生物电电片
鱼能放电打死人。猛一听,肯定会吓你一跳,怎么可能?只有人类用电去电鱼,怎会鱼电人呢?
很久以前人们发现,在南美洲某些河里,常发生有些人洗澡时忽然昏迷过去甚至死亡的事件。
后来才知道这是一种鱼在作怪,这种鱼叫电鳗。它靠发出电流脉冲来打死其他小鱼或生物然后吞而食之来生存。
经实验测定,这种鱼在头和尾之间可以产生800伏以上的脉冲电压,导致周围的水中产生大到1安的脉冲电流(0.05安的电流就足以致人于死命)。
生物体内产生的电压或电流,就叫生物电。
人体内也有生物电。身体上任何部位受到外界刺激的时候,受刺激的信号便传到大脑。这个过程实际上是电压脉冲沿神经索的传播过程。
传播时的电压不过几十毫伏,传播的速度大约每秒30米。
心脏跳动时也会产生生物电。
心肌细胞内外充满了导电液体,由于内外正负离子的浓度不同,细胞内外就存在着电压,在心肌跳动时,这电压就随同变化。
心电图仪就是用来测量这种电压变化的,它能画出反映这种变化的曲线——心电图。
人体细胞也能产生生物电,也能对外界传入的电流作出反应。人体触电后的各种情况,就是例子。
问;生物电的应用有哪些?
不过,生物电对人体还有一个奇怪的现象。比较大的电流(超过0.1安)脉冲不太容易引起心脏无规则颤动,因为它给了心脏一次很强的刺激,使心脏“卡”在一定状态不再跳动。只要很快地撤除电流,心脏反而更容易恢复正常的跳动。
心脏除颤器就利用了这种现象,它向心脏通入一次大的电流脉冲,去制止其无规则颤动,然后再开始正常的有规律的心跳。
高频率的交流电对人体可能有益(当然电流不能太大)。每秒变化100万次的交流电(家用交流电每秒变化50次)并不干扰神经系统的正常工作。
中医针灸科用的电针就是在人体上两处分别插上两颗针,然后在针间加以高频率的交变电压。
电针能医治肌肉痉痛或关节炎等疾病,只是治病的机理现在还不清楚。
Ⅱ 什么是 生物电药导理论
生物的器官、组织和细胞在生命活动过程中发生的电位和极性变化。它是生命活动过程中的一类物理、物理-化学变化,是正常生理活动的表现,也是生物活组织的一个基本特征。
简史 2000多年前,人类就发现动物体带电的事实,并利用电鳐所发生的生物电治疗精神病。18世纪末,L.伽伐尼发现蛙肌与不同金属所构成的环路相接触时发生收缩的现象。以后C.马蒂乌奇、E.H.杜布瓦-雷蒙和L.黑尔曼等的工作,都证明了生物电的存在。20世纪初,W.艾因特霍芬用灵敏的弦线电流计,直接测量到微弱的生物电流。1922年,H.S.加瑟和J.埃夫兰格首先用阴极射线示波器研究神经动作电位,奠定了现代电生理学的技术基础。1939年,A.L.霍奇金和A.F.赫胥黎将微电极插入枪乌贼大神经,直接测出了神经纤维膜内外的电位差。这一技术上的革新,推动了电生理学理论的发展。1960年,电子计算机开始应用于电生理的研究,使诱发电位能从自发性的脑电波中,清晰地区分出来,并可对细胞发放的参数精确地分析计算。
静息电位 在没有发生应激性兴奋的状态下,生物组织或细胞的不同部位之间所呈现的电位差。例如,眼球的角膜与眼球后面对比,有5~6毫伏的正电位差,神经细胞膜内外,则存在几十毫伏的电位差等。静息状态细胞膜内外的电位差,称静息膜电位,简称膜电位。它的大小与极性,主要决定于细胞内外的离子种类、离子浓差以及细胞膜对这些离子的通透性。例如,神经或肌肉细胞,膜外较膜内正几十毫伏。在植物细胞(如车轴藻)的细胞膜内外,有100毫伏以上的电位差。改变细胞外液(或细胞内液)中的钾离子浓度,可以改变细胞膜的极化状态。这说明细胞膜的极化状态主要是由细胞内外的钾离子浓度差所决定的。在细胞膜受损伤(细胞膜破裂)的情况下,损伤处的细胞液内外流通,损伤处的膜电位消失。因此,正常部位与损伤部位之间就呈现电位差,称为损伤电位(或分界电位)。
