锗化学性质
『壹』 锗元素是什么对人体有何作用
锗(旧译作鈤 )是一种化学元素,它的化学符号是Ge,原子序数是32,原子量72.64。在化学元素周期表中位于第4周期、第IVA族。
锗对人体的作用:
1、活化生物电流,促进血液循环,改善及预防身体的不适感。
2、保护红血球,抵抗外来射线的袭击,使之不受损害。
3、代谢、免疫力恢复并提高身体的自然治愈力。
(1)锗化学性质扩展阅读
有机锗分为合成有机锗、天然有机锗、生物有机锗三类。合成有机锗为羟乙基锗倍半氧化物,即Ge-132、螺锗、呋喃锗衍生物等一类抗病毒、抗炎、抗癌有机锗,是具有广泛药理作用的化合物,但服用过多易引起缺钙。
生物有机锗是将锗化合物植入生物体内,如酵母、细菌、大型真菌、蔬菜等。天然有机锗从人参等天然药用植物中提取,或直接食用,对人体无任何毒副作用。
『贰』 锗的用途
用途:在半导体、航空航天测控、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等领域都有广泛而重要的应用,是一种重要的战略资源。在电子工业中,在合金预处理中,在光学工业上,还可以作为催化剂。
高纯度的锗是半导体材料。从高纯度的氧化锗还原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器件。锗的化合物用于制造荧光板及各种高折光率的玻璃。
(2)锗化学性质扩展阅读:
锗元素结晶后的特点:
1、长程有序:晶体内部原子在至少在微米级范围内的规则排列。
2、均匀性:晶体内部各个部分的宏观性质是相同的。
3、各向异性:晶体中不同的方向上具有不同的物理性质。
4、对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。
5、自限性:晶体具有自发地形成封闭几何多面体的特性。
6、解理性:晶体具有沿某些确定方位的晶面劈裂的性质。
7、最小内能:成型晶体内能最小。
8、晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。
『叁』 锗元素是什么
锗 一种化学元素。化学符号Ge,原子序数32 ,原子量72.61属周期系ⅣA族。1871年俄国D.I.门捷列夫根据元素 周期律预言存在一个性质与硅相似的未知元素,命名为类硅。1886年德国C.温克勒在分析硫银锗矿时分离出这个元素,为纪念他的祖国Germany,命名为germanium。
性质:
元素名称:锗
元素符号:Ge
元素英文名称:Germanium
元素类型:金属元素
原子体积:(立方厘米/摩尔) 13.6
元素在宇宙中的含量:(ppm) 0.2
元素在太阳中的含量:(ppm) 0.2
元素在海水中的含量:(ppm) 太平洋表面 0.00000035
地壳中含量:(ppm)1.8
锗粒.
相对原子质量:72.61
氧化态:Main Ge+2, Ge+4
化学键能: (kJ /mol)
Ge-H 288
Ge-C 237
Ge-O 363
Ge-F 464
Ge-Cl 340
Ge-Ge 163
原子序数:32
质子数:32
中子数:41
摩尔质量:73
所属周期:4
所属族数:IVA
电子层排布:2-8-18-4
晶体结构:晶胞为面心立方晶胞,每个晶胞含有4个金属原子。
晶胞参数:
a = 565.75 pm
b = 565.75 pm
c = 565.75 pm
α = 90°
β = 90°
γ = 90°
莫氏硬度:6
声音在其中的传播速率:(m/S)5400
电离能 (kJ/ mol)
M - M+ 762.1
M+ - M2+ 1537
