水的化学方程式
㈠ 有关水的化学方程式 悬赏
2Na+2H2O=2NaOH+H2↑
Mg+2H2O=Mg(OH)2+H2↑
3Fe+4H2O(水蒸气)=Fe3O4+4H2↑
C+H2O=CO↑+H2↑(高温)
2F2+2H2O=4HF+O2↑
2H2O=2H2↑+O2↑
Na2O+H2O=2NaOH
CaO+H2O=Ca(OH)2
SO3+H2O=H2SO4
P2O5+3H2O=2H3PO4
CH2=CH2+H2O←→C2H5OH
Mg3N2+6H2O=3Mg(OH)2↓+2NH3↑
碳化钙水解:
CaC2(电石)+2H2O=Ca(OH)2+C2H2↑
卤代烃水解:
C2H5Br+H2O←→C2H5OH+HBr
醇钠水解:
酯类水解:
C2H5ONa+H2O→C2H5OH+NaOH
CH3COOC2H5+H2O←→CH3COOH+C2H5OH
多糖水解:(C6H10O5)n+nH2O←→nC6H12O6
CO2+H2O==H2CO3
SO2+H2O==H2SO3
SO3+H2O==H2SO4
2NO2+H2O==2HNO3+NO
㈡ 氢气和水的化学方程式
是氢气生成水吗?
2H2+O2=点燃=2H2O
氢气和水用氢气的火焰去烧冰可以得到微量的过氧化氢,我做过实验。
㈢ 10个生成水的化学方程式
2h2+o2=2h2o
化合反应
2h2o2=2h2o+o2↑分解反应
cuo+h2=cu+h2o(加热)置换反应
饿:现在初三的化学书改革内到没有置换反应的定义了么?指容一种单质和一种化合物生成另一种单质和另一种化合物的反应,可表示为:
a+bc→b+ac(这个可以网络里面找的)
㈣ 水制取氢气的化学方程式
2 H2O==2 H2+O2
制取氢气的一些新方法
近年来,各国科学家研究出一些制取氢的新方法,我国科学家也试验出一些制取氢的新方法,现在把这些新方法的一部分介绍如下:
一.用氧化亚铜做催化剂从水中制氢气
通常,用电解水生产氢的方法比较昂贵。过去,也曾有人研究过用氧化亚铜催化剂从水中制取氢的方法,但在实验中氧化亚铜在阳光的作用下很容易还原成金属。日本研究人员发现,将氧化亚铜制成粉末,可以避免发生这个问题。他们的具体方法是,将0.5克氧化亚铜粉末添加入200立方厘米的蒸馏水中,然后用一盏玻璃灯泡中发出的460纳米~650纳米的可见光进行照射,在氧化亚铜催化剂的作用下,水分解成氢和氧。日本的研究人员利用这项技术共进行了30次实验,从分解的水中得到了不同比例的氢和氧。试验中发现,如果得到的氧的压力增加到500帕斯卡,水的分解过程就减慢。氧化亚铜粉末的使用寿命可达1900小时之久。东京技术研究所计划进一步研究如何提高氢的产生效率,同时研制能够在波长更长的可见光照射下发挥活性的催化剂,该研究所正在试验一种新的含铜铁合金的氧化物。
二、用新型的钼的化合物从水中制氢气
西班牙瓦伦西亚大学的两位科学家发明了一种低成本的从水中制取氢的方法。他们对催化转化器进行改造,使水分解时仅需很少的成本。他们用一种从钼中获取的化学产品做催化剂,而不使用电能。他们说,如果用氢作原料,从半升水中制得的氢足以使一辆小汽车行驶633公里。