有些生物细胞,不仅细胞膜内外有电位差,在细胞的不同部位之间也存在电位差。这类细胞称极性细胞。在极性细胞所组成的组织中,如果极性细胞的排列方向不一致,它们所产生的电场相互抵消,该组织就表现不出电位差。如果极性细胞的排列方向一致,该组织的不同部位间就呈现一定的极性与电位差。它的极性与电位大小,取决于细胞偶极子矢量的并联、串联或两者兼有所形成的矢量总和。例如,青蛙的皮肤,在表皮接近真皮处,有极性细胞。这些细胞具有并联偶极子的性质,内表面比外表面正几十毫伏。在另一些生物组织上,极性细胞串联排列,如电鱼的电器官就是由特化的肌肉所形成的“肌电板”串接而成的。由5000~6000个肌电板单位串联而成的电鳗的电器官,由于每个肌电板可产生0.15伏左右的电压,因此这种电器官放电的电压可高达 600~866 伏。某些植物的根部,也是由极性细胞串联构成的。因此由根尖到根的基部各点间都可能呈现电位差。
应激性电反应 活的生物体具有应激性,即当它受到一定强度(阈值)的刺激作用时,会引起细胞的代谢或功能的变化。这种引起变化(突奋)的刺激要有一定的变化速率,缓慢地增强刺激强度不能引起应激反应。如用直流电作刺激,通电时的应激反应发生在阴极处,断电时的应激反应则发生在阳极处。应激反应之后,要经过一段恢复时期(不应期),才能再对刺激起反应。在应激反应过程中,常常伴有细胞膜电位或组织极性的改变。
植物的局部电反应 植物的应激性很缓慢并往往局限于受到刺激的区域。它的反应强度,决定于刺激的强度,在刺激作用点上产生负电位变化。例如,植物组织受到曲、折(机械刺激),可引起几十毫伏的负电位反应。植物光合作用中出现的电变化,是一种由代谢变化引起的电反应。植物进行光合作用的强度取决于叶绿素的含量。因此,如果不同部位的光照强度或叶绿素含量不同,将使不同部位的代谢强度出现差异。这时,不仅表现出产氧量和二氧化碳消耗量的不同,而且在不同部位之间出现电位差。例如,在太阳草的叶片上,一部分给予光照,另一部分不给光照,则几分钟之内,两部分之间可产生50~100毫伏的电位差。在一定范围内,电位差的大小,与光照强度成正比。
植物运动反应时的电现象 有些植物受刺激后会产生运动反应。这时,往往出现可传导的电位变化。例如,含羞草受刺激时,叶片发生的闭合运动反应,就能传布相当的距离。在这一过程中,由刺激点发生的负电位变化,可以每秒2~10毫米的速度向外扩布。电位变化在1~2秒内达到最大值,其幅值可达50~100毫伏。但恢复时间长,需几十分钟才能回到原来的极性状态,这一段负电位变化时期就是它的不应期。