M2+ - M3+ 3302
M3+ - M4+ 4410
锗矿石
M4+ - M5+ 9020
M5+ - M6+ 11900
M6+ - M7+ 15000
M7+ - M8+ 18200
M8+ - M9+ 21800
M9+ - M10+ 27000
颜色和状态:银白色固体
密度:5.35克/厘米^3
熔点:937.4℃
沸点: 2830℃
原子半径: 122皮米,Ge4+半径53皮米
发现人:文克勒 发现年代:1886年
发现过程:1886年,德国的文克勒在分析硫银锗矿时,发现了锗的存在;后由硫化锗与氢共热,制出了锗。
物理性质
锗是银灰色晶体,熔点937.4℃,沸点2830℃,密度5.35克/厘米3(2
锗锭
0℃),莫氏硬度6.0~6.5,室温下,晶态锗性脆,可塑性很小。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。常温下,锗在空气中不被氧化,但在加热时,锗能在氧气、氯气和溴蒸气中燃烧。锗不与水作用,不溶于盐酸和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于王水。锗易溶于熔融的氢氧化钠或氢氧化钾,生成锗酸钠或锗酸钾。在过氧化氢、次氯酸钠等氧化剂存在下,锗能溶解在碱性溶液中,生成锗酸盐。锗的氧化态为+2和+4。
用途
高纯度的锗是半导体材料。从高纯度的氧化锗还原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器件。锗的化合物用于制造荧光板及各种高折光率的玻璃。锗单晶可作晶体管,是第一代晶体管材料。锗材用于辐射探测器及热电材料。高纯锗单晶具有高的折射系数,对红外线透明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。锗和铌的化合物是超导材料。二氧化锗是聚合反应的催化剂,含二氧化锗的玻璃有较高的折射率和色散性能,可作广角照相机和显微镜镜头,三氯化锗还是新型光纤材料添加剂。
锗,具有半导体性质。对固体物理学和固体电子学的发展起过重要作用。锗的熔密度5.32克/厘米3,为银灰色脆性金属。锗可能性划归稀散金属,锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。与盐酸、稀硫酸不起作用。浓硫酸在加热时,锗会缓慢溶解。在硝酸、王水中,锗易溶解。碱溶液与锗的作用很弱,但熔融的碱在空气中,能使锗迅速溶解。锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。锗有着良好的半导体性质,如电子迁移率、空穴迁移率等等。锗的发展仍具有很大的潜力。现代工业生产的锗,主要来自铜、铅、锌冶炼的副产品。
在火法炼锌过程中,锗以氯化物或氧化物的形式进入烟尘中,并得到富集。煤燃烧或炼焦工业产生的锗都富集在烟道灰中。用盐酸处理这些烟尘和烟道灰,可得四氯化锗,通过精馏法提纯后,水解得高纯二氧化锗,放在石英管内,加热到680℃,用氢气还原得高纯锗。再用直拉法或区域熔炼法制得锗的单晶。在电子工业中锗虽已大部分被硅代替,但由于锗的电子和空穴迁移率比硅高,在高速开关电路方面锗的性能也比硅好,因此锗在红外器件、γ辐射探测器方面仍占有优势。锗还可作为煤的氢化和石油炼制的催化剂,锗酸铋用于闪烁体辐射探测器。
对人的影响
锗对人体的影响主要是可以恢复疲劳;防止了贫血;帮助新陈代谢等等。很多地方被当作医疗辅助用具。但却没有临床证明是有效的。最多也就是会说:身体会变轻,疼痛会减少等等。如果服用的话,曾经有过死亡的例子。临床研究者认为是有危险的东西。会对肾脏产生不好影响。 但是在日本,在珠宝首饰行业被当作健康用具内装在项链,手链里贩卖。价格不菲。
