当前位置:首页 » 历物理化 » 对物理的解释

对物理的解释

发布时间: 2022-04-29 04:08:11

『壹』 物理名词的解释

不一样,他们在力产生原因,和施力者上有所不同
电场力:是对位于电场内的电荷所受的作用力。受力者是电荷,施力者是电场。
洛仑兹力:是运动的电荷在磁场中受到的作用力。受力者是电荷,施力者是磁场。
安培力:是电流在磁场中所受到的作用力,受力者是电流(通电导线或线圈),施力者是磁场。
库仑力:是两个电荷间的相互作用力,它是电场力的一种。受力者是电荷,施力者也是电荷。

『贰』 “物理”一词作何解释

物理是研究光、热、力、声、电等形形色色物理现象和物质结构的一门科学。

『叁』 怎么理解物理

中学物理基础知识体系中,物理概念是其中最基本的元素。它反映了物理事实中最本质的东西,是客观事物的物理本质属性在人们头脑中的反映。
然而,有些同学却不重视对概念的理解与掌握,把主要精力都用在盲目做题上,其结果是在做题中遇到了很多障碍,白白浪费了很多时间。他们总是有一种题目很多,头绪很乱,忙得不可开交的感觉,在分析物理现象或处理物理问题时,常常出现错误的判断或者束手无策,究其原因,其重要的一条是没有正确理解物理概念。物理概念既然重要,那么,怎样来学好物理概念呢?我认为主要从这几个方面入手:

第一,要搞清为什么要引入这个物理概念?引入物理概念的物理事实或实验是什么?概念是怎样运用什么思维方法形成的?弄清这些问题,就明确了引入概念的必要性和目的性,也即掌握了物理概念的物理意义。课本中的物理概念虽然都经过前人研究,有了明确的定义,但是我们要真正理解概念的物理意义,仍然需要我们经过从感性认识上升到理性认识的过程,而不能只是记忆一些空洞的词句,不很好地认识概念的本质。因此,在学习物理概念上,要注意理解形成概念的那些直观材料,要多动脑筋,积极思维,对直观材料进行分析、比较,抓住事物的本质特性。例如,在引入加速度这个概念时,为了便于理解,教材中以直线运动为例,给出直观材料,“汽车开动时,它的速度在几秒内从零增加到几十米每秒。发炮时,炮弹的速度在千分之几秒内就从零增加到几百米每秒”。通过这个直观材料我们看到物体在运动过程中当速度发生变化时,速度变化的快慢程度不同,其中炮弹速度变化得快,汽车速度变化得慢。因此,为了区分速度变化的快慢程度,我们引入加速度这个物理概念。在这样直观材料基础上的分析和综合,对加速度的物理意义,描述速度变化快慢程度的物理量也就不难理解了。

第二,要掌握了概念的本质,理解它的内涵与外延。也就要理解物理概念的定义是什么?定义式是什么?决定它大小的条件是什么?单位是什么?是否为矢量?
在学习中,我们不但要能够了解定义,熟记定义,更为重要的是应以定义为基础,全面地理解概念的内涵和外延,并且认清概念与其他知识之间的联系。具体来说,要注意从以下几方面入手:一、注意定义的科学性和逻辑性,如;磁通量的变化率不要说成磁通量的变化量,更不能看做是磁通量的大小;电荷的周围存在着电场,不能说成电荷的周围是电场,因为电荷的周围还可能存在其他物质等等。这都表明理解概念的定义必须确切,要注重科学性。二、注意物理量的本质的理解,如一些以比值定义的物理量:E=F/q中,电场强度并不是由F与q来决定;加速度的定义a=△v/t,它只能反映或描述速度变化的快慢,而速度变化的快慢并不是由△v与△t而决定的等等。三、注意概念之间的区别与联系,物理上有很多形式相似而本质不同的概念,它们之间的联系很密切,但又容易被混淆。例如,速度与加速度,电场力与电场强度,电势能与电势,重量与质量等。在学习中,要注意用比较的方法把相似、相近的而容易混淆的概念区分开来,一方面使我们对建立某概念的物理事实有透彻的了解;另一方面使我们能找出概念间的同中之异,异中之同,明确这些概念之间的区别和联系,从而巩固和加深对概念的正确理解。

第三,要能够运用概念去分析判断和解决物理的实际问题。一方面抽象概念的理解是困难的,但如果把“概念”放在实例中去记忆,去理解,就要简单得多,也就更容易区分相关因素和无关因素,找出共同特征。另一方面,我们学习物理知识的目的就是要利用物理知识去解决实际问题。