动物体的局部电反应 动物的细胞或组织,尤其是神经与肌肉,受刺激时发生的电变化比植物更明显。如果神经纤维局部受到较弱的电刺激则阴极处的兴奋性升高、膜电位降低(去极化),阳极处兴奋性降低、膜电位升高(超极化)。在刺激较强接近引起兴奋冲动阈值的情况下,阴极的电位变化大于阳极,这是一种应激性反应。但是这种电位变化仅局限在刺激区域及其邻近部位,并不向外传布,故称局部反应,所发生的电位称为局部电位。一个神经元接受另一个神经元的兴奋冲动而产生突触传递的过程中,在突触后膜上会产生兴奋性突触后电位,或抑制性突触后电位。前者是突触后膜的去极化过程,后者是突触后膜的超极化过程。这些电位变化,只局限在突触后膜处,并不向外传导,也是一种局部电位。如果感受器中的感觉细胞或特殊的神经末梢受到适宜刺激,如眼球中的感光细胞受光的刺激、机械感受器柏氏小体中的神经末梢受到压力刺激也会产生局部电位反应,称为感受器电位或称启动电位。同样,肌肉细胞接受到神经冲动的情况下,在神经与肌肉接头处(神经终板)也会产生局部的、不传导的负电位变化,称为终板电位。所有这些局部电位,都会扩布到邻近的一定区域,但不属传导。离局部电位发生处愈近,则电位越大,并按距离的指数函数衰减。局部电位的大小随刺激强度的增大而增高,大的可达几十毫伏。
动物体的传布性电反应 动物体中能传布的电反应更普遍。如当神经细胞受到较强的电刺激时,在阴极产生的局部电反应随刺激增强而增大,超过阈值,就会引起一个能沿神经纤维传导的神经冲动。神经冲动到达的区域伴有膜电位的变化,称动作膜电位(简称动作电位)。这是一个膜电位的反极化过程,即由原来的膜外较膜内正变为膜外较膜内负。因此,发生兴奋的部位与静息部位之间,出现电位差,兴奋部位较正常部位为负,电位可达 100毫伏以上。这个负电位区域可以极快的速度向前传导,如对虾大神经纤维的传导速度可达80~200米/秒。
兴奋性突触后电位或感受器电位,虽然不是能传导的兴奋波,但当它们增大到一定程度,就会影响邻近神经组织的兴奋性,甚至发生伴有负电位变化的神经冲动。
动物的组织或器官,在发生应激性反应的情况下,也会出现电变化。它的大小与极性决定于组成该组织的细胞兴奋时所产生的电场的矢量总和。如眼睛受光照刺激时,可记录到眼球的前端与后面之间的电位差变化,称为视网膜电图。它的波形很复杂,系由光刺激使感受细胞产生感受器电位,并相继引起视网膜中其他细胞产生兴奋与电位变化。由于这些电变化的电场方向不一致,因此,视网膜电图标志的是这些细胞的产生的电场的矢量总和。不同的动物,由于视网膜的结构不同,产生的视网膜电图也不同,同时光照程度、时间等因素也会影响视网膜电图的波形。
生物有机体是一个导电性的容积导体。当一些细胞或组织上发生电变化时,将在这容积导体内产生电场。因此在电场的不同部位中可引导出电场的电位变化,而且其大小与波形各不相同。例如,心电图就是心脏细胞活动时产生的复杂电位变化的矢量总和。随引导电极部位不同,记录的波形不一样,所反映的生理意义也不同。另外,高等动物中枢神经系统中所产生的电场,在人或动物的头皮上,无论静息状态或活动状态时,都有“自发”的节律性电位波动,称为脑电波。它是脑内大量的神经细胞活动时所产生的电场的总和表现。在静息状态时,电位变化幅度较高,而波动的频率较低。当兴奋活动时,由于脑内各神经元的活动步调不一致(趋于异步化),总合电位就较低,而波动的频率较高。当接受外界的某种特定刺激时,总和电场比较强大,因此,可以记录到一个显著的电位变化。因为这种电位变化是由外界刺激诱发而产生的,所以称为诱发电位。
学说 企图用一种学说去解释各种生物体中所出现的各种不同的电现象是不可能的。不过,在动物体上,特别是在神经系统或肌肉系统中所发生的各种电现象,基本上可以用A.L.霍奇金与A.F.赫胥黎提出的离子学说,从细胞水平加以解释。
