用数学论文
❶ 数学小论文,2000字以上 急急急
数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
数学史
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。
数学分类
符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。
中国古代数学的发展
魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖暅原理;提出二次与三次方程的解法等。 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久; 祖冲之之子祖暅总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理。祖暅应用这个公理,解决了刘徽尚未解决的球体积公式。 隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。
整理一下就好了!!
❷ 数学论文
数学学习兴趣及其培养
内容摘要:学习兴趣是学习动机的一种最重要的成分,它对学生的学习起着重要的作用。
学习兴趣促进学生智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对
数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理
素质得到更加和谐的发展。本文讨论了兴趣的特点、形成、发展规律及在教师教学中的应用
等,给出了米切尔关于兴趣的结构模型研究。影响兴趣的形成与发展的因素有个体需要、年
龄、性格和能力、他人、集体与地区的影响等。在数学教学中,如何培养和激发学生的学习
兴趣,是广大数学教师必须重视的一个问题。教师应将对学生学习兴趣的培养渗透到每个教
学环节,贯穿于数学教学的全过程。
关键词:学习兴趣 兴趣 认知
学习兴趣对数学学习具有一定的影响。兴趣是学习活动中的重要动力,是学习获得良好效果的必要条件。数学学习是学生根据数学教学计划、目的要求进行的,由获得数学知识经
验而引起的比较持久的行为变化过程。由于数学有其突出的特点,所以学生在获得数学知识
经验时也有其特殊性的表现和要求,如数学学习中的再创造性比其它学科要高,数学学习需
要较强的抽象概括能力等。这样学生在学习数学时保持浓厚的兴趣就犹为必要。
学习数学的兴趣产生于教学过程的趣味性和艺术性情感中,产生于学习过程中的成功与
愉快体验之中。当学生的精神处于兴奋状态展开数学学习活动时,学生就会产生强烈的求知
欲望,就会在追求与探讨中发展数学的思维能力,促进智力的发展,获得较大的成功;同时,
这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学
习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。
1.学习兴趣及特点
1.1 学习兴趣
兴趣是人们爱好某种活动或力求认识某种事物的倾向,这种倾向和一定的情感联系着,
兴趣是在需要的基础上产生的,是在生活实践的过程中形成与发展起来的。学习兴趣是学生
基于自己的学习需要而表现出来的一种认识倾向。从表现形式上讲,学习兴趣是学生学习需
要的动态表现形式,是社会和教育对学生的客观要求在学生头脑中的反映;从系统上讲,学
习兴趣是学习动机系统中的一个子系统,它是学习动机中最现实、最活跃的成分,是力求认
识世界、渴望获得科学文化知识的带有情绪色彩的认识倾向。
教育心理学的研究表明,如果大脑中有关学习的神经细胞处于高度的兴奋状态,而无关
