c60化学性质
C60是80年代中期新发现的一种碳原子簇,它是单质,是石墨、金刚石的同素异形体。很久以前在宇宙光谱中就发现过它,直到1985年人们才用激光的方法合成并分离得到较纯的C60(含C70),它有确定的组成,60个碳原子构成像足球一样的32面体,包括20个六边形,12个五边形。由于这个结构的提出是受到建筑学家富勒(Buckminster
Fuller)的启发。富勒曾设计一种用六边形和五边形构成的球形薄壳建筑结构。因此科学家把C60叫做足球烯,也叫做富勒烯.
他一般用来做超导体
和储存活泼气体的容器
② C60 的化学性质
C60,不导电,但石墨会,因为它集合了共价键,离子键,金属键,多种不同的键型,所以具有金属的特性 C60组成结构为球形,可想而知其稳定性 ,单分子时硬度大
颜色与性状
C60在室温下为紫红色固态分子晶体,有微弱荧光
分子大小
C60分子的直径约为7.1埃(1埃= 10^ -10 米即一百亿分之一米);
密度
C60的密度为1.68g/cm^3
溶解性
C60不溶于水等强极性溶剂,在正己烷、苯、二硫化碳、四氯化碳等非极性溶剂中有一定的溶解性;
导电性
C60常态下不导电。因为C60大得可以将其他原子放进它内部,并影响其物理性质,因而不可导电。另外,由于C60有大量游离电子,所以若把可作β衰变的放射性元素困在其内部,其半衰期可能会因此受到影响。
超导性
1991年,赫巴德(Hebard)等首先提出掺钾C60具有超导性,超导起始温度为18K,打破了有机超导体(Et)2Cu[N(CN)2]Cl超导起始温度为12.8K的纪录。不久又制备出Rb3C60的超导体,超导起始温度为29K。掺杂C60的超导体已进入高温超导体的行列。研究显示,这类材料是以晶格里的电洞来传导电流(类似p型半导体),若加入其它分子(例如三溴甲烷)来拉长晶格间距,还可以有效地提升其超导相变温度至117K。我国在这方面的研究也很有成就,北京大学和中国科学院物理所合作,成功地合成了K3C60和Rb3C60超导体,超导起始温度分别为8K和28K。有科学工作者预言,如果掺杂C240和掺杂C540,有可能合成出具有更高超导起始温度的超导体。
磁性
阿勒曼(Allemand)等人在C60的甲苯溶液中加入过量的强供电子有机物四(二甲氨基)乙烯(TDAE),得到了C60(TDAE)C0.86的黑色微晶沉淀,经磁性研究后表明是一种不含金属的软铁磁性材料。居里温度为16.1K,高于迄今报道的其它有机分子铁磁体的居里温度。由于有机铁磁体在磁性记忆材料中有重要应用价值,因此研究和开发C60有机铁磁体,特别是以廉价的碳材料制成磁铁替代价格昂贵的金属磁铁具有非常重要的意义。
化学性质
一、氧化还原反应:
在光照的条件下将C60与O2反应生成环氧化物C60O,但这种环氧化物不稳定,用矾土分离时能还原成C60。
二、加成反应:
C60可以与氢或卤素单质进行加成。把其完全氢化便得绒毛球烷(Fuzzyball),化学式为C60H60(加成进的氢原子有可能C60在笼内也可能在C60外部)。烷基自由基R可与C60反应生成RC60加和物,RC60可生成C60直接键和哑铃状二聚体RC60-C60R。
三、与金属的反应:
C60与金属的反应分为两种情况:一种是金属被置于C60碳笼的内部;另一种是金属位于C60碳笼的外部:
1)C60碳笼内配合物生成反应。C60碳笼为封闭的中空的多面体结构,其内腔直径为7.1埃,内部可嵌入原子、离子或小分子形成新的团簇分子,C60 + AC60(A)。Smalley等人现已发现能与C60生成C60(A)的金属有:K、Na、Cs、La、Ba、Sr、U、Y、Ce、Sm、Eu、Gd、Tb、Ho、Th等。除金属外,He、Ne等惰性气体及LiF、LiCl、NaCl等极性分子亦可移置C60笼中。
2)C60碳笼外键合反应。Ohno等人发现能与C60键合的金属有:V、Fe、Co、Ni、Rh、Cu、La、Yb、Ag等。
四、颜色反应
C60可以溶于二硫化碳中。颜色呈紫红色。
④ C60的化学性质...