离子学说是在J.伯恩斯坦(1902)提出的膜学说的基础上发展而成的。离子学说认为,神经或肌肉的细胞膜,对不同的离子具有不同程度的通透性。又由于细胞内的各种离子浓度,特别是钾离子、钠离子和氯离子,与细胞外液中的浓度不同,因此,在细胞膜内外两侧间就会产生电位差(根据F.G.唐南氏平衡原理)即膜电位。这是静息电位的基础。在不同的生理条件下,细胞膜对各种离子的通透性将发生变化,因此膜电位也即发生改变,即形成各种形式的动作电位。例如,在静息状态下,神经或肌肉细胞的细胞膜对钾离子具有较大的通透性,而细胞内的钾离子浓度高于细胞外的浓度几十倍,因而形成几十毫伏的膜外较膜内正的静息膜电位。当改变细胞外(或细胞内)的钾离子浓度时,静息膜电位将按能斯脱(Nernst)公式的关系,发生相应的改变。这就证明了静息膜电位决定于细胞内外钾离子浓度的观点。有些植物细胞的静息膜电位,也是由细胞内外钾离子的浓度所决定的。当神经或肌肉细胞发生兴奋时,细胞膜对各种离子的通透性发生了变化,即对钠离子的通透性突然增大,并在各种离子的通渗性中占优势地位。因此在这瞬间内,膜电位的大小与极性,主要决定于细胞膜内外的钠离子浓度。由于细胞外的钠离子浓度较细胞内高,因此,在短时间内膜电位突然由膜外较膜内正变为膜内较膜外正,即出现反极化现象。此时电位变化的幅度(去极化后再成反极化)可达100毫伏以上,这就是动作电位。但这时仍有不同于静息状态下的膜电位,称为动作膜电位。
动作电位所在的区域,即兴奋冲动所在的区域,会迅速地向前传导。兴奋冲动在某一区域出现的时间极短,只有几毫秒。当兴奋冲动过去以后,这一区域的膜电位又逐渐恢复到原来的静息状态,即恢复静息膜电位。
在不同的细胞上,甚至在同一个细胞的不同区域的细胞膜上所发生的通透性变化并不完全一致。例如,脊椎动物视网膜中的视细胞,在受光照刺激时所产生的反应是膜电位升高(超极化)。但是,无脊椎动物视网膜中的视细胞,受光照刺激时所产生的反应是膜电位降低(去极化)。又如,在同一个脊髓运动神经元轴突的膜上,兴奋时所表现的是去极化甚至反极化反应。但在同一个运动神经元的兴奋性突触后膜上,当接受另一个神经元的神经末梢释放的兴奋性递质时,虽然也产生去极化反应,但这时所发生的离子通透性变化却与轴突上所发生的不同。兴奋性突触下膜兴奋时,对钠离子的通透性不是单独的突然增加,而是对各种离子的通透性普遍地增加,所以它并不出现反极化(膜内较膜外正)的状态。在同一个运动神经元的抑制性突触后膜上,当接受另一个神经元的神经末梢释放的抑制性递质作用时,情况另是一样。抑制性突触下膜兴奋时对钾离子与氯离子的通透性增高,使膜电位超极化,则膜外更正于膜内。可见不同的细胞,甚至同一细胞的不同区域的细胞膜,在兴奋时所产生的膜电位变化是不相同的。
总的来说,无论是静息膜电位或各种动作膜电位变化,都可以用细胞膜对各种离子通透性的不同来解释。由于通透性的不同变化,膜内外各种离子浓度的差别,表现出各种极性、幅值、频率、相位不同的生物电现象。
在组织或器官上发生的生物电现象,大多数是个别细胞所产生的生物电的矢量总和,所以对它的发生机制同样可以用离子学说去解释。但有些生物电变化的时间过程极缓慢,如光合作用时所产生的电变化与细胞的代谢活动有密切联系,即是一种生物电化学电位。在大脑皮层上还可以检测出一些极缓慢的电位波动,有的在1分钟内波动几次,有的几分钟甚至几十分钟才有明显的变化。这种电位与快速的神经细胞兴奋活动不同,也可能是一种由代谢活动所引起的或与神经胶质细胞活动有关的生物电化学现象。