三、用光催化剂反应和超声波照射把水完全分解的方法
60年代末,日本两位科学家发现二氧化钛经光(紫外线)照射可分解水的现象。他们本拟应用这一方法制氢,但由于氢和氧的生成量较少,在经济上不合算而中断了这一研究。最近,据《日本工业新闻》报道,日本明星大学元田久志教授等人同时使用光催化剂反应和超声波照射的方法把水完全分解。这种“超声波光催化剂反应”所以能使水完全分解,是由于在超声波的作用下,水可被分解为氢和双氧水,而双氧水经光催化反应又可分解成氧和氢。不过超声波照射和二氧化钛光催化剂虽然获得了完全分解水的结果,但氧的生成量却较少。在添加二氧化锰后,再用超声波照射,二氧化锰分解后的锰离子可溶解到溶液中,使双氧水产生大量的氧。
四、陶瓷跟水反应制取氢气
日本东京工业大学的科学家在300 ℃下,使陶瓷跟水反应制得了氢。他们在氩和氮的气流中,将炭的镍铁氧体(CNF)加热到300 ℃,然后用注射针头向CNF上注水,使水跟热的CNF接触,就制得氢。由于在水分解后CNF又回到了非活性状态,因而铁氧体能反复使用。在每一次反应中,平均每克CNF能产生2立方厘米~3立方厘米的氢气。
五、甲烷制氢气
1.日本京都大学教授乾智行用镍铂稀土元素氧化物多孔催化剂,使甲烷、二氧化碳和水生成了氢气。催化剂中镍、稀土元素氧化物和铂的组成比例为10:65:0.5。其制备过程是,先将镍、稀土元素氧化物等原料加热熔解,然后导入氨气,使熔解物成为凝胶状,再进行干燥、热处理。这种催化剂微粒孔径为2纳米~100纳米,具有很高的催化活性。乾智行教授将该催化剂装进反应塔,然后加入二氧化碳、甲烷和水蒸气。结果,在常压及550 ℃~600 ℃条件下,生成物为氢气和一氧化碳,升温至650 ℃,其转化率为80%;温度为700 ℃时,转化率几乎达到100%。
2.用C60作催化剂从甲烷制氢气
日本工业技术院物质工学工业技术研究所用C60作催化剂,从甲烷制得氢气。
在现阶段,C60在高温条件下才能发挥功能,不能立刻达到实用,必须加以改良,制成在低温条件下也能工作的节能催化剂。他们开发的催化剂,是在碳粉里掺10%的C60。在加热到1000 ℃的容器里,放入0.1克催化剂,以1分钟流入20毫升甲烷的速度作实验,结果90%的甲烷分解成氢和碳。C60用作催化剂,可用水洗净表面,除去附着的残存碳素,理论上可半永久使用。由于形状独特,粒子表面面积为活性炭的5倍到10倍,因而作催化剂用时功能较强。
六、从微生物中提取的酶制氢气
1.葡萄糖脱氧酶。美国橡树岑国家实验室从热原体乳酸菌中提取葡萄糖脱氧酶。热原体乳酸菌首先是在美国矿井中的低温干馏煤渣中发现的。葡萄糖脱氧酶在磷酸烟酰胺腺嘌呤二核苷酸(NADP)的帮助下,能从葡萄糖中提取氢。在制取氢的过程中,NADP从葡萄糖中剥取一个氢原子,使剩余物质变成氢原子溶液。
2.氢化酶。这种酶是从曾在海底火山口附近发现的一种微生物中提取的。氢化酶的作用是使NADP携载的氢原子结合成氢分子,而NADP还原为它原来的状态继续再次被利用。除美国发现这种酶外,俄罗斯的科学家也在湖沼里发现了这种微生物。他们把这种微生物放在适合于它生存的特殊器皿里,然后将微生物产出的氢气收集在氢气瓶里。