C60
(碳60简称为C60)
分子C60分子是一种由60个碳原子构成的分子,它形似足球,是一种很稳定的分子
化学性质和C一样
物理性质差别很大
⑤ 金刚石、石墨、C60的化学性质和物理性质
因为由同一种原素复C组成,所以化制学性质相同
物理性质有差异
1、熔沸点:金刚石>石墨>碳60
(因为他们的晶体类型不同,分别是原子晶体,混合型晶体,分子晶体)
2、颜色,分别是无色透明,黑,无色透明
3、硬度,金刚石>碳60>石墨
等
物理性质有差异是由他们的结构决定的!(借用回答者:hanlei1990的答案加以回答)
金刚石和SiO2一样为正四面体并无限延伸,结构很稳定
,属于原子晶体,具备原子晶体的硬度,熔沸点等的通性
石墨有分层。同一层有很多个六面体组成,不同层由另一种非共价键组成
所以石墨也稳定,因为同一横面很稳定。但石墨很滑,因为它的纵面很不稳。
另外石墨是复杂的物体,金刚石,C60,不导电,但石墨会,因为它集合了共价键,离子键,金属键,多种不同的键型,所以具有金属的特性
C60组成结构为球形,可想而知其稳定性
,单分子时硬度大
⑥ C60的化学性质
在亲核加成中富勒烯作为一个亲电试剂与亲核试剂反应,它形成碳负离子被格利雅试剂或有机锂试剂等亲核试剂捕获。例如,氯化甲基镁与C60在定量形成甲基位于的环戊二烯中间的五加成产物后,质子化形成(CH3)5HC60。宾格反应也是重要的富勒烯环加成反应,形成亚甲基富勒烯。富勒烯在氯苯和三氯化铝的作用下可以发生富氏烷基化反应,该氢化芳化作用的产物是1,2加成的(Ar-CC-H)。 富勒烯的[6,6]键可以与双烯体或双烯亲和体反应,如D-A反应。[2+2]环加成可以形成四元环,如苯炔。1,3偶极环加成反应可以生成五元环,被称作Prato反应。富勒烯与卡宾反应形成亚甲基富勒烯。常见周环反应如下:
(1) [4+2]环加成。在[4+2]环加成中,C60的6/6 双键一直充当亲二烯体,大量不同的二烯类物加到C60上形成六元环(主要合成一元加合物)环加成物的形成条件依赖于二烯的反应活性,在某些情况下加合物的形成是可逆的,如戊二烯和蒽的C60环加成。
(2) [3+2]环加成。如 C60 与重氮甲烷(R1R2CN2) 、重氮酰胺、重氮乙酸酯类反应,可得到种类很多的亚甲基桥富勒烯,这类反应是基于C60作为一个1,3 亲偶极体,重氮化合物首先加成到6/6双键上,形成二氢化吡唑啉五元环。
(3) [2+2]环加成。用10倍过量的四环烷烃与C60的甲苯溶液在80℃发生[2+2]热环加成反应,C60 与富电子有机分子可进行光化学反应,在室温下,用紫外线照射C60与N,N-二乙基丙炔基胺的无氧甲苯溶液20min 即形成环加合产物。
(4) [2+1]环加成反应。与C60的6/6 双键发生加成反应的卡宾有许多不同的方法产生,如通过二氮丙因、甲苯磺酰基腙锂盐、环丙烯酮乙缩醛、二唑啉的热解及α-卤代羧酸盐的热解与费歇尔卡宾的热分解等等。在C60存在的情况下由邻-4-硝基苯基磺酰基异羟肟酸的衍生物通过碱催化α消除而合成富勒烯1-氮杂环丙烷。 C60可以与氢或卤素单质进行加成。把其完全氢化便得绒毛球烷(Fuzzyball),化学式为C60H60(加成进的氢原子有可能C60在笼内也可能在C60外部)。烷基自由基R可与C60反应生成RC60加和物,RC60可生成C60直接键和哑铃状二聚体RC60-C60R。
亲电加成
富勒烯也可以发生亲电反应。可以在富勒烯球外加成24个溴原子。最多亲电加成纪录保持者是C60F48。根据氟硅烷的结构(在硅元素中)还难以预测C60F60是否可能有一些氟原子在“endo”位置(指富勒烯内部),这种化合物是比起球型更类似于一个管状的富勒烯分子。