至今为止,没有发现锗是人体必需的微量元素,也没有发现生物体
锗粒
因缺锗而出现的病理变化,因此在通常情况下并没有补锗的必要,因为在人类的正常饮食里面可以摄入足够身体用的锗元素。目前发现锗有益的生物效应与存在形式关系甚大,似乎没有明显的生理活性,只有部分有机锗化合物才能表现出来而又肯定的生理活性。
一、锗在机体中的分布与代谢
各种天然食物均不同程度地含有锗,换算一下大约成人每天的锗摄取量为400-3500ug,因此锗普遍存在与机体中,机体中的部分酶蛋白,大脑中的皮质和灰质中,均含有微量元素锗。
二、具有生理活性的有机锗化合物
研究最多的有机锗化合物包括有机锗倍半氧化物,衍生物,含硫配位的有机锗化合物,生理活性最为明显了。
锗,具有明显的抗肿瘤与消炎活性,其他还有很多类型的有机锗化合物,大多具有抗肿瘤,消炎,免疫复活和杀菌等生物效应,但因毒性较大,只能作为医药品使用。
三、有机锗化合物与肿瘤的关系
有机锗132和螺锗等具有明显的抗肿瘤活性,且毒性低,尤其
锗粉
是没有骨髓毒性这一优点,在防治肿瘤和辅助放化疗等方面很有潜力,已经进入临床试用阶段。
有机锗化合物抑制肿瘤活性的可能机制包括增强机体免疫力,清除自由基和抗突变等多个方面。许多生物活性的有机锗化合物分子中,与锗原子配位的通常是氧,硫和氮之类的强电负性原子,由于它们对电子的吸收作用导致锗原子周围的电子云偏离原子核而形成一个正电中心。但有机锗化合物遇到肿瘤细胞时,其正常中心可增加肿瘤细胞的电势能,降低其活动能力,从而起到抑制和杀死肿瘤细胞的作用,这就是说有机锗化合物抑制肿瘤活性的生物电位学说。除了抗肿瘤及免疫复活作用外,锗有益于生物效应还包括刺激造血系统的功能发挥,抑制细胞生长促进抗菌消失,促进植物生长等作用。对血液系统的作用主要表现在刺激血中红细胞和血红蛋白数量的增加,对治疗贫血有一定的作用。
『肆』 锗具有半导体性质是吗
具有半导体性质。对固体物理和固体电子学的发展有重要作用。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。
『伍』 锗是什么
锗是一种化学元素,它的化学符号是Ge,它的原子序数是32,是一种灰白色的类金属。锗的性质与锡类似。锗最常用在半导体之中,用来制造晶体管。
锗具有半导体性质。对固体物理和固体电子学的发展有重要作用。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。与盐酸、稀硫酸不起作用。浓硫酸在加热时,锗会缓慢溶解。在硝酸、王水中,锗易溶解。碱溶液与锗的作用很弱,但熔融的碱在空气中,能使锗迅速溶解。锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。锗有着良好的半导体性质,如电子迁移率、空穴迁移率等等。锗的发展仍具有很大的潜力。现代工业生产的锗,主要来自铜、铅、锌冶炼的副产品。
『陆』 锗的物理 化学性质
粉末状锗呈暗蓝色,结晶状锗为银白色脆金属。密度5.35克/厘米3。熔点937.4℃。沸点2830℃。锗化学性质稳定,常温下不与空气或水蒸汽作用.与盐酸、稀硫酸不起作用.在硝酸、王水中,锗易溶解。
『柒』 锗的物理化学性质,晶体生长和用途是什么
粉末状呈暗蓝色,结晶状,为银白色脆金属。密度5.35克/厘米3。熔点937.4℃。沸点2830℃。化合价+2和+4。第一电离能7.899电子伏特。是一种稀有金属,重要的半导体材料。不溶于水、盐酸、稀苛性碱溶液。溶于王水、浓硝酸或硫酸、熔融的碱、过氧化碱、硝酸盐或碳酸盐。在空气中不被氧化。其细粉可在氯或溴中燃烧。