部分处于高度的抑制状态,有关学习的神经纤维通道便能高度畅通,学习时信息传输就会处
于最佳状态。学生一旦对数学知识产生兴趣,就会产生巨大的认识能力,能集中注意力学习,
使信息的传导达到最佳状态;反之,如果学生的学习存在着被迫、苦恼、烦躁、紧张,就会
使神经细胞中应当抑制的部分变为兴奋,而应当兴奋的部分受到抑制,从而影响学习效果。
1.2 兴趣的特点
1.2.1 兴趣是后天形成的,是在需要的基础上发展起来的。人们在实践活动中,通过对
某种事物反复接触和了解,随着有关知识经验的不断积累,逐渐形成和发展了对某事物的兴
趣。学习的兴趣是可以诱发和培养的。
1.2.2 兴趣具有指向性。任何一种兴趣都对一定事件或活动,为实现某种目的而产生的。
人对他感兴趣的事物总是心驰神往,积极地把注意指向并集中于该种活动。兴趣的指向性是
建立在需要的基础之上的。
1.2.3 兴趣具有情绪性。在许多心理学教材和工具书中给兴趣下定义时都指出兴趣带有
情绪性。生活实践也表明,人们从事感兴趣的活动时,总会处在愉快、满意、兴致淋漓的情
绪状态;一个人做没有兴趣的工作时总觉得在做苦差事。
1.2.4 兴趣具有动力性。兴趣的动力作用可以概括为:(1)对一个人所从事的活动起支
持、推动和促进作用。(2)为未来活动做准备。
1.2.5 兴趣具有衍生性。人们对事物的认识一般是在旧有的认知结构的基础上进行扩
展,而事物之间往往相互联系,所以从旧有的兴趣中往往会产生出新的兴趣。
1.2.6 兴趣具有稳定性。兴趣的稳定性是指下躯持续时间而言,按兴趣维持时间长短可
分为持久兴趣与短暂兴趣。直观兴趣是一种短暂兴趣,数学内容的有趣性和实用性、数学美
感引起的自觉兴趣和潜在兴趣则是持久兴趣。
2 影响兴趣形成与发展的因素
2.1 兴趣与需要的关系
皮亚杰指出:“兴趣,实际上,就是需要的延伸,它表现出对象与需要之间的关系,因
为我们之所以对一个对象发生兴趣,是由于它能满足我们的需要。”人的需要是多种多样的,
兴趣也随需要而异。研究表明,一般具有高认知需要的人更喜欢复杂任务;而具有低认知需
要的人则更喜欢简单的任务。
2.2 兴趣与年龄的关系
不同年龄的人有不同的兴趣。年龄的增长直接影响到人的兴趣的数量和质量,对认识兴
趣中具有中心意义的读书倾向变化的研究表明,不同年龄阶段的儿童的读书兴趣是有其各自
的特点的。9—13 岁的儿童是读书最盛的,进入青年期读书活动的比率逐渐减少。但年龄越
增长,选择力越强,感受性和理解力越敏锐,读书兴趣的质量在提高。
2.3 兴趣与性格和能力的关系
不同性格的人兴趣有所区别。如情绪稳定的人兴趣也较稳定。此外,兴趣受能力制约。
当自己感到问题的难度太大或太小时,个人对它就难于发生兴趣。
2.4 兴趣与他人、集体及地区的影响有关
学生的兴趣常常受教师兴趣 的影响。个人的兴趣也受集体、地区、集团的影响。
2.5 兴趣与性别的关系
从调查中可知兴趣有受性别影响的倾向。田中在苏州、无锡、镇江3 地区6 县市9 所学
校的初三县市中进行调查显示,对数学表现兴趣的是男生多于女生,声明对数学不感兴趣甚
至讨厌数学的也是男生多于女生。
3 兴趣的形成过程
儿童的兴趣在最初主要是与刺激联系在一起的。首先,刺激本身固有的一些特性都先于
经验而有引起人注意和兴趣的功能。其次,使人觉得有趣的活动和经验本身也将引起人们的
注意和兴趣。
要引起或培养一个人的兴趣要按以下两个步骤进行:(1)发现个人或团体目前感兴趣的
具体领域和现有水平;(2)把希望其从事的活动直接或通过中间的步骤与其目前的兴趣领域
连接起来。
章凯和张必隐提出了兴趣的“信息—目标”理论。该理论认为,个体心理的发展是以不
断从环境获得信息为基础的;个体在与环境相互作用时希望从中获得信息,以消除原有的或
新产生的心理不确定性,实现心理目标的形成、演化和发展的心理过程即兴趣。