七、从细菌制取氢气
1.许多原始的低等生物在其新陈代谢的过程中也可放出氢气。例如,许多细菌可在一定条件下放出氢气。日本已发现一种名为“红极毛杆菌”的细菌,就是制氢的能手。在玻璃器皿里,以淀粉作原料,掺入一些其他营养素制成培养液,就可以培养出这种细菌。每消耗5毫米淀粉营养液,就可以产生出25毫升的氢气。
2.美国宇航部门准备把一种光合细菌—红螺菌带到太空去,用它放出的氢气作为能源供航天器使用。
八、用绿藻生产氢气
科学家们已发现一种新方法,使绿藻按要求生产氢气。美国伯克利加州大学科学家说,绿藻属于人类已知的最古老植物之一,通过进化形成了能生活在两个截然不同的环境中的本领。当绿藻生活在平常的空气和阳光中时,它像其他植物一样具有光合作用。光合作用利用阳光,水和二氧化碳生成氧气和植物维持生命所需要的化学物质。然而当绿藻缺少硫这种关键性的营养成分,并且被置于无氧环境中时,绿藻就会回到另一种生存方式中以便存活下来,在这种情况下,绿藻就会产生氢气。科学家介绍,1升绿藻培养液每小时可以产生出3毫升氢气,但研究人员认为,绿藻生产氢气的效率至少可以提高100倍。
九、有机废水发酵法生物制氢气
最近,以厌氧活性溶液为生产原料的“有机废水发酵法生物制氢技术”在我国哈尔滨建筑大学通过中试研究验证。我国工程院院士李圭白教授介绍,该项研究在国内外首创并实现了中试规模连续非固定化菌种长期持续生物制氢技术,是生物制氢领域的一项重大突破,其成果处国际领先地位。生物制氢思路1966年提出,90年代受到空前重视。从90年代开始,德、日、美等一些发达国家成立了专门机构,制定了生物制氢发展计划,以期通过对生物制氢技术的基础性和应用性研究,在21世纪中叶实现工业化生产。但时至今日,研究进程并不理想,许多研究还都集中在细菌和酶固定化技术上,离工业化生产还有很大差距,迄今尚无一例中试结果。哈尔滨建筑大学的教授突破了生物制氢技术必须采用纯菌种和固定技术的局限,开创了利用非固定化菌种生产氢气的新途径,并首次实现了中试规模连续流长期持续产氢。在此基础上,他们又先后发现了产氢能力很高的乙醇发酵类型,发明了连续流生物制氢技术反应器,初步建立了生物产氢发酵理论,提出了最佳工程控制对策。该项技术和理论成果在中试研究中得到了充分验证:氢气产率比国外同类的小试研究高几十倍;开发的工业化生物制氢系统工艺运行稳定可靠,且生产成本明显低于目前广泛采用的水电解法。
㈤ 制取水的化学方程式 在线等~~
如果只需要少量的水的话,可以直接加热氢氧化镁:Mg(OH)2=H2O+MgO(条件是加热);
如果是大量的话,只能把MgO电解了,得到氧气,把氯化镁或氯化钾或氯化钠也电解了,得到氯气,把氯气通入自来水中,得到氯气溶液,再把镁放入,得到氢气,氢气在空气中点燃就可以得到水了.
我觉得是这样的,如果不明白,可以问我.我帮你.
㈥ 水的化学反应式是什么
水的化学式为H2O.
水电解的化学方程式为:2H2O==(通电,写在等号上方)2H2↑+O2↑
氢气与氧气反应生成水则是:2H2+O2==(点燃,写在等号上方)2H2O
㈦ 关于一些能与水反应的化学方程式!