性质:
具有半导体性质。对固体物理和固体电子学的发展超过重要作用。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。与盐酸、稀硫酸不起作用。浓硫酸在加热时,锗会缓慢溶解。在硝酸、王水中,锗易溶解。碱溶液与锗的作用很弱,但熔融的碱在空气中,能使锗迅速溶解。锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。锗有着良好的半导体性质,如电子迁移率、空穴迁移率等等。锗的发展仍具有很大的潜力。
现代工业生产的锗,主要来自铜、铅、锌冶炼的副产品。
『捌』 锗是什么,用途是什么
锗(旧译作鈤 )是一种化学元素,它的化学符号是Ge,原子序数是32,原子量72.64。在化学元素周期表中位于第4周期、第IVA族。锗单质是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近,不溶于水、盐酸、稀苛性碱溶液,溶于王水、浓硝酸或硫酸,具有两性,故溶于熔融的碱、过氧化碱、碱金属硝酸盐或碳酸盐,在空气中较稳定,在自然界中,锗共有五种同位素:70,72,73,74,76,在700℃以上与氧作用生成GeO2,在1000℃以上与氢作用,细粉锗能在氯或溴中燃烧,锗是优良半导体,可作高频率电流的检波和交流电的整流用,此外,可用于红外光材料、精密仪器、催化剂。锗的化合物可用以制造荧光板和各种折射率高的玻璃。
锗、锡和铅在元素周期表中是同属一族,后两者早被古代人们发现并利用,而锗长时期以来没有被工业规模的开采。这并不是由于锗在地壳中的含量少,而是因为它是地壳中最分散的元素之一,含锗的矿石是很少的。
『玖』 锗的元素地球化学
一、锗的地球化学性质
锗位于元素周期表第四(氪)周期第IV簇,原子系数为32,电子构型为4s24p2,原子量为72.6,包括有五种稳定同位素,它们的相对丰度分别为70Ge(20.55%)、72Ge(27.37%)、73Ge(7.67%)、74Ge(36.74%)和76Ge(7.67%)。在铁陨石、石铁陨石和地壳中,这些稳定同位素存在着明显的同位素分馏(Hirata,1999)。除了自然同位素外,锗已知有9个人工短寿命的同位素:65Ge、66Ge、67Ge、68Ge、69Ge、71Ge、75Ge、77Ge、78Ge。锗同锡、铅一样,次外电子层共18个电子,为典型的铜型离子。它有4个价电子,容易失去价电子而形成稳定的Ge4+;在还原条件下,锗易形成2价离子。Ge2+与Sn2+均是强还原剂,在自然条件下不易存在(刘英俊,1984)。锗的主要地球化学参数列入表5-1。
锗是一个在地质上令人困惑的元素。锗是典型的分散元素,从原始地幔(1.13×10-6~1.31×10-6)→大洋地壳(1.4×10-6~1.5×10-6)→大陆地壳(1.4×10-6~1.6×10-6)(Anderson,1982;Wank,1984;Taylor,1985),锗的丰度几乎没有明显的变化,但取决于地球化学环境,锗还表现出明显的亲石、亲铁、亲铜(亲硫)和亲有机质的特性,诸如伟晶岩、低温硫化物、铁的氧化物和氢氧化物等不同矿物组合以及煤中均含锗(Bernstein,1984;Pokrovski,1999)。
