关于数学的手抄报图片
Ⅰ 数学勾股定理手抄报图片与资料
图片可以借鉴一下小报吧的!
勾股定义
在任何一个直角三角形(RT△)中,两条直角边的长的平方和等于斜边长的平方,这就叫做勾股定理。即勾的平方加股的平方等于弦的平方。
勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”
勾股证明
作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形。把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
过点Q作QP∥BC,交AC于点P.
过点B作BM⊥PQ,垂足为M;再过点
F作FN⊥PQ,垂足为N.
∵ ∠BCA = 90°,QP∥BC,
∴ ∠MPC = 90°,
∵ BM⊥PQ,
∴ ∠BMP = 90°,
∴ BCPM是一个矩形,即∠MBC = 90°。
∵ ∠QBM + ∠MBA = ∠QBA = 90°,
∠ABC + ∠MBA = ∠MBC = 90°,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可证RtΔQNF ≌ RtΔAEF.即A2+B2=C2
勾股例题
例1、已知:∠ABD=∠C=90°,AC=BC,∠DAB=30°,AD=8,求BC的长.
解析 先在Rt△ABD中,求出AB,继而在Rt△ACB中求出BC.
解 Rt△ABD中,
∵∠ABD=90°,∠DAB=30°,
由勾股定理知:
AB2=AD2-BD2=82-42=48.
在△ABC中,∠C=90°,AC=BC.
∵AC2+BC2=AB2,
∴2BC2=48,
∴BC2=24,
例2、 直角三角形斜边长为2,两直角边和为6,求此直角三角形面积.
解 设直角边为a、b,
∴a2+b2=4.
.
需注意的问题:
(1)勾股定理的前提是直角三角形;
(2)求解问题中常列方程或方程组来求解;
(3)已知直角三角形中两条边的长,求第三边的长,要弄清哪条是斜边,哪条是直角边,不能确定时,要分类讨论。
愿能帮到你,望采纳
Ⅱ 数学手抄报图片5年级的
你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。
故事如,祖 冲 之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是 π的渐近分数。
还有些资料,,
华 罗 庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。
华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
希望对你能有所帮助。
Ⅲ 数学手抄报大全
格式:
一般是中间上方写标题,或者左侧写大标题,如果喜欢一些张扬个性的呢,可以从中间倾斜横跨整个纸张。
内容可以分为概述,具体内容,图片,花边设计
按需要改进。
手抄报要细致,可以用荧光笔,细的那种,和中性笔一样细的那种,大标题则可用粗一点的,颜色的选取要大胆,显眼,如果喜欢黑色背景的话,可以直接买黑色的卡纸,大小颜色都不错。厚度也不错。比A4那类的打印纸要好点。
要有创意,不拘一格
内容:学习内容咯,分为这样的几个模块,首先写学习数学的精神性东西,比如态度咯,方法咯,然后写具体的东西,数学的知识,还可以一套题哦,说出自己的方法和感触哦,在写点继续性的东东,要好好学习喽~呵呵,祝你学习进步咯~
笔:可以有荧光笔,可以有蜡笔,彩笔,或者用改正液往黑色背景上写咯。
数学趣味小故事:
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
Ⅳ 关于数学手抄报的内容有哪些
第一写关于数学的名言
罗素说:“数学是符号加逻辑”
毕达哥拉斯说:“数支配着宇宙”
哈尔莫斯说:“数学是一种别具匠心的艺术”
米斯拉说:“数学是人类的思考中最高的成就”
培根(英国哲学家)说:“数学是打开科学大门的钥匙”
布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”
黑格尔说:“数学是上帝描述自然的符号”
魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”
柏拉图说:“数学是一切知识中的最高形式”
考特说:“数学是人类智慧皇冠上最灿烂的明珠”
第二写关于数学的意义
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
第三写关于数学的小故事
数学名人小故事-康托尔
由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。
真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。
第四,可以写关于数学的笑话
小明小学数学考试,回来后他妈问他考得怎么样.小明说:"我基本上会做,但有一题3乘7,我怎么也想不出来.最后打铃了,我不管三七二十一就写了个18."
奶奶:“1+2等于几?”
孙子:“等于3。”
奶奶:“答对了,因此你会得到3块糖。”
孙子:“早知道是这样,我就说是等于5就好啦!”
第五,可以写动物中的数学家
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。
丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?”
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
Ⅳ 有什么关于数学的图画(可以在数学手抄报上画的那些)
关于什么主题的亚?就是数学吗?你在网络图片直接打数学……有一个小人那个牌子上边写着“数学”,呵呵……要不查查别的数学报是怎么画的,在网络网页和画图打“数学报”看看。祝你成功~
Ⅵ 怎么做又关于春节又关于数学的手抄报图片
1):给手抄报定个好主题
为什么制作手抄报要先定主题呢?这是因为手抄报只有小小一张纸,能够容纳的文章并不多。如果把一个话题方方面面的内容都堆上去,那给读者的感觉可不好。
最好的办法是,从大主题中选一个小主题,围绕这个小主题做好文章。选出这件印象最深的事———这就是你的手抄报的主题了!