生物学意义 电鱼能在瞬间放出高压电,所以既有防御猎食者侵犯的作用;也可用这种电击捕获小动物。另有一些电鱼,如非洲的裸背鳗鱼类,能不断地释放微弱的电脉冲,起探测作用或导向作用。生物电更普遍的意义在于信息的转换、传导、传递与编码。生物体要维持生命活动,必须适应周围环境的变化。由于环境变化的因素与形式复杂多变,如变化的光照、声音、热、机械作用等等,因此生物有机体必须将各种不同的刺激动因快速转变成为同一种表现形式的信息,即神经冲动,并经过传导、传递和分析综合,及时作出应有的反应。高等动物具有各种分工精细的感受器。每种感受器一般只能感受某种特殊性质的刺激。感受器中的感觉细胞接受刺激时会发生感受器电位,并用它来启动神经组织,产生动作电位。因此,不同的刺激动因都变成了同一形式的神经冲动。神经冲动是“全或无”性质的,即“通”、“断”形式的信息。神经冲动用频率变化形式,传递信息到中枢神经系统。中枢神经系统对信息进行分析、综合、编码,并将同时作出的反应信息以神经冲动形式传向外周效应器官。动作电位的传导极为迅速,所以生物体能及时对周围环境变化,作出迅速的反应。这一系列的信息传递都是以发生各种形式的生物电变化来完成的。
应用 生物体内广泛、繁杂的电现象是正常生理活动的反映,在一定条件下,从统计意义上说生物电是有规律的:一定的生理过程,对应着一定的电反应。因此,依据生物电的变化可以推知生理过程是否处于正常状态,如心电图、脑电图、肌电图等生物电信息的检测等。反之,当把一定强度、频率的电信号输到特定的组织部位,则又可以影响其生理状态,如用“心脏起搏器”可使一时失控的心脏恢复其正常节律活动。应用脑的电刺激术(EBS)可医治某些脑疾患。 在颈动脉设置血压调节器,则可调节病人的血压。“机械手”、人造肢体等都是利用肌电实现随意动作的人-机系统。宇航中采用的“生物太阳电池”就是利用细菌生命过程中转换的电能,提供了比硅电池效率高得多的能源。可以预见生物电在医学、仿生、信息控制、能源等领域将会不断开发其应用范围。
Ⅲ 外星人把人类当成生物电的电影叫什么
星河战队
Ⅳ 人体生物电的电压和电流是多少
心脏跳动时会产生1~2 毫伏的电压,眼睛开闭产生5~6毫伏的电压,读书或思考问题时大脑产生0.2~1毫伏的电压。很小的,要不会使细胞死亡器官受损的。 至于静电,对人体而言是外界产生的,也不是生物电。人体通常对地可能具有几百伏至上千伏的静电。这大多是在与地面绝缘(例如穿皮鞋)时走路、衣服摩擦产生的静电,以及在高压线附近感应的静电,特别是在化纤地毯上行走时,人体所带静电可达上万伏。所以,制作集成电路的电子工厂、电脑配件工厂都必须铺设防静电地板,工作时必须戴上接地腕环,才能接触电子元件,就是为了防止人体静电击穿电子元件。在易燃易爆等危险场合工作时也要穿防静电服。在日常生活中,有很多U盘的损坏,就是用手指接触USB口导致的;在冬季、北方等干燥环境中,触摸金属制品常被电击就是静电在作怪。
Ⅳ 生物电是多少伏
当然能通过电来控制肌肉,心脏起搏器就是这个原理.
资料:http://52kx.com/article/Article_Print.asp?ArticleID=1353
http://info.datang.net/S/S1060.htm
http://www.dhxx.net.cn/zxzr/source/czsw/SJTJ/1066_SR.asp
人体的生物电压?