第四,要在长期的学习过程中不断地认识,不断地理解。如力这个概论,从初中二年级就开始学习,有了一个初步认识。升入高中后,又开始学习,并给予初步的概括:力是物体对物体的作用。第三章中学习了牛顿第一定律,又进一步认识了力作用的相互性。到此,也只是停留在机械力的范筹之内。到学习了电场力和磁场力后,才从不同领域,不同类型的力的作用情况,通过联想和类比,形成比较深刻的认识。也就是说,认识一个物理概念有一个不断发现,不断提高的过程。这就要求我们在学习中多观察,多扩大自己头脑中的信息量,经过加工比较,实现对概念的深刻理解与掌握。

第五,对所学过的物理概念进行分类,中学物理涉及的概念约四百余个,大致可以分为以下四类:
第一类是反映物质属性的。如:运动、惯性、质量、能量、电、磁、波粒二象性等,这类概念的特点是:其含义深刻,富有哲理性,很难从其表面定义上获得深入理解。只有随着知识学习的积累和发展才能由表及里,由浅入深地加深对概念的理解。
第二类是反映物质及其性质的。如:速度、加速度、密度、功率、比热、电场强度、电势、电动势、电阻、电容等。它们的共同特点是:用两个或几个物理量的比值来表示它们的定义。
第三类是反映物质间相互作用关系的。如:力、力矩、压强、冲量、功、热量。这些概念的特点是:与物质间相互作用密切关联,对于单个物质是毫无意义。
第四类是一些描述物理现象的名称。如:匀速直线运动、圆周运动、形变、熔解、反射、折射、干涉、静电感应、电磁感应、反射性、核反应、质量亏损等。这类概念的特点是:就其概念本身而言,并不难理解,难理解的是这些物理现象产生的原因、条件、及规律。
总之,要学好物理,首先要在理解物理概念上下工夫,理解每个物理概念的内涵和外延,从而达到提高思维能力的目的。因此,正确理解物理概念也就成了学好物理的关键

『肆』 物理学最本质定义是什么

物理学(希腊文Φύσις,自然)是研究物质、能量的本质与性质,以及它们彼此之间相互作用的自然科学。由于物质与能量是所有科学研究的必须涉及的基本要素,所以物理学是自然科学中最基础的学科之一。

物理学是一种实验科学,物理学者从观测与分析大自然的各种基于物质与能量的现象来找出其中的模式。这些模式(假说)称为“物理理论”,经得起实验检验的常用物理理论称为物理定律,直到有一天被证明是有错误为止(具可否证性)。物理学是由这些定律精致地建构而成。物理学是自然科学中最基础的学科之一。化学生物学、考古学等等科学学术领域的理论都是建构于这些物理定律。

拓展资料:

物理学是最古老的学术之一。物理学、化学、生物学等等原本都归属于自然哲学的范畴,直到十七世纪至十九世纪期间,才渐渐地从自然哲学中分别成长为独立的学术领域。物理学与其它很多跨领域研究有相当的交集,如量子化学、生物物理学等等。

物理学的疆界并不是固定不变的,物理学里的创始突破时常可以用来解释这些跨领域研究的基础机制,有时还会开启崭新的跨领域研究。

『伍』 对物理的认识

第一,当然是要有兴趣,我从来不认为我是在学习物理,而是对客观世界运动的规律抱有浓厚的兴趣。

第二,改变已有的思维模式和世界观,比如说,我们从小就认为,力是维持物体运动的原因,没有力了,物体就停止了。但是,真理告诉我们,力是改变物体运动状态的原因,那么没有力了,物体怎么会停止呢?答案是,阻力使物体停了下来,就像是汽车刹车一样,正是地面对轮胎的摩擦力,使汽车停了下来。如果你要坚持你的经验就是真理的话,那么你很难学好物理,客观的真理是不会因为人的意志而转移的。

第三,物理、物理,说的就是物的道理,是一门实验和理论相结合的科学,也因此,物理现象无处不在,我们要善于观察。

『陆』 物理学名词解释

物理学是研究物质结构、物质相互作用和运动规律的自然科学。是一门以实验为基础的自然科学,物理学的一个永恒主题是寻找各种序(orders)、对称性(symmetry)和对称破缺(symmetry-breaking)10、守恒律(conservation
laws)或不变性(invariance).

『柒』 谈谈对物理学的认识及看法

物理学是一门科学的学科,物理用处是非常大的,关系到天文地理等各个方面都需要用到物理学方面的东西。

『捌』 物理的含义

物理的含义
物理学是研究自然界基本规律的科学.它的英文词physics来源于希腊文,原义是自然,而中文的含义是“物”(物质的结构、性质)和“理”(物质的运动、变化规律).中文含义与现代观点颇为吻合.现代观点认为物理学主要研究:物质和运动,或物质世界及其各部分之间的相互作用,或物质的基本组成及它们的相互作用.