由于锗和硅的原子半径和化学性质相似,这两个元素具有特征的最外层电子结构、相近的原子或离子半径,锗在地壳中的地球化学行为最明显的趋势是替代矿物晶格中的硅。在岩浆结晶分异过程中,锗与硅的分离程度很小,广泛分散在硅酸盐、粘土和碎屑沉积物中。多数情况下,大陆地壳岩石和矿物中含锗(1~2)×10-6,Ge/Si原子比接近1×10-6(Wittman和 Hörmann,1976)。锗以类质同象方式进入各种硅酸盐中的能力是不一样的。在某一特定的火成岩或变质岩中,锗具有富集在岛状硅酸盐、帘状硅酸盐和层状硅酸盐的倾向,而在架状硅酸盐中含量降低。锗较易进入硅氧四面体聚合能力小的硅酸盐矿物的晶格中。锗具有强烈富集在晚期的岩浆结晶分异物和其他结晶时存在大量挥发分的岩石(如伟晶岩、云英岩和矽卡岩)。这些岩石中的黄玉、石榴子石和云母具有相当高的锗含量,可能与Ge4+与 Al3+的类质同象有关。锗在许多低温过程中的地球化学行为类似与硅的“重稳定同位素”。在地壳岩石的化学风化过程及锗被入海口和海洋中生物成因蛋白石吸收的过程中,锗的行为与硅类似,表现在淡水、海水和生物成因的蛋白石中的 Ge/Si原子比约为1×10-6 ,与地壳值接近;在溶液中均以类似的氢氧配合物[Ge(OH)4和 Si(OH)4]存在。
表5-1 锗的地球化学参数表
锗的亲硫性使其富集在某些硫化物中,特别是沉积岩中富闪锌矿、富铜的硫化物矿床的硫化物。在闪锌矿、硫砷铜矿、黝锡矿、硫银锡矿和锡黝铜矿中发现较高含量的锗。所有的这些矿物具有4价锗呈四面体的闪锌矿或纤锌矿衍生结构(Bernstein,1985)。锗在硫化物中与在氧化物中有着不同的结晶化学性质。锗以 Ge4+类质同象进入闪锌矿晶格并在其中发生富集(含量可达3000×10-6 ),是锗在硫化物矿物中结晶化学最大的特点。但也有人认为Ge是以GeS2形式进入闪锌矿内。由于化学性质的相似,有时大量的 Ge 替代硫化物中4价、四面体配位的 Sn。这种替换最多发生在硫银锡矿中,硫银锡矿的含锗量可以超过1%(Moh,1976)。硫砷铜矿(Cu3AsS4)中常发现高含量的锗,可能是由于 Ge(Ⅳ)替代了As(Ⅴ)。锗在硫化物中除以类质同象进入简单硫化物矿物晶格外,还形成等形式的硫锗酸根类质同象进入含锗硫盐类矿物。锗除以分散状态进入许多矿物成分中外,在稀少的情况下还形成了含量超过了 1%而可视为锗的独立矿物(表5-2)。
表5-2 锗的独立矿物
锗在硫化物中的富集还取决于硫逸度和其他金属元素的活度。只有在低至中等硫逸度环境,Ge才能进入ZnS中,并有可能替代Zn和S(Malevskiy,1966)。硫比较丰富时,锗并不直接在ZnS中替代,如果锗浓度足够高,锗将形成自己的硫化物。锗含量较低时,它将在四面体位置替代硫酸盐中的金属。这种替代最明显的是直接替代As和Sn。锗的行为也取决于Cu、Ag以及形成主要的含锗硫酸盐矿物(表5-2)必要元素的活度。因此,在低至中等硫逸度环境,锗将富集在闪锌矿中;在高硫逸度(或高Cu、高Ag)环境,锗将形成自己的硫化物矿物或进入硫酸盐中。有时,甚至在低至中等硫逸度情况下,高的Cu或Ag活度将促进含锗Cu或Ag硫化物的形成。
锗的亲铁性主要表现在铁-镍陨石中富含锗、锗在岩浆作用过程中富集在含铁相中,以及某些沉积铁矿床中含锗量较高。锗在沉积铁矿和含铁硫化物矿床的氧化带中富集,可能与它们自溶液中沉降时铁的氢氧化物结合锗的能力有关。铁矿床中的锗主要富集在针铁矿(可达5310×10-6)和赤铁矿(可达7000×10-6)中(Bernstein,1985)。锗以8次配位状态进入赤铁矿中置换Fe3+,其置换方式为2Fe3+=Ge4++Fe2+,形成锗与铁的固溶体。针铁矿中OH失去一个质子,并且通过Fe3++H+=Ge4+替换,锗以8次配位状态进入针铁矿中。不同地质环境中的磁铁矿中经常富集锗,可能反映在磁铁矿和锗磁铁矿(Fe2GeO4)之间存在固溶体。羟锗铁石FeGe(OH)6中Ge4+-OH和Fe2+-OH共同形成8次配位。
