医学生物
指的是等电点。
等电点是一个分子或者表面不带电荷时的pH值。是针对带电荷的物质而言,不只限于两性电解质如氨基酸和蛋白质。当然,蛋白质是两性电解质,其等电点和它所含的酸性氨基酸和碱性氨基酸的数量比例有关。
各种蛋白质因氨基酸残基组成不同,等电点也不一样。当溶 液在某一特定pH值的条件下,蛋白质所带 正电荷与负电荷恰好相等(总净电荷为零) 时,在电场中既不向阳极移动,也不向阴极 移动。因此利用电泳的方法可以确定蛋白质的等电点,也可以将不同带电性质和不同大 小、形状的蛋白质分子进行分离纯化。
(1)医学生物扩展阅读
以蛋白质等电点为例,其特性如下:
蛋白质在溶液中有两性电离现象。假设某一溶液中含有一种蛋白质。当pI=pH时该蛋白质极性基团解离的正负离子数相等,净电荷为0,此时的该溶液的是pH值是该蛋白质的pI值。某一蛋白质的pI大小是特定的,与该蛋白质结构有关,而与环境pH无关。
在某一pH溶液中当pH>pI时该蛋白质带负电荷,反之pH<pI时该蛋白质带正电荷,pH=pI时该蛋白质不带电荷。人体内pH=7.4;而体内大部分蛋白质的 pI<6; 所以人体内大部分蛋白质带负电荷。
⑵ 生物学和医学有什么关系
关系如下:
1,生物学是现代医学的重要基础理论基础医学各科,如解剖学、回组织胚胎学、生物化学答、生理学、寄生虫学、微生物学、免疫学、药理学、病理解剖学及病理生理学等,都是以细胞为研究基础,以生物学为理论指导。
2,生物学与医学的关系非常密切,它是现代医学的重要基础理论,它的理论与实践将大力促进基础医学和临床医学的深入发展。因此,研究现代医学就必须学习与掌握生物学的基本理论、基本知识和实验。
(2)医学生物扩展阅读:
生物学实验技术用于医学研究,已引起医学工作者的普遍重视。近廿年来,在细胞生物学和分子生物学基础上发展起来的生物技术物工程,其中的细胞工程就是利用细胞生物学的技术和方法,按照预定的设计,改变或创造细胞的遗传物质,可能对癌症、遗传病进行诊治。
现已发现不少疾病的发生都与生物膜的特异变化相关。再如,缺血性心脏病和脑血管病可能是由于动脉内皮细胞的变化而引起的动脉粥样硬化所致。对这些疾病的认识,就必须从细胞生物学入手,深入探索动脉内皮细胞的结构和功能变化。由此可见,生物学在现代医学教育中占有重要地位。
⑶ 医学生物学基础教案怎么写
网络
一分钟了解生物医学00:46
生物医学
学科
本词条是多义词,共3个义项
生物医学是综合医学、生命科学和生物学的理论和方法而发展起来的前沿交叉学科,基本任务是运用生物学及工程技术手段研究和解决生命科学,特别是医学中的有关问题。
生物医学是生物医学信息、医学影像技术、基因芯片、纳米技术、新材料等技术的学术研究和创新的基地,随着社会-心理-生物医学模式的提出、系统生物学的发展,形成了现代系统生物医学,是与21世纪生物技术科业的形成和发展密切相关领域,是关系到提高医疗诊断水平和人类自身健康的重要工程领域。
中文名
生物医学
外文名
biomedicine
基本问题
运用生物工程技术手段研究
主要手段
电子信息技术结合医学临床
快速
导航
研究内容生物医学就业生物医学工程生物医学文献
生物医学概念
生物医学是生物医学信息、医学影像技术、基因芯片、纳米技术、新材料等技术的学术研究和创新的基地,随着社会-心理-生物医学模式的提出、系统生物学的发展,形成了现代系统生物医学,是与21世纪生物技术科业的形成和发展密切相关领域,是关系到提高医疗诊断水平和人类自身健康的重要工程领域。
研究内容
·医药微生物学 - 分离致病微生物,以用于鉴别和挑选敏感抗生素治疗。适用于对髓膜炎、食物中毒及军团病等疾病的诊治。
生物医学细胞
·生物医药-研究疫苗、糖类、酯类、蛋白质、酶、多肽、核酸和转基因产品等对生物体,特别是对人体疾病的预防及治疗作用。由于生物医药毒副作用很小,大多情况下可以达到对疾病治疗的目的,必将成为医学领域的新兴学科和热门专业。
·临床应用化学 -通过分析血液及其他生物物质,协助诊断像糖尿病等疾病。通过进行毒物学研究,测试肾脏和肝功能,并协助进行疗程监测。
·输血技术-生物医学家是医院血库及输血服务的运作中介,负责为救治病人进行输血及血浆分镏的准备工作,并确保捐血者和输血者的血型不会相互排斥。
⑷ 医学生物技术有什么好处
人们以现代生命科学为基础,结合其他基础科学的科学原理,采用先进的科学技术手段,按照预先的设计改造生物体或加工生物原料,为人类生产出所需产品或达到某种目的的技术。
医学生物技术是包括基因、病毒、基因法、病毒法、胞培养、疫苗生产、异种移植、工程、药物递送、生物感等的研究和利用的生物工程手段。利用医学生物技术能够大大提高人类的医疗水平。
海洋
⑸ 生物学和医学有什么区别吗
一、二者的含义不同,
1、生物学是研究生物(包括植物、动物和微生物)的结构、功能、发生和发展规律的科学,是自然科学的一个部分,目的在于阐明和控制生命活动,改造自然,为农业、工业和医学等实践服务。
2、医学,是通过科学或技术的手段处理生命的各种疾病或病变的一种学科,促进病患恢复健康的一种专业。它是生物学的应用学科,分基础医学、临床医学。
二、二者的学科分类不同,
1、生物学的分类主要分为形态学、生理学、遗传学、胚胎学、生态学、生物物理学、生物数学以及分子生物学等。
2、医学可分为现代医学和传统医学等多种医学体系,不同地区和民族都有相应的一些医学体系,宗旨和目的不相同。研究领域大方向包括基础医学、临床医学、法医学、检验医学、预防医学、保健医学、康复医学等。
三、二者的研究内容不同,
1、生物学的研究内容包括研究生物的结构、生理行为和生物起源、进化与遗传发育等,经历实验生物科学、分子生物学和系统生物科学等发展时期。
2、医学的研究内容在于应用基础医学的理论不断完善和实践的验证,例如生化、生理、微生物学、解剖、病理学、药理学、统计学、流行病学,中医学及中医技能等,来治疗疾病与促进健康。
参考资料来源:网络-生物学
参考资料来源:网络-医学
⑹ 生物科学与生物医学专业有何区别
一、专业不同
1、生物科学专业
生物科学(又称生命科学)专业包括了生物科学和生物技术两个专业方向,这些专业学科主要培养学生学习生物科学技术方面的基本理论、基本知识,学生将受到应用基础研究和技术开发方面的科学思维和科学实验训练,进而具有较好的科学素养及初步的教学、研究、开发与管理的基本能力。
2、生物医学专业
生物医学工程学科是以解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务的一门学科。是一门具有高度综合的交叉学科,这是它最大的特点。
二、主干课程不同
1、生物科学专业
动物生物学、植物生物学、微生物学、生物化学、细胞生物学、遗传学、发育生物学、神经生物学、分子生物学、生态学等。
2、生物医学专业
《高等数学》、《普通物理学》、《模拟电子技术》、《脉冲数字电子技术》、《医用传感器》、《数字信号处理》、《微机原理及应用》、《医学图像处理》、《医用仪器原理》、《医学影像仪器》、《检验分析仪器》、《临床工程学》、《正常人体形态学》、《生物化学》、《生理学》、《诊断学》、《内科学》、《外科学》等。
三、知识技能不同
1、生物科学专业
1)掌握数学、物理、化学等方面的基本理论和基本知识。
2)掌握动物生物学、植物生物学、微生物学、生物化学、细胞生物学、遗传学、发育生物学、神经生物学、分子生物学、生态学等方面的基本理论、基本知识和基本实验技能。