(2):好报名给人好印象
给手抄报取个好报名,就是制作手抄报的“点睛”之处。 确定了主题,选好了材料,下一步关键就是取一个好报名。“报名”是读者对报纸的第一印象。报纸的名称一般来说,可以从四个角度来选取。
第一,表明该报的出版地域和出版周期。如《羊城晚报》、《南方日报》等。
第二,表明该报的读者对象,如《现代小学生报》、《农民日报》等。
第三,表明该报的办报方向。如《计算机报》、《中学语文报》等。
第四,表明该报的办报方向或该报的主张。如《新快报》、《希望报》等(3):精心编制好栏目
一份报纸的内文由文稿和图片等构成。一般情况下,除部分新闻和照片外,许多文稿和图片都有栏目。
在报纸中,栏目的设置很值得花心思。学员在参赛时,应精心设置好一些栏目,但不必每篇文章都设。在设置好栏目后,还可以按栏目的意图,创设一些栏目小标图,以此活跃栏目,美化版面。
手抄报“长”得够不够漂亮,关键就看版面制作。文章的标题、内文、栏线、小题图全靠手写、手画,如果运用图片、照片,可用粘贴方式,当然也可以手绘仿制。同学们写字、画画,一定要把字写端正、整洁,图也要画得干净、得体。
手抄报毕竟是一份报纸,而不是一张图画,因此编制中一定要注意保证报纸的各种要素。
第一步,大家要根据自己年龄符合的参赛组别,按要求找一张合符规格的白纸。为了保证涂色效果,纸张太厚、吸墨性能差的纸不要采用,最好用旧挂历纸。然后,在白纸上画出版面的“版心”,也就是“大长方形”白纸外边内1厘米以上的“小长方形”。下面就可以按你的想法,往“版心”里填东西了。
值得一提的是,“手抄报”的纸张底色要求是白色,但在制作手抄报过程中,也可以按版面实际要求为内文、图片、标题铺上深浅不同的底色。以往几年参加《羊城晚报》手抄报的小编辑在运用底色方面有许多成功的表现,许多参赛者都因为底色铺得有美感而获得好评。
Ⅶ 关于数学手抄报
可以写写数学名人,趣味试题,数学故事,名人名言,等等 都可以啊。
Ⅷ 数学手抄报图片
你儿子分1头牛、5口猪、1只羊;二儿子分2头牛、1口猪、4只羊;三儿子分2头牛、1口猪、4只羊。
4.两辆车相距1500米。假设前面的车以90km/h的速度前进,后面的车以 144km/h的速度追赶,那么两辆车在相撞钱一秒钟相距多远?
答案:相距15米。
5.有甲、乙两个公司招聘经理。甲公司年薪10万元,没年提薪一次,每次加薪2万元;乙公司半年薪金5万元,每半年提薪一次,每次加薪5千元。问去哪个公司挣得的薪水更多?
答案:去乙公司挣得的薪水更多。
6.俄国著名数学家罗蒙诺索夫向邻居借《数学原理》一书,邻居对他说:“你帮我劈10天柴,我就把书送给你,另给你20个卢布.”结果他只劈了7天柴。邻居把书送给他后,另外付了5个卢布。《数学原理》这本书的价格是多少卢布?
答案:书的价格是30卢布 。
7.瓶中装有浓度15%的酒精1000克,现分别将100克400克的a、b两种酒精倒入瓶中,则瓶中酒精的浓度变为14%,已知a种酒精的浓度是b种酒精的2倍,求a种酒精的浓度?
答案:20
Ⅸ 什么是数学手抄报图片
数学手抄报首先确定内容主题,是兴趣还是推广
是专门知识点,还是却版闻趣事,是知识手抄报还是益权智问题
一般小学的数学手抄报要一下内容:
首先,数学家,名人轶事。
其次,有以前学过的知识点,尤其是正在学和将要学的课本上的知识点和图
最后,有和生活相关的数字知识和一些有趣的益智题目。
插图和图案根据自我美术能力配上就行。布局一般有书页左右对称,几何图形分块
(纸张分成上梯形下面三角形加平行四边形或者其它)或者左中右,上中下
Ⅹ 数学手抄报的图片和资料
国王让金匠做了一顶新的纯金王冠。但他怀疑金匠在金冠中掺假了。可是,做好的王冠无论从重量上、外形上都看不出问题。国王把这个难题交给了阿基米德。
阿基米德日思夜想。一天,他去澡堂洗澡,当他慢慢坐进澡堂时,水从盆边溢了出来,他望着溢出来的水,突然大叫一声:“我知道了!”竟然一丝不挂地跑回家中。原来他想出办法了。
阿基米德把金王冠放进一个装满水的缸中,一些水溢出来了。他取了王冠,把水装满,再将一块同王冠一样重的金子放进水里,又有一些水溢出来。他把两次的水加以比较,发现第一次溢出的水多于第二次。于是他断定金冠中掺了银了。经过一翻试验,他算出银子的重量。当他宣布他的发现时,金匠目瞪口呆。
这次试验的意义远远大过查出金匠欺骗国王。阿基米德从中发现了一条原理:即物体在液体中减轻的重量,等于他所排出液体的重量。这条原理后人以阿基米德的名字命名。一直到现代,人们还在利用这个原理测定船舶载重量等。
3、公元前212年罗马军队攻入叙拉古,并闯入阿基米德的住宅,看见一位老人在地上埋头作几何图形,士兵将图踩坏。阿基米德怒斥士兵:『不要弄坏我的图!』士兵拔出短剑,刺死了这位旷世绝伦的大科学家,阿基米德竟死在愚蠢无知的罗马士兵手里。