人体的任何一个细微的活动,都与生物电相关,外界的刺激、心脏的跳动、肌肉的收缩、眼睛的开闭、大脑思维等:像心脏跳动时会产生1-2毫伏的电压、眼睛开闭时会产生5-6毫伏的电压、读书或思维时会产生0.2-1毫伏的电压,而人体内的生物电位在安静时通常为90毫伏。
Ⅵ 到底什么是生物电
生物有电并非怪事,它早已存在,不过人们研究它、应用它,还只是近年的事。2000年前,古罗马帝国流行一种奇怪的治病方法,用来治疗头痛、风痛等症状。当一个人痛风发作时,医生把病人带到海边潮湿沙滩上,在病人脚底放一条黑色大鱼,此时病人就会感到脚底地发麻,一直麻到膝盖为止,如此反复进行,可以治愈疾病。据说,此法曾治好许多达官贵人的病。到了1758年,英国科学家卡文迪许开始着手探究上述治病方法的奥秘。他把大墨鱼埋在潮湿沙滩里,上面接一莱顿瓶,结果莱顿瓶发出火花,由此证明大黑鱼放出的是电,卡文迪许证明电鲼放电不久,意大利科学家加伐尼在1791年发现在青蛙肌肉中也蕴藏着电能,他把这种电称为“生物电”。这便是生物电名字的由来。
生物电的研究,对于农业生产也具有很大的意义。我们常常见到的向日葵,它们的花朵能随着太阳的东升西落而运动;含羞草的叶子,经不起轻扰,一碰就会低眉垂着头害起羞来。这些植物界中的自然现象,都是因为生物电在起作用的缘故。植物中的生物电,究竟是怎样产生的呢?有人曾做过如下的实验:在空气中,将一个电基放在一株植物的叶子上,另一电基放在植物的基部;结果发现两个电极之间能产生30毫伏左右的电位差。当将同样的一株植物放在密封的真空中时,由于植物在真空中被迫停止生命活动,所以植物基部和叶片之间的电压也就消失了。空虚实验有力地证明,生物的生命活动,是产生生物电的根源.
生物电决定健康作为生命本质特征的生物电系统,与人体健康有着至关重要的决定性的密切联系。一块寿命很长的蓄电池,如果在得不到充电的情况下长时间不间断地连续使用,就会使它在短时间内遭到无法修复的破坏而报废;人体也像一块大的“蓄电池。因紧急工作而连续几天不合眼而导致猝死的事件屡有报道,这提醒我们,人也要善于使用人体这块大“电池”。研究证明,正是由于生物电对人体的决定性影响,空气中的带电粒子——离子进入人体后,会改变人体的生物电的状态,对人体产生影响。
一些研究结果充分表明,经常给人体补充电能量,体生物电和促进人体生物电的正常循环、流动来实现的。可以取得药物所不及的效果。要把健康保持到100岁,永远不要忘记随时随地给自己“充电”。
人体生物电疗法为什么能治病
人体生物电疗法基于外加电场(磁场),对人体电场(磁场)的影响和人体电场与疾病的关系来预防和治疗疾病。属于中医学的外治范畴,因为能量级高,所以能够快速打通经络、穴位,活血化瘀、平衡血液酸碱度,净化血液。消肿止痛、增强筋骨、平衡人体生物电场,提高人体免疫力和自我修复能力,活化细胞,延长细胞的寿命。
人体生物电疗法即将220V交流电经人体调控为人体容易接受的生物电流,直接作用于病变部位或顺经上穴,根据不同的病症、部位,使用不同电流、电压同时配合不同手法施治,一般在几十几秒至几十几分钟便可打通经络,产生明显效果。
人体一旦没有了生物电,人体即变成尸体。生物电是人类生命的元素,是生命的最基本保障。生物电疗法是及临床医学,运动医学和康复医学的新型医用高科技治疗设备。在发达国家人们用来预防及治疗疾病的首选。
Ⅶ 生物电!!!