3)了解相近专业的一般原理和知识。
4)了解国家科技政策、知识产权等有关政策和法规。
5)了解生物科学的理论前沿、应用前景和最新发展动态。
6)掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。
2、生物医学专业
1)掌握电子技术的基本原理及设计方法。
2)掌握信号检测和信号处理及分析的基本理论。
3)具有生物医学的基础知识。
4)具有微处理器和计算机应用能力。
5)具有生物医学工程研究与开发的初步能力。
6)具有一定人文社会科学基础知识。
7)了解生物医学工程的发展动态。
8)掌握文献检索、资料查询的基本方法。
⑺ 医学生物技术是干什么的
医学生物技术是一种培养具备生命科学的基本理论和较系统的生物技术的基本理论、基本知识、基本技能,能在科研机构或高等学校从事科学研究或教学工作的技术专业。
本专业培养具备生命科学的基本理论和较系统的生物技术的基本理论、基本知识、基本技能,能在科研机构或高等学校从事科学研究或教学工作。
能在工业、医药、食品、农、林、牧、渔、环保、园林等行业的企业、事业和行政管理部门从事与生物技术有关的应用研究、技术开发、生产管理和行政管理等工作的高级专门人才。
(7)医学生物扩展阅读
培养要求:
1、掌握数学、物理、化学等方面的基本理论和基本知识;
2、掌握基础生物学、生物化学、分子生物学、微生物学、基因工程、发酵工程及细胞工程等方面的基本理论、基本知识和基本实验技能,以及生物技术及其产品开发的基本原理和基本方法
3、了解相近专业的一般原理和知识;
4、熟悉国家生物技术产业政策、知识产权及生物工程安全条例等有关政策和法规;
5、了解生物技术的理论前沿、应用前景和最新发展动态,以及生物技术产业发展状况。
⑻ 名词解释医学生物化学
氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。
必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。
非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸。
等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。
茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。
肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。
肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。
蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。
层析(chromatography):按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分开的技术。
离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱
透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。
凝胶过滤层析(gel filtrationchromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。
亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。
高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。
凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。
SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。
等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。
双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。
Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。
同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。
第二章 蛋白质的空间结构
构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构形的改变往往使分子的光学活性发生变化。
构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。
肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。
蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。
蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。
蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。
α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm.
β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。
β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。
超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。
结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。
纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。
球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。
角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。
胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。
疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。
伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。
二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。
范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。
蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。