水参加的非氧化还原反应:
CO2+H2O==H2CO3。。SO2..SO3...类似
CaO+H2O==Ca(OH)2
MgO
.Na2O
.BaO
类似
NH3+H2O=NH3*H2O
CO2+H2O+CaCO3==CaHCO3)2
Na2CO3,,K2CO3,,BaCO3,,类似
SO2+H2O+Na2SO3==2NaHSO3
BaSO3。。CaSO3。。K2SO3
类似
2NH3+2H2O+MgCl2==Mg(OH)2+2NH4Cl
AlCl3,,FeCl2,FeCl3。。类似
还有一大堆的水解反应,不赘述了吧,,,,
水参加的氧化还原反应
水只当还原剂的
2H2O+2F2==4HF
+O2
水只当氧化剂的
2Na+2H2O=2NaOH+H2K,Rb,Cs,Ba,
Ca,Mg类似
3Fe+4H2O==高温=Fe3O4+4H2
C+H2O=高温=CO+H2
2Al+2naOH
+2H2O
=2NaAlO2+3H2
Si+2NaOH
+H2O=Na2SiO3+2H2
水既不是氧化剂又不是还原剂的
Cl2+H2O=HCl+HClO
2Na2O2+2H2O=4NaOH+O23NO2+H2O=2HNO3+NO
也许不尽完善,权当抛砖引玉了,
一定要有序思考,,
㈧ 能与水反应的所有化学方程式
1。稳定性:在2000℃以上才开始分解。
水的电离:纯水中存在下列电离平衡:H₂O==可逆==H⁺+OH⁻
或
H₂O+H₂O=可逆=H₃O⁺+OH⁻。
注:“H₃O⁺”为水合氢离子,为了简便,常常简写成H⁺,纯水中氢离子物质的量浓度为10⁻⁷mol/L。
2。水的氧化性:水跟较活泼金属或碳反应时,表现氧化性,氢被还原成氢气2Na+2H₂O=2NaOH+H₂↑
。
Mg+2H₂O=Mg(OH)₂+H₂↑
。
3Fe+4H₂O(水蒸气)=Fe₃O₄+4H₂↑
。
C+H₂O=CO↑+H₂↑(高温)。
3。水的电解:
水在电流作用下,分解生成氢气和
电解水实验装置(2张)
氧气,工业上用此法制纯氢和纯氧
2H₂O=2H₂↑+O₂↑。
4。水化反应:
水可跟活泼金属的碱性氧化物、大多数酸性氧化物以及某些不饱和烃发生水化反应。
Na₂O+H₂O=2NaOH
CaO+H₂O=Ca(OH)₂
SO₃+H₂O=H₂SO₄
P₂O₅+3H₂O=2H₃PO₄
CH₂=CH₂+H₂O←→C₂H₅OH
5。水解反应
盐的水解
氮化物水解:Mg₃N₂+6H₂O(加热)=3Mg(OH)₂↓+2NH₃↑
NaAlO₂+HCI+H₂O=Al(OH)₃↓+NaCI(NaCI少量)
碳化钙水解:
CaC₂(电石)+2H₂O(饱和氯化钠)=Ca(OH)₂+C₂H₂↑
卤代烃水解:
C₂H₅Br+H₂O(加热下的氢氧化钠溶液)←→C₂H₅OH+HBr
醇钠水解:
C₂H₅ONa+H₂O→C₂H₅OH+NaOH
酯类水解:
CH₃COOC₂H₅+H₂O(铜或银并且加热)←→CH₃COOH+C₂H₅OH
多糖水解:(C₆H₁₀O₅)n+nH₂O←→nC₆H₁₂O₆
6。水分子的直径数量级为10的负十次方,一般认为水的直径为2~3个此单位。
7。水的电离:
在水中,几乎没有水分子电离生成离子。
H₂O←→H⁺+OH⁻
由于仅有一小部分的水分子发生上述反应,所以纯水的Ph值十分接近7。
㈨ 生成水的化学方程式
K2CO3+HCL=2KCL+CO2+H2O
2H2O=2H2+O2
置换反应是一种物质从另一种物质中置换出物质的过程!
㈩ 生成水的化学方程式有哪些
1.酸碱中和可生成水,
HCL+
NaoH
=NaCl
+
H2O
2.其实反应物里有氢氧根与氢根就可以生成水
3.晶体的加热可生成水
4.难溶于水的氢氧化物加热可生成水
如:2Fe(oH)3
====(加热)
====Fe2O3
+3H2O
5.氧化物与氢气的鸡害惯轿甙计轨袭憨陋还原反应可生成水