4 兴趣的作用
兴趣在学生的学习活动中起着重要的作用。俄国大教育家乌申斯基指出:“没有丝毫兴
趣的强制性学习,将会扼杀学生探求真理的欲望。”教育实践证明,学生对学习本身、对学
习科目有兴趣,就可以激起他的学习积极性,推动他在学习中取得好成绩。
兴趣对未来活动具有准备作用,对正在进行的活动具有推动作用,对活动的创造性态度
具有促进作用。兴趣是推动认识活动的重要动力,是影响学习效果的重要因素。
兴趣作为人从事活动的内容或方向,并不是固定不变的。兴趣可以被培养,被“镶嵌”
于人的个性之中。由于兴趣—注意的指向性和集中性等特点,人的兴趣和认知的相互作用经
常会导致一种恒常而稳定的兴趣—认知倾向。当认知倾向在个体身上内化而恒常地表现出来
时,就表现为一种稳定的兴趣的个性倾向性。
5 兴趣的发展规律
5.1 兴趣发展逐步深化
人的兴趣的发展,一般要经过有趣—乐趣—志趣三个阶段。有趣是兴趣发展的低级水平,
它往往是由某些外在的新异现象所引起而产生的直接兴趣。它为时短暂,带有直观性、盲目
性和广泛性。
乐趣是兴趣发展的中级水平,它是在有趣的基础上逐步定向而形成的。在这个阶段,学
生的兴趣会向专一的、深入的方向发展,即对某一客体产生了特殊爱好。乐趣已具有专一性、
自发性和坚持性的特点。
志趣则是兴趣发展的最高水平。它与崇高的理想和远大的奋斗目标相结合,是在乐趣的
基础上发展起来的。其特点是具有社会性、自觉性、方向性和更强的坚持性,甚至终身不变。
5.2 直接兴趣与间接兴趣的相互转化
兴趣一般分为直接兴趣和间接兴趣两类。直接兴趣是对事物本身感到需要而引起的兴
趣,间接兴趣只是对这种事物或活动的将来结果感到重要,而对事物本身并没有兴趣。间接
兴趣在一定条件下可以转化为直接兴趣。学生遇到稍微简单、容易和生动有趣的知识时,便
会产生直接兴趣;但一旦遇到复杂的、困难的和枯燥的知识时,便需要有间接兴趣来维持学
习。当学生通过顽强学习,克服了学习中的困难时,便又会对这种知识产生直接兴趣。
5.3 中心兴趣与广泛兴趣的相互促进
中心兴趣是指对某一方面的事物或活动有着极浓厚又稳定的兴趣;广泛兴趣是指对多方
面的事物或活动具有的兴趣。广泛兴趣是中心兴趣的基础。
5.4 好奇心、求知欲、兴趣密切联系,逐步发展
从横的方面来看,好奇心、求知欲和兴趣是相互促进、彼此强化的;从纵的方面看,三
者又是沿着好奇心—求知欲—兴趣的方向发展的。
好奇心是人们对新奇事物积极探求的一种心理倾向,它可以说是一种本能。好奇心儿童
期最为强烈。求知欲是人们积极探求新知识的一种欲望,它带有一定的感情色彩。青少年时
期是求知欲最旺盛的时期。某一方面的求知欲如果反复地表现出来,就形成了某一个人对某
事物或活动的兴趣。
5.5 兴趣与努力不可分割
兴趣与努力是可以相互促进的,而不是两个对立面。学生的学习活动既离不开学习兴趣,
也离不开勤奋努力,兴趣与努力不断相互促进,方能使学习达到最佳境地。
6 激发和培养学生学习数学的兴趣
数学的特点是抽象、严谨、应用广泛。徐德雄对江山中学、武汉中学、金陵中学、浦城
一中的高三毕业班学生的调查显示45.4%的学生认为课业负担较重的科目是数学,32.8%
的学生认为考试次数最多的是数学。因此,在数学教学中,如何培养和激发学生的学习兴趣,
是广大数学教师必须十分重视的一个问题,对于学习兴趣的培养应当渗透到每个教学环节,
贯穿于数学教学的全过程。
6.1 要求学生建立积极的心理准备状态
教师要教会学生在学习中遇到不懂的地方有积极的心理暗示,鼓励学生创造性地使用一
些方法,增加学习的趣味性。兴趣是可以自己培养的,关键是有积极的态度。
6.2 帮助学生形成正确的学习价值观
学习价值观使学生形成明确的学习需要,为兴趣的生成奠定基础。在教学中,教师要充