物质可以小至微观粒子——分子、原子以至“基本”粒子(elementaryparticles).所谓基本粒子,顾名思义是物质的基本组成成分,本身没有结构.然而基本与否与人们的认识水平以及科学技术水平有关,因此对“基本”的理解有阶段性.有鉴于此,物理学家简单地称之为“粒子”.有时为了表达认识的层次,我们仍然可以说:“现阶段的基本粒子为……”.当前我们认为基本粒子有轻于(lepton)、夸克(quark)、光子(photon)和胶子(gluon)等等.科学家们正在努力寻找自由夸克.此外,分数电荷、磁单极也在寻找之列.我们周围的物体是物质的聚集状态.人们可以用自己的感官感知大多数聚集状态的物质,并称它们为宏观(macroscopic)物质以区别前面所说的微观(microscopic)粒子.居间的尺度是介观(mesoscopic),而更大的尺度是宇观(cosmological).场(field)传递相互作用,电磁场和引力场就是例子.

在物理学的范围内,物质的运动是指机械运动、热运动、微观粒子的运动、原子核和粒子间的反应等等.运动总是发生在一定的时间和空间.时间和空间首先是作为物质运动的舞台,但最后也成了物理学研究的对象.

现在知道物质之间的相互作用有四种,即万有引力、弱相互作用、电磁相互作用和强相互作用.

爱因斯坦(A.Einstein,1879—1955)生前曾致力于统一场论的工作,试图用统一的理论来描述各种相互作用.在60年代,走向统一有了突破性的进展.格拉肖(S.L.Glashow)、温伯格(S.Weinberg)和萨拉姆(A.Salam)等人发现弱相互作用和电磁相互作用可以统一,用弱电相互作用(electroweak)来描述.鲁比亚(1983[1],C.Rubbia)等提供了实验支持.大统一理论(Grand Unification Theory,GUT)试图将强相互作用也统一进去,而超对称理论更企图将引力也纳入其中.还有人在寻求其他的相互作用.对此,在Physics Teacher期刊上曾有一篇文章题为“存在第五种基本力吗?”专门讨论这一命题[6].在高级的理论中,相互作用只不过是交换物质,如电磁作用交换光子、强作用交换胶子.

物理学的一个永恒主题是寻找各种序(orders)、对称性(symmetry)和对称破缺(symmetry-breaking)[10]、守恒律(conservation laws)或不变性(invariance).物质的有序状态比我们想象的要广泛得多.除了排列整齐的位置序以外,还可以有指向序.超导态也是一种有序状态.对称性通常指静止的空间几何对称,如太极图、八卦、晶体中的平移和旋转对称.实际上,对称性还可以是动态的,可以是时间反演对称、物质—反物质对称以及更为抽象的规范对称等等.

就物理学和其他科学的关系而言,我们可以说:

·物理学是最基本的科学.

·物理学是最古老、发展最快的科学.

·物理学提供最多、最基本的科学研究手段.

最基本的体现是在天文学、地学、化学、生命科学中都包含着物理过程或现象.在这些学科中用到不少物理学概念和术语是很自然的.最基本还意味着任何理论都不能和物理学的定律相抵触.例如,如果某种理论破坏能量守恒定律,那么这一理论就很成问题.当然,某些物理理论本身或一些阶段性的工作本身也是在不断地完善.

19世纪中叶之前,物理学曾是完完全全的实验科学.力学中的理论问题被认为是数学家的事.19世纪末,在当时处于世界物理学中心的德国的大学里,开始设置理论物理学教授的席位.此后,随着人类的认识能力逐步深入,逐步深入到不能靠直觉把握的微观、高速、宇观现象,20世纪初建立了狭义和广义相对论,以及量子力学这些深刻的物理理论.到了20世纪中叶,物理学已经成为实验和理论紧密结合的科学.20世纪后半叶由于电子计算机的发展,既改变了理论物理的工作方式,也扩大了实验的涵义.目前物理学已经成为实验物理、理论物理、计算物理三足鼎立的科学.实验提供的条件比自然界出现的更富变化和更灵活可控,而物理理论则给出了对自然界的数学描述.计算物理学是重要的新分支,有自己独特的研究方法.计算机实验可以提供比通常的实验更为变化丰富和灵活控制的条件.不过通常需要用到超级计算机.

物理学中最重大的基本理论有下面5个:

·牛顿力学或经典力学(Mechanics)研究物体的机械运动;

·热力学(Thermodynamics)研究温度、热、能量守恒以及熵原理等等;

·电磁学(Electromagnetism)研究电、磁以及电磁辐射等等;

·相对论(Relativity)研究高速运动、引力、时间和空间等等;

·量子力学(Quantum mechanics)研究微观世界.