锗的有机亲和力或亲有机指数较高,国内外的许多煤层中均发现有锗的富集。Pokrovski等(1998)的实验表明,在25~90℃条件下,锗与邻苯二酚、柠檬酸和草酸等易形成稳定螯合物。一般认为煤中的锗不形成独立矿物,而包含在煤的大分子组成中。但是,长期以来对于煤中锗具体的有机结合形式则一直争论不休,通常认为有以下形式:①以O-Ge-O和O-Ge-C形式键合(Ryabchenko,1968);②与煤中大分子的不同官能团通过Ge-C形式键合,或与腐殖酸螯合(Shpirt,1984);③呈单个的有机化合物形式存在(Saprykin,1965);④通过表面氧化还原反应和表面吸附形式存在于煤中有机质的表面(Swaine,1990)。
二、天体和陨石中锗的丰度
根据球粒陨石的组成,锗的宇宙丰度估计为1.71Ge原子/10000Si原子(Mason和Moore,1982)。普通球粒陨石中的锗含量相对均一,平均7.6×10-6(Shima,1964),10.6×10-6(Onishi,1956)。Shima(1964)发现锗轻微富集在Abee顽火辉石球粒陨石(29.3×10-6)和Murry碳质球粒陨石(17.3×10-6)中。Allende碳质球粒陨石中含锗15×10-6(Clarke等,1970)。在石铁陨石中,相对于硅酸盐氧化物相,锗通常发现富集在金属相中(Onishi,1956;Shima,1964;EL Wardani,1957)。例如,Brenham石铁陨石中,金属相中锗含量为56×10-6,硅酸盐氧化物中含锗0.85×10-6,陨硫铁中含锗17.3×10-6(Shima,1964)。尽管含量有所变化(<0.1×10-6~n×100×10-6),锗一般富集在铁陨石中(Wasson,1966)。根据铁陨石中的锗和镍的含量,Scott和Wasson(1975)对铁陨石进行了分类。另外,铁镍陨石中的锗含量通常为n×100×10-6。由于锗的太阳系丰度相比(C1球粒陨石中Ge/Si(原子比)=120×10-6;Anders和Ebihara,1982),地球火成岩中明显贫锗,通常认为地球上的锗大多数残留在铁镍地核和地幔中(Wittman和Hørmann,1976;Chou,1978)。
三、不同地质体中锗的分布
从表5-3中可以看出,基性火成岩和花岗岩中的锗含量并没有明显差异。Goldschmidt(1954)注意到锗在一些霞石正长伟晶岩中富集,其GeO2的含量为(5~10)×10-6。锗也富集在花岗质伟晶岩、云英岩的某些矿物中,特别是黄玉,云母和锂辉石。
硅质沉积岩和变质岩中的锗含量与火成岩中的锗含量比较接近(表5-3)。页岩有时轻微富集锗,特别是含有机质的页岩(E.L Wardani,1959;Burton等,1959;Breger和Schopf,1955)。沉积碳酸盐岩贫锗,平均只有0.09×10-6。在深海沉积物中,锗轻微富集在硅质粘土和锰结核中,钙质粘土和软泥中相对贫锗(表5-3)。