分挖掘教学内容的功利和精神价值,并及时准确地传递给学生,帮助学生形成正确的学习目
的,明确学习的价值和意义,以唤醒学生学习的内在冲动和激情,促进学习兴趣的生成。 学
习价值观激发学习动机和求知欲,为兴趣的深入发展注入动力。教师应善于从帮助学生确立
科学合理的学习价值观入手,以培养学生正确的学习理念和优秀的学习品质为切入点,将兴
趣根植于崇高的理想信仰和正确的价值观基础之上。只有这样,学生才能形成真实的、稳定
的、深入的、持久的学习兴趣,才能真正达到兴趣促进学习的目的。
6.3 提高教学水平引发学生学习兴趣
6.3.1 设悬激趣
创设悬念,是教师根据教材的数学内容,设置问题情境,使学生产生强烈的求知欲望,激发学习兴趣。如教学“正比例”知识时,教师向学生提出一个实际问题:谁能有办法测量
我们校内操场枫树的高度呢?同学们顿时兴趣大发,争论不休,却又想不出什么好办法。这
时教师对同学们说:“我倒有一个且很简单的测量办法,不用爬树也不用砍树便可以测出树
的高度”。同学们哗然,产生悬念:老师是用什么办法测量树高的呢?很自然地产生了求知
欲望,由此学生主动学习,兴趣盎然,从而达到了预期的教学目的。收到良好效果,悬念也
得到解决。
6.3.2 实践激趣
数学教学中,给学生设置创造思考问题的机会和条件,指导学生在实践中,观察的基础
上,动脑筋思考获得新知识。《数学课程标准》中指出:“学生能够认识到数学存在于现实生
活中,并被广泛应用于现实世界,才能切实体会到数学的应用价值。”学好数学知识,是为
了更好地为生活服务。把知识应用于生活,做到学以致用,让学生充分体验数学的应用价值,
同时让学生在解决实际生活中的数学问题时,体验到探索数学的无穷乐趣,从而形成长久的
兴趣。
6.3.3 竞争激趣
课堂教学中,教师要注重学生争胜好强的特点,发挥他们的学习积极性,给他们提供足
够的机会,鼓励他们竞争。
6.3.4 操作激趣
感知-表象—概念是儿童认识数学的过程,从具体到抽象,从感性到理性的过程。教学
时要注重学生的操作训练,激发学习兴趣,发展学生思维,把抽象的知识转变为具体的内容,
使学生的认识由感性的基础上升到理性知识。
6.3.5 评价激趣
教学中不管学生对知识的接受理解能力如何。教师都要以亲切的语言给予评价和诱导,
忌用简单、粗糙的语言挫伤学生的学习知识性:
第一、利用成功评价激趣。如学生通过自己学习实践得出圆周率时,教师评价学生说:
“圆周率是我国古代数学家花了很长的时间,反复实验才计算出来,而今你们通过自己的实
践也成功地算出来了,真了不起。希望同学们从小就要这样认真学习,事业一定能成功。”
从而激发学生的学习兴趣。
第二、利用诱导语言激趣。个别同学在学习过程中遇到困难时,要及时给予点拨诱导,
让他们跳一下也能摘到果子。给予“试试看”、“再想想”等亲切的语言鼓励他们学习成功,
产生兴趣。
6.3.6 加强直观,引导动手操作
在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动
态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。动手
操作能有效地引发学生的学习兴趣。
6.4 建立平等和谐的师生关系
教育是心灵的艺术,应该体现出民主与平等的现代意识。学生对堂课的兴趣与积极性的
高低,常依赖于对教师的情感。由此可见,高尚纯洁的爱则是师生心灵的通道,是启发学生
心扉的钥匙,是引导学生前进的路标。教师除了要有人格魅力外,在教学中,要以一颗火热
的心爱护学生,真诚地对待学生。对学生要一视同仁,才能赢得学生的信赖。在生活上关心
他们,在学习上帮助他们,在课堂上注重多表扬少批评,经常走到他们中间,找他们谈心,
参加他们的活动,为他们服务,这样才能成为他们的知心朋友,尤其是对学习困难的学生更