后两个理论主要是在20世纪发展起来的,通常认为是现代物理学的核心.以上理论中没有一个被完全推翻过,也没有一个是永远正确的.例如,牛顿力学在高速情形下,应该用狭义相对论来代替;而对于强引力,它又偏离于广义相对论,但在它的适用范围内仍然是精确的.科学的理论总是要发展的,需要根据新发现的事实进行修正.在教科书中只介绍一种版本的做法很可能导致“理论是唯一的”这样的观念.事实上,理论决不是唯一的.科学理论往往在美学上令人赏心悦目,在数学上优雅而普适,但是仅仅有这些是决不可能流传下来的.理论和思想必须经受实验的检验和验证.物理学中的理论和实验在相互促进和丰富中得到发展.

一个没有思想的实验工作者可以发现无穷无尽的事实,不过毫无用处.理论家如果不受实验检验这一约束也可能产生出极其丰富的思想,不过与大自然毫无关系而已.

通常的科学研究方法是:

·通过观测、实验、计算机模拟得到事实和数据;

·用已知的可用的原理分析这些事实和数据;

·形成假说和理论以解释事实;

·预言新的事实和结果;

·用新的事例修改和更新理论.

上述的后3步都是关于理论的.以上所说的科学研究的步骤是常规的.有时候,有的人可能并不遵循这样的过程.常常直觉(intuition)或者预感(premonition)会起相当的作用.有时候,机遇(运气或偶然)对于成功也会起作用,使你获得一则重要的信息或发现一个特别简单的解.要学会在恰当的时机提出恰当的问题,并找到问题的答案.有时还必须忽略一些“事实”,原因是这些并不是真正的事实或者它们无关紧要、自相矛盾;或者是由于它们掩盖了更重要的事实或考虑它们使问题过于复杂化.据说,有一次有人问爱因斯坦:如果迈克耳孙-莫雷(Michelson-Morley)实验并不导致光速不变你怎么办?他说:他将忽略那些实验结果,他已经得到了结论,光速必须被认为是不变的.关于爱因斯坦1905年提出狭义相对论时是否知道迈克耳孙-莫雷实验,曾发生过长时间的争论.有人认为爱因斯坦在他的著作中没有留下他知道迈克耳孙-莫雷实验的丝毫痕迹,他可能纯粹通过理论推理和他们(迈克耳孙与莫雷)得出了相同的结论.爱因斯坦的首席传记作家培斯(Abraham Pais)筛选了许多历史记载,得出结论说,爱因斯坦确实知道这一实验.新近有一篇爱因斯坦在1922年的演说的英文翻译稿刊登在Physics Today上[8].此文是根据原来的德语演讲的日文记录整理、翻译的[见第九章参考文献(13)].译者让爱因斯坦“本人”表示,他知道这一实验.

在大学物理的学习中,除了学习事实、定律、方程和解题技巧外,还必须努力从整体上掌握物理学.要了解各分支间的相互联系.现代观点认为,应该从整体上逻辑地、协调地来把握物理学.学习中,对于基本物理定律的优美、简洁、和谐以及辉煌应该有所体会,要学会鉴赏其普适程度,了解其适用范围.还要学会区别理论和应用,物理思想和数学工具,一般规律和特殊事实,主要和次要效应,传统的和现代的推理方式等等

『玖』 对物理的认识及如何去学习(初二)

物理是一种理科课程.初中物理呢,是应用物理的知识来解释日常生活当中的许多现象的学科.比较贴近于生活.也来自生活.要是想学好物理呢,就必须有合适的方法.如果没有合适的方式方法的话.你根本就学不会物理的,因为物理是有逻辑性的.那么怎么学好初中物理这门学科呢?有什么样的方法可以学好物理呢?

初中物理思维导图

第五、不懂就问

发现自己有不会的地方,一定要及时的问同学或者是老师.不懂就问才是最好的学习方法,这样就把所有的知识点都放在你的脑子里边了.成为你自己的东西了,而不是别人的东西.

关于怎么学好初中物理的方法技巧已经告诉给大家了,希望同学们能够按照上面的方式方法进行学习,对于你们提高成绩是很有帮助的.

热点内容
2017年四川数学卷 发布:2025-05-18 00:16:14 浏览:719
中国社会科学院暑期 发布:2025-05-17 23:31:35 浏览:687
简单广场舞教学 发布:2025-05-17 20:37:48 浏览:13
二级学科博士点 发布:2025-05-17 19:10:15 浏览:125
永兴教师招聘 发布:2025-05-17 19:10:15 浏览:664
高中教师资格证考试用书 发布:2025-05-17 16:29:17 浏览:52
小学教师的条件 发布:2025-05-17 16:21:01 浏览:419
教育学教育心理学题库 发布:2025-05-17 16:14:16 浏览:819
夏威夷群岛地理位置 发布:2025-05-17 16:10:46 浏览:949
奴隶老师漫画全集 发布:2025-05-17 16:01:34 浏览:911