可能你看到的是讲神经的?生物电是在生命活动过程中在生物体内产生的各种电位或电流,包括细胞膜电位、动作电位、心电、脑电等。
有两种“电”,第一类说的是电位,成因是离子浓度分布不均,主要出现在生物体内,作为内环境的重要调节形式而存在。第二类说的就是平时所理解的电流或者电压,来源各种各样,主要用于生物对于体外环境的处理,比如电鳗的尾部可以放电,电击猎物。
Ⅷ 什么是生物电
生物电
电及电的利用人们早就熟知而习以为常了。在冬天手冷了,只要双手互相使劲地搓就会产生电和热;若用一块毛皮擦一根金属棒,则在金属棒上会产生更多的电荷,此时用它碰碰小纸屑,小纸屑便可被吸引附着在金属棒上。至于现代化的家庭几乎样样都离不开电。电灯、电扇、电冰箱、电话、电视机等等。可是你可知道,我们人体也有电的产生与电的不断变化呢!
前面我们已经谈到过,我们人体是由许多许多细胞构成的。细胞是我们机体的最基本的单位,因为只有机体各个细胞均执行它们的功能,才使得人体的生命现象延续不断。同样地,我们若从电学角度考虑,细胞也是一个生物电的基本单位,它们还是一台台的“微型发电机”呢。原来,一个活细胞,不论是兴奋状态,还是安静状态,它们都不断地发生电荷的变化,科学家们将这种现象称为“生物电现象”。细胞处于未受刺激时所具有的电势称为“静息电位”;细胞受到刺激时所产生的电势称为“动作电位”。而电位的形成则是由于细胞膜外侧带正电,而细胞膜内侧带负电的原因。细胞膜内外带电荷的状态医生们称为“极化状态”。
由于生命活动,人体中所有的细胞都会受到内外环境的刺激,它们也就会对刺激作出反应,这在神经细胞 (又叫神经元)、肌肉细胞更为明显。细胞的这种反应,科学家们称“兴奋性”。一旦细胞受到刺激发生兴奋时,细胞膜在原来静息电位的基础上便发生一次迅速而短暂的电位波动,这种电位波动可以向它周围扩散开来,这样便形成了“动作电位”。
既然细胞中存在着上述电位的变化,医生们便可用极精密的仪器将它测量出来。此外,还由于在病理的情况下所产生的电变化与正常时不同,因此医生们可从中看出由细胞构成的器官是否存在着某种疾病。
有一种叫“心电描记器”的仪器,它便是用来检查人的心脏有否疾病的一种仪器。这种仪器可以从人体的特定部位记录下心肌电位改变所产生的波形图象,这就是人们常说的心电图。医生们只要对心电图进行分析便可以判断受检人的心跳是否规则、有否心脏肥大、有否心肌梗塞等疾病。
同样地,人类的大脑也如心脏一样能产生电流,因此医生们只要在病人头皮上安放电极描记器,并通过脑生物电活动的改变所记录下来的脑电图,便知道病人脑内是否有病。当然,由于比起心电来,脑电比较微弱,因此科学家要将脑电放大100万倍才可反映出脑组织的变化,如脑内是否长肿瘤、受检查者有否可能发生癫痫(俗称羊癫疯)等。科学家们相信,随着电生理科学以及电子学的发展,脑电图记录将更加精细,甚至有一天这类仪器还可正确地测知人们的思维活动。
电在生物体内普遍存在。生物学家认为,组成生物体的每个细胞都是一合微型发电机。细胞膜内外带有相反的电荷,膜外带正电荷,膜内带负电荷,膜内外的钾、钠离子的不均匀分布是产生细胞生物电的基础。但是,生物电的电压很低、电流很弱,要用精密仪器才能测量到,因此生物电直到1786年才由意大利生物学家伽伐尼首先发现。