应多给他们关爱,多找出其闪光点培养他们的自信心,只有这样,建立了平等和谐的师生关
系,学生才会亲其师、信其道、学其知,产生兴趣。
6.5 应用现代化教学手段培养学习兴趣
学生的认识能力是否会有长足的进步,常常取决于我们能否提供一个良好的外界条件。
在过去教学中,多数是填鸭式教学,教师只是讲讲、写写,学生只是听听、记记,对知识的
理解、认识的提高,很多都是抽象的、模糊的,很难真正搞清楚,而现代教学手段的应用恰
好弥补了这一不足。
随着科学技术的发展,现代媒介也逐渐走入课堂,广泛用于教学中。应用现代化教学手
段,诸如电影,电视,尤其是多媒体计算机辅助教学,代替了过去把黑板、粉笔作为教具的
教学模式,既可以提高学生的认识能力,还可以培养学生的学习兴趣,让学生把动画、图象、
立体声融合起来,真正做到“图文并茂”,把学生带入一种心旷神怡的境界,有身临其境之
感,觉得生动有趣,这样就能激发起学生的学习热情,从而收到良好的效果。
参考文献:
[1]陈在瑞、路碧澄注。数学教育心理学。北京:中国人民大学出版社,1995。
[2]李洪玉,何一粟著。学习动力。武汉:湖北教育出版社,1999。
[3]李洪玉,何一粟著。学习能力发展心理学。合肥:安徽教育出版社,2004。
[4]刘显国。激发学习兴趣艺术。北京:中国林业出版社,2004。
[5]田中。初中学生性别与数学学习关系的问卷调查分析。数学通报,2000(6)。
[6]徐德雄。高中数学学业负担的调查及对策。中学数学教学参考,1997(3)。
❸ 数学小论文
只要用心写啊
我也写过,给你参考一下:
第一先写一些自己在生活中遇到的困难,
然后再写自己是怎么样探究的、怎么样解决问题的
然后在写一个简单的结尾就好了
我反正是这样写的
我也是六年级
我写的是简算
例如(这是我写的):
简便方法计算
每一次考试,基本上都要考到计算,同学们肯定都厌烦计算,特别是四则混合运算,再加上分数、小数,真是烦上加烦。但是,考试终究是要考到计算,那怎样让计算不那么烦,不容易出错呢?那就要用上简便计算的定律了。
常见的简便计算的定律有:加法交换律a+b=b+a,加法结合律a+b+c=a+(b+c)等定律。
比如说下面一题就是在我们三训上出现的题目:0.88×100.1
如果这道题目列竖式计算的话会很麻烦,也有可能算错。如果要简便计算的话就可以把100.1拆成100+0.1,然后就可以用乘法分配律简便计算了:
0.88×100.1
=0.88×(100+0.1)
=0.88×100+0.88×0.1
=88+0.088
=88.088
这样计算就简便多了,不用再去死算,而且不容易出错。
在计算中,虽然可以用计算公式但是有一些题目还需要一步一步地算,比如说有两组很容易就上当的四则运算:12×48÷12×48和12×48÷(12×48)。第一个看上去可以很快的算出来,其实,这只是一个陷阱,如果非要在第一个上简算,也可以用12和÷12抵消,转化成48×48。而第二个的运算顺序和第一个是相反的,先算括号里的12×48,然后按照运算顺序把前面的12×48算出来,就可以转化成1÷1结果等于1。
计算,看看是挺难的,其实,只要用上一些运算定律,它们就像是魔术师,使计算变的简单了。所以,数学是很奇妙的,只要用心去钻研,去思考,再难的数学题也会被攻破
❹ 数学的重要性(论文1000字)
巧赢硬币
记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我心里琢磨着,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。”
听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊!