配位反应
富勒烯在有机金属化学中作为配体。[6,6]双键是缺电子的,通常与金属成键的η= 2(配位化学中的常数)。键合模式如η= 5或η=6可以因作为配体的球状富勒烯改变而改变。富勒烯和硫羰基钨W(CO)6在环己烷溶液中,阳光直接照射下反应生成的(η²-C60)5 W(CO)6。
内嵌反应
指通过化学手段选择性地切断富勒烯骨架上的碳碳键来制备开孔富勒烯的反应。开孔后就可能把一些小分子装到碳球中,如氢分子、氦、锂等。第一个开孔富勒烯是在1995由Wudl等报道的。
反加成
反加成反应即Retro-Additions(RA)。研究表明,通过RA消去,取代基实现了他们的目的后便与富勒烯主体分离。 C60与金属的反应分为两种情况:一种是金属被置于C60碳笼的内部;另一种是金属位于C60碳笼的外部:
1)C60碳笼内配合物生成反应。C60碳笼为封闭的中空的多面体结构,其内腔直径为7.1埃,内部可嵌入原子、离子或小分子形成新的团簇分子,C60 + AC60(A)。Smalley等人现已发现能与C60生成C60(A)的金属有:K、Na、Cs、La、Ba、Sr、U、Y、Ce、Sm、Eu、Gd、Tb、Ho、Th等。除金属外,He、Ne等惰性气体及LiF、LiCl、NaCl等极性分子亦可移置C60笼中。
2)C60碳笼外键合反应。Ohno等人发现能与C60键合的金属有:V、Fe、Co、Ni、Rh、Cu、La、Yb、Ag等。 C60可以溶于二硫化碳中。颜色呈紫红色。
C60的主客体化学
由于C60分子独特的刚性球状结构,发展能够与其高效结合的特定主体是一件很有意义的工作,二十多年来科学家们乐此不疲地用新奇的化合物和有趣的方式将其包起来得到包含物和嵌合物,在富勒烯的主客体化学方面进行了大量的研究并取得了长足的进展,发展了一系列主体化合物,大致分为富π电子化合物和大环主体两类;前者有二茂铁、卟啉、酞菁、四硫富瓦烯、苝、碗烯和带状多共轭体系等的衍生物,后者有环糊精、杯芳烃、氮杂杯芳烃,长链烷烃和低聚物等的衍生物。迄今与富勒烯分子超分子结合力最强的是相田卓三教授合成的卟啉笼分子,在邻二氯苯中与C60的结合常数为Log Ka = 8.11。
C60衍生物超分子的自组装
修饰富勒烯可以获得更多的作用位点,因此富勒烯衍生物的超分子自组装的研究一直是个热点,远远多于不修饰的富勒烯的组装,特别是在基于富勒烯的功能材料、光致电子转移、人工光合作用体系、光子器件等诸多的研究领域。
C60及其衍生物的有序聚集态的制备方法
富勒烯功能化后产生的自组装前体,通过超分子作用形成有序聚集态结构,既是提高对富勒烯本征认识以及单分子器件构筑水平,也是对富勒烯高新技术功能化材料的需要。十多年来,中国内外很多研究组已经在获得稳定的C60纳米材料如纳米颗粒、纳米管、纳米线、纳米带和高度有序二维结构等方面进行了大量的研究,发展了经典自组装法、模板法、气相沉积法,化学吸附和LB膜技术等方法来构筑具有特定形貌的有机纳米材料。
⑦ 金刚石、石墨、C60的化学性质
金刚石:疏水性:金刚石对水不润湿,然而容易粘油。这种疏水亲油的特征是由金刚石的 sp 3 杂化的非极性键的本质决定的。这一特性不仅提示人们可以使用油脂去提取金刚石,而且在制造金刚石磨具时,宜选用亲油基团的有机物作为金刚石的润湿剂。 常温下的化学稳定性:在常温下,金刚石对一切酸碱盐等化学试剂都表现出很强的惰性,王水也不会与它发生化学变化。在加热情况下( 1000 ℃以下),仅有个别氧化剂与之反应。利用金刚石的化学稳定性,可以用酸碱来提纯金刚石。 热稳定性:金刚石在纯氧中 600 ℃就开始失去光泽,出现黑色表皮, 700 ~ 800 ℃开始燃烧,生成二氧化碳。