人体任何一个细微的活动都与生物电有关。外界的刺激、心脏跳动、肌肉收缩、眼睛开闭、大脑思维等,都伴随着生物电的产生和变化。人体某一部位受到刺激后,感觉器官就会产生兴奋。兴奋沿着传入神经传到大脑,大脑便根据兴奋传来的信息做出反应,发出指令。然后传出神经将大脑的指令传给相关的效应器官,它会根据指令完成相应的动作。这一过程传递的信息——兴奋,就是生物电。也就是说,感官和大脑之间的“刺激反应”主要是通过生物电的传导来实现的。心脏跳动时会产生1~2 毫伏的电压,眼睛开闭产生5~6毫伏的电压,读书或思考问题时大脑产生0.2~1毫伏的电压。正常人的心脏、肌肉、视网膜、大脑等的生物电变化都是很有规律的。因此,将患者的心电图、肌电图、视网膜电图、脑电图等与健康人作比较,就可以发现疾病所在。
在其他动物中,有不少生物的电流、电压相当大。在世界一些大洋的沿岸,有一种体形较大的海鸟——军舰鸟,它有着高超的飞行技术。能在飞鱼落水前的一刹那叼住它,从不失手。美国科学家经过10多年研究,发现军舰鸟的“电细胞”非常发达,其视网膜与脑细胞组织构成了一套功能齐全的“生物电路”,它的视网膜是一种比人类现有的任何雷达都要先进百倍的“生物雷达”,脑细胞组织则是一部无与伦比的“生物电脑”,因此它们才有上述绝技。
还有一些鱼类有专门的发电器官。如广布于热带和亚热带近海的电鳐能产生100伏电压,足可以把一些小鱼击死。非洲尼罗河中的电 缩,电压有400~500伏。南美洲亚马孙河及奥里诺科河中的电级,形似泥锹、黄绍,身长两米,能产生瞬间电流2安培,电压800伏,足可以把牛马甚至人击毙在水中,难怪人们说它是江河里的“魔王”。
植物体内同样有电。为什么人的手指触及含羞草时它便“弯腰低头”害羞起来?为什么向日葵金黄色的脸庞总是朝着太阳微笑?为什么捕蝇草会像机灵的青蛙一样捕捉叶子上的昆虫?这些都是生物电的功劳。如含羞草的叶片受到刺激后,立即产生电流,电流沿着叶柄以每秒14毫米的速度传到叶片底座上的小球状器官,引起球状器官的活动,而它的活动又带动叶片活动,使得叶片闭合。不久,电流消失,叶片就恢复原状。在北美洲,有一种电竹,人畜都不敢靠近,一旦不小心碰到它,就会全身麻木,甚至被击倒。
此外,还有一些生物包括细菌、植物、动物都能把化学能转化为电能,发光而不发热。特别是海洋生物,据统计,生活在中等深度的虾类中有70%的品种和个体、鱼类中70%的品种和95%的个体,都能发光。一到夜晚,在海洋的一些区域,一盏盏生物灯大放光彩,汇合起来形成极为壮观的海洋奇景。
Ⅸ 生物电是什么意思
生物体内的电能,比如西红柿体内本身就有一定的电能。把两铅片插入西红柿内,用舌头同时舔两铅片的另一端就会有被电流通过的发麻的感觉。
在生命活动过程中在生物体内产生的各种电位或电流,包括细胞膜电位等。
Ⅹ 什么是生物电
大千世界,芸芸众生,无论是动物或是植物,一切生命活动都离不开电现象。凡是有生命的细胞,都会产生生物电流。人体就是一座日夜不停的电波发射台。拿大脑来说,100多亿个神经细胞,每个脑细胞都是一台小小的“发电机”,这拥有100多亿台“发电机”的大脑,夜以继日地发出各种各样的电脉冲。如果将这些生物电流集中起来,足可点亮一个8瓦灯泡!正是人体有了生物电,才使生命充满了朝气和活力。如果体内生物电消失了,生命现象也就随之而终。因此,生物电享有“生命的火花”之美誉。