过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。
看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。”
是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。
❺ 数学论文
说起数学思想,其实就是,就某一道题来说,有两种或以上的方法去解,也就是说,从两种或以上的角度去看问题,分析问题。现在就数学中四大思想作一篇论文。(数学四大思想:函数与方程思想、转化与化归思想、分类讨论思想与数形结合思想;)
(一)函数与方程
函数思想,是指用函数的概念和性质去分析问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化等式或是不等式,然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
“宇宙世界,充斥着等式和不等式。”换句话说,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;不等式问题也与方程是近亲,密切相关。应用方程思想时特别需要重点考虑的大体就是列方程、解方程和研究方程的特性。
函数描述了自然界中数量之间的关系,函数思想通过题目中数量的关系,解决问题。一般地,函数思想是构造函数从而利用函数的性质解题,在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。要对所给的问题观察、分析、判断比较深入、充分、全面时,才能发现由此及彼的联系。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
(二)等量代换
等量代换是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。我们要不断培养和训练自觉的转化意识,这有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。等量代换要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。它能给人带来思维的闪光点,找到解决问题的突破口。
“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。”
等量代换思想方法的特点是具有灵活性和多样性。它可以在数与数、形与形、数与形之间进行转换;它可以在分析和解决实际问题的过程中进行,在普通语言向数学语言的翻译中进行;消元法、换元法、数形结合法、求值求范围问题等等,都体现了等量代换思想,但是由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。
在数学操作中实施等量代换时,我们要尽量熟悉、简单、直观、标准,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,顺水推舟,经常渗透等量代换思想,可以提高解题的水平和能力。
(三)分类讨论
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
引起分类讨论的原因主要是以下几个方面:
① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。
② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。
③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其全面性,更使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
(四)数形结合
中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的。
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
❻ 数学论文
(1)
《勾股定理的证明方法探究》 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA’ ≌△AA'C 。 过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。 △ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。 于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
(2)
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
(3)
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
(4)
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”
❼ 关于数学论文
数学教学中培养学生创造思维能力
21世纪将是一个知识创新的世纪,新世纪正在召唤大批高素质创造型人才。人的创造力包括创造思维能力和创造个性两个方面,而创造思维是创造力的核心。所谓创造思维就是与众不同的思考。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物,提示新规律,创造新方法,解决新问题等思维过程。尽管这种思维结果通常并不是首次发现或前所未有的,但一定是思维主体自身的首次发现或超越常规的思考。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。那么如何培养学生的创造思维能力呢?
一、指导观察
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。例如教学圆的认识时,我把一根细线的两端各系一个小球,然后 甩动其中一个小球,使它旋转成一个圆。引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程。提问:"你发现了什么?"学生们纷纷发言:"小球旋转形成了一个圆"小球始终绕着中心旋转而不跑到别的地方去。"我还看见好像有无数条线"……¨从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到定点的距离相等的点的轨迹。看到"无数条线"则为理解圆的半径有无数条提供了感性材料。
二、引导想象
想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。"在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。
想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成了什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。
三、鼓励求异
求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。例如:教学"分数应用题"时,有这么一道习题:"修路队修一条3600米的公路,前4天修了全长的1/6,照这样的速度,修完余下的工
程还要多少天?"就要引导学生从不同角度去思考,用不同方法去解答。用上具体量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)] ÷(3600×1/6÷4)。思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此时学生思维处于高度活跃状态,又有同学想出 解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展。
四、诱发灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
例如,有这样的一道题:把3/7、6/13、4/9、12/25用">"号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。
总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。