人造金刚石在空气中开始氧化的温度是 740 ~ 840 ℃,有的产品在 600 ℃就开始氧化。金刚石在空气中开始燃烧的温度大约在 850 ~ 1000 ℃。金刚石的热稳定性与晶体的完整程度以及杂质的含量有关。 金刚石的石墨化现象:在真空或者惰性气氛中,当加热到某一高温时,金刚石就会发生石墨化现象,即发生向石墨的转变。 1500 ℃的时候能检验出表面开始石墨化,随着温度的升高,石墨化速度加快,并且在 1700 ℃左右开始整个晶体迅速石墨化。在 2100 ℃时,一颗 0.1 克拉( 1 克拉= 0.2 克)的八面体钻石在 3 分钟内全部化为灰烬。当存在哪怕少量氧气时,石墨化在较低温度下就开始了。过渡金属的存在会加速金刚石的石墨化过程。 与过渡金属的化学作用:一些过渡金属能够与金刚石起化学作用,促使金刚石发生解体。这些金属分为两类:一类是周期表中的Ⅶ B 族和Ⅷ族的元素,如铁、钴、镍、锰以及铂系金属,这些元素在熔融状态下是碳的溶剂,在磨削高温下会使金刚石产生溶剂化现象;另一类是容易生成稳定碳化物的金属,其中包括Ⅳ B 、Ⅴ B 、Ⅵ B 族,例如钨、钒、钛等,这些元素易于和金刚石发生结合,生成相应的稳定碳化物。金刚石与过渡金属的作用是用它加工这些材料时发生粘刀现象的本质,从而也决定了金刚石工具、磨具的使用范围。石墨:石墨是碳质元素结晶矿物,它的结晶格架为六边形层状结构,见图1—1。每一网层间的距离为3.40人,同一网层中碳原子的间距为1.42A。属六方晶系,具完整的层状解理。解理面以分子键为主,对分子吸引力较弱,故其天然可浮性很好。
石墨质软,黑灰色;有油腻感,可污染纸张。硬度为1~2,沿垂直方向随杂质的增加其硬度可增至3~5。比重为1.9~2.3。在隔绝氧气条件下,其熔点在3000℃以上,是最耐温的矿物之一。
自然界中纯净的石墨是没有的,其中往往含有Si02、A1203、Fe0、CaO、P2O5、Cu0等杂质。这些杂质常以石英、黄铁矿、碳酸盐等矿物形式出现。此外,还有水、沥青、CO2、H2、CH4、N2等气体部分。因此对石墨的分析,除测定固定碳含量外,还必须同时测定挥发分和灰分的含量。
石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。工业上,根据结晶形态不同,将天然石墨分为三类。
1.致密结晶状石墨
致密结晶状石墨又叫块状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直径大于0.1毫米。晶体排列杂乱无章,呈致密块状构造。这
种:石墨的特点是品位很高,一般含碳量为60~
65%,有时达80~98%,但其可塑性和滑腻性不
如鳞片石墨好。
2.鳞片石墨
石墨晶体呈鳞片状;这是在高强度的压力下变质
而成的,有大鳞片和细鳞片之分。此类石墨矿石的特
点是品位不高,一般在2~3%,或100~25%之
间。是自然界中可浮性最好的矿石之一,经过多磨多
选可得高品位石墨精矿。这类石墨的可浮性、润滑性、
可塑性均比其他类型石墨优越;因此它的工业价值最
大。
3.隐晶质石墨
隐品质石墨又称非晶质石墨或土状石墨,这种石墨的晶体直径一般小于1微米,是微晶石墨的集合体,只有在电子显微镜下才能见到晶形。此类石墨的特点是表面呈土状,缺乏光泽,润滑性也差。品位较高。一般的60~80%。少数高达90%以上。矿石可选性较差。
石墨由于其特殊结构,而具有如下特殊性质:
1) 耐高温型:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。
