学教育能产生有效的成果,以满足社会发展对人才培养的要求,一个阶段的数学教育到底要追求一个什么样的目标,是数学教育一个根本的问题。
做任何工作都应该有充分的依据,在数学教育中应该克服盲目的倾向和轻率的决策。对于确定中学数学教育目标的依据,本人认为必须认真考虑以下方面:
中学各门学科的教育目标组成了一个完整的目标体系,各门学科的教育目标服从于总的教育目标,并为完成总体教育目标服务。“教育是发展科学技术和培养人才的基础,在现代化建设中具有先导性作用,必须放在优先发展的地位。全面贯彻党的教育方针,坚持教育为社会主义现代化建设服务,为人民服务,与生产劳动和社会实践相结合,培养德智体美全面发展的社会主义建设者和接班人。”全面推进素质教育就是要“造就数以亿计的高素质劳动者、数以千万计的专门人才和一大批拔尖创新人才。”培养的人才“都应该有理想、有道德、有文化、有纪律,热爱社会主义祖国和社会主义事业,具有为国家富强和人民富裕而艰苦奋斗的献身精神,都应该不断追求新知,具有实事求是、独立思考、勇于创新的科学精神。”上述的总目标是党和国家对于培养一代新人在政治思想、文化科学知识、能力等各方面的要求。因此,为实现总目标而开设的中学教学各门学科都有传授知识,培养能力、进行思想情操教育这些方面的要求,数学教育的目的也不例外