2) 导电、导热性:石墨的导电性比一般非金属矿高一百倍。导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。
3) 润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。
4) 化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。
5) 可塑性:石墨的韧性好,可年成很薄的薄片。
6) 抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。C60C60分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯。
C60是单纯由碳原子结合形成的稳定分子,它具有60个顶点和32个面,其中12个为正五边形,20个为正六边形。其相对分子质量约为720。
处于顶点的碳原子与相邻顶点的碳原子各用sp杂化轨道重叠形成σ键,每个碳原子的三个σ键分别为一个五边形的边和两个六边形的边。碳原子的三个σ键不是共平面的,键角约为108°或120°,因此整个分子为球状。每个碳原子用剩下的一个p轨道互相重叠形成一个含60个π电子的闭壳层电子结构,因此在近似球形的笼内和笼外都围绕着π电子云。分子轨道计算表明,足球烯具有较大的离域能。
⑧ C60有那些性质
C60是石墨、金刚石的同素异形体
物理性质:
颜色与性状
C60在室温下为紫红色固态分子晶体,有微弱荧光
分子大小
C60分子的直径约为7.1埃(1埃= 10^ -10 米即一百亿分之一米);
密度
C60的密度为1.68g/cm^3
溶解性
C60不溶于水等强极性溶剂,在正己烷、苯、二硫化碳、四氯化碳等非极性溶剂中有一定的溶解性;
导电性
C60常态下不导电。因为C60大得可以将其他原子放进它内部,并影响其物理性质,因而不可导电。另外,由于C60有大量游离电子,所以若把可作β衰变的放射性元素困在其内部,其半衰期可能会因此受到影响。
超导性
1991年,赫巴德(Hebard)等首先提出掺钾C60具有超导性,超导起始温度为18K,打破了有机超导体(Et)2Cu[N(CN)2]Cl超导起始温度为12.8K的纪录。不久又制备出Rb3C60的超导体,超导起始温度为29K。掺杂C60的超导体已进入高温超导体的行列。研究显示,这类材料是以晶格里的电洞来传导电流(类似p型半导体),若加入其它分子(例如三溴甲烷)来拉长晶格间距,还可以有效地提升其超导相变温度至117K。我国在这方面的研究也很有成就,北京大学和中国科学院物理所合作,成功地合成了K3C60和Rb3C60超导体,超导起始温度分别为8K和28K。有科学工作者预言,如果掺杂C240和掺杂C540,有可能合成出具有更高超导起始温度的超导体。
磁性
阿勒曼(Allemand)等人在C60的甲苯溶液中加入过量的强供电子有机物四(二甲氨基)乙烯(TDAE),得到了C60(TDAE)C0.86的黑色微晶沉淀,经磁性研究后表明是一种不含金属的软铁磁性材料。居里温度为16.1K,高于迄今报道的其它有机分子铁磁体的居里温度。由于有机铁磁体在磁性记忆材料中有重要应用价值,因此研究和开发C60有机铁磁体,特别是以廉价的碳材料制成磁铁替代价格昂贵的金属磁铁具有非常重要的意义。
化学性质
氧化还原反应:
氧化还原反应: 在光照的条件下将C60与O2反应生成环氧化物C60O2,但这种环氧化物不稳定,用矾土分离时能还原成C60。
加成反应:
C60可以与氢或卤素单质进行加成。把其完全氢化便得绒毛球烷(Fuzzyball),化学式为C60H60(加成进的氢原子有可能C60在笼内也可能在C60外部)。烷基自由基R可与C60反应生成RC60加和物,RC60可生成C60直接键和哑铃状二聚体RC60-C60R。
与金属的反应:
C60与金属的反应分为两种情况:一种是金属被置于C60碳笼的内部;另一种是金属位于C60碳笼的外部: 1)C60碳笼内配合物生成反应。C60碳笼为封闭的中空的多面体结构,其内腔直径为7.1埃,内部可嵌入原子、离子或小分子形成新的团簇分子,C60 + AC60(A)。Smalley等人现已发现能与C60生成C60(A)的金属有:K、Na、Cs、La、Ba、Sr、U、Y、Ce、Sm、Eu、Gd、Tb、Ho、Th等。除金属外,He、Ne等惰性气体及LiF、LiCl、NaCl等极性分子亦可移置C60笼中。 2)C60碳笼外键合反应。Ohno等人发现能与C60键合的金属有:V、Fe、Co、Ni、Rh、Cu、La、Yb、Ag等。
颜色反应
C60可以溶于二硫化碳中。颜色呈紫红色。
⑨ 金刚石,石墨,C60的化学性质相同吗
提示网友:不要被无知的人误导
一百个零加起来还是零-爱因斯坦
目前网络上除了我现在提供的回答之外,绝大部分对于此问题的其他所谓“回答”均为不懂装懂和(或)以讹传讹的误导,包括一些自称教师、网络“砖'家及某些教学论坛基于无知的所谓”讨论“,请自行识别,不要受到无知者的蛊惑.
同时,网络上仅有的少数正确回答语焉不详,在此进行详细的解答
无知言论打包粉碎
谬论1:
石墨
与金刚石都是C单质,所以化学性质基本相同-谣言来自网络知道
谬论2:同素异形体的化学性质基本相同.
驳斥:这种所谓的回答可以说无知到了极点,缺乏中学化学知识,按照某些网友混乱的逻辑,白磷和红磷都是磷单质,难道他们的化学性质一样?但是红磷与白磷的化学性质差异可是中学要求理解的内容.
谬论3:金刚石.石墨.
C60
他们是碳的同素异形体,都是碳的单质,所以化学性质相同-谣言来自网络知道
驳斥:C60明显是分子晶体,金刚石是原子晶体,化学性质当然不一样,谣言的炮制者能编出所谓分子晶体和原子晶体化学性质一样的谬论,对于中学化学知识的无知程度可见一斑
谬论4:因为由同一种原素C组成,所以化学性质相同
见对谬论1的驳斥
谬论5:金刚石、石墨都是C原子组成(或者都是原子晶体)……
驳斥:按照谣言炮制者错乱的逻辑来说,二甲醚和乙醇都是分子晶体,分子式都一样,难道他们的化学性质一样?这种谬论明显是与中学同分异构体的知识相矛盾,更何况,石墨并非原子晶体,属于混合型晶体.
石墨与金刚石的化学性质完全不同,连相似都达不到
具体来说是
1石墨被原子氢侵蚀的速度远大于金刚石,这是气相沉积金刚石的基本原理
-《化学汽相沉积金刚石生长表面氢原子盖率的研究》
2
与强氧化剂反应(速率)的差异工业上用以提纯人造金刚石,此为初中涉及配平的问题,由此可见,网络上大言不惭鼓吹金刚石与石墨化学性质相同的人缺乏对初中
化学题的基本记忆与理解,题目中明确指出可以通过这个反应选择性除去石墨而保留金刚石,其出题形式是“工业上利用石墨制金刚石,要得到纯净的金刚石,常用
高氯酸(HClO4)来清洗金刚石中混有的石墨”
此内容为2008年内蒙古包头市中考化学试卷填空题15
3确切来说与上面这个相关,石墨层间结合力很弱,容易插入其他离子或分子,形成石墨层间化合物
氟气与金刚石反应要么表面氟化,要么结构完全破坏形成四氟化碳,但石墨可以基本保持碳骨架不断裂而氟却深入层间最终形成氟化石墨
⑩ C60分子很稳定是化学性质吗
c60
(碳60简称为c60)
分子c60分子是一种由60个碳原子构成的分子,它形似足球,是一种很稳定的分子
化学性质和c一样
物理性质差别很大