锗在许多煤中的富集,特别是在煤灰中,已众所周知对此进行了广泛研究。无论是在不同地区还是某特定的矿床中,锗含量的变化范围可达几个数量级。美国华盛顿特区附近孤立的褐煤化原木中,锗含量可达0.2%,灰分中含锗7.5%(Stadnichenko等,1953)。Chattanooga页岩内的薄层煤中锗含量为760×10-6,页岩本身最高为18×10-6(Breger和Schopf,1955)。煤中锗分布的大量研究(Breger,1958;Manskaya和Drozdova,1968;Smirnov,1977;Gluskoter等,1977;刘英俊,1984;李春阳,1991;韩德馨,1996;胡瑞忠,1996)表明,锗在煤中的分布主要有四个特点:①煤中锗的含量与煤岩成分有密切的关系,镜煤是锗的最大载体,丝炭组分中含锗极低;锗在不同煤岩组分中含量变化序列是镜煤>亮煤>暗煤>丝炭。②锗在煤层顶、底部有富集现象,锗含量一般从煤层顶、低部向中间急剧降低;只有在煤层很薄时,整个煤层的顶、底板和中部才能都富含锗。③在同一煤层中,一般薄煤层比厚煤层含锗高,随煤层厚度的增加锗含量减少。④一般情况下,煤中锗的含量与灰分成反比,与挥发分成正比。锗在煤中的富集长期被认为集中在有机组分中,只有很少量的锗分布在无机矿物相中(Goldschmidt和Peters,1933;Gluskoter等,1977)。
表5-3 不同地质体中的锗含量
许多学者都注意到锗在铁的氧化物中的富集现象。Bruton等(1959)发现英格兰Cumberland的两件赤铁矿中锗含量分别为43×10-6和83×10-6。Vakhrushev和Semenov(1969)发现火山-沉积成因磁铁矿-赤铁矿矿床中32件磁铁矿样品平均含锗10.34×10-6,矽卡岩矿床中628件磁铁矿样品平均含锗2.5×10-6。Bekmukhametov等(1973)也发现锗在火山-沉积成因的磁铁矿-赤铁矿矿床中的富集(≤70×10-6),并与矽卡岩中铁的氧化物(锗含量n×10-6)、热液脉型矿床中铁的氧化物(锗含量≤20×10-6)以及沉积褐铁矿(锗含量n×10-6)进行对比。Grigoryev和Zekenov(1965)也发现上述特征,同时发现采自印度尼西亚Banu-Wuhu火山附近海底热泉的Fe-Mn氧化物-氢氧化物颗粒中含锗(11~15)×10-6。在美国犹他州西南华盛顿县的Apex矿区,原生的 Cu-Pb-Zn硫化物矿石大部分被蚀变成褐铁矿、针铁矿、赤铁矿和蓝铜矿,锗在针铁矿(可达5310×10-6)和赤铁矿(可达7000×10-6)中发生超常富集。江苏省江浦县万寿山铁矿中,锗赋存于赤铁矿中,锗含量为(10~168)×10-6,一般为30×10-6,可供利用的矿石平均含锗为35×10-6(中国矿床发现史江苏卷编委会,1996)。
不同成因铁矿床中锗的克拉克值为:岩浆型1.75×10-6、岩浆期后型1.50×10-6、火山沉积型16.5×10-6、沉积型1.5×10-6和风化型2.0×10-6(Smimov,1977)。
具有商业价值的锗目前主要来自碳酸岩和页岩为容矿岩石的闪锌矿矿床中,包括上密西西比河谷地区(闪锌矿中含锗可达420×10-6;Hall和Heyl,1968)和法国Saint-Slavy闪锌矿矿床(闪锌矿含锗可达3000×10-6;Barbanson和Geldron,1983)。其他地区闪锌矿中锗含量研究表明,低温、晚期形成的闪锌矿中具有较高的锗含量。例如,广西环江县北山铅锌硫铁矿矿石平均含锗10×10-6(中国矿床发现史广西卷编委会,1996),凡口铅锌矿矿石中最高含锗58×10-6,锗主要赋存在浅棕色闪锌矿中(谭风琴,1995)。会泽铅锌矿矿石中含锗(10~80)×10-6,锗主要赋存在闪锌矿中。矿石中的闪锌矿主要有两种:铁闪锌矿和(浅色)闪锌矿。铁闪锌矿含铁量较高,呈棕褐—黑色,半金属光泽,与毒砂、黄铜矿、斑铜矿共生。浅色闪锌矿呈浅棕—棕褐色,树脂光泽,与方铅矿、辉硫锑铅矿及辉硫砷铅矿等硫化物共生。浅色闪锌矿的形成温度明显低于铁闪锌矿,是锗的主要载体(韩润生等,2000)。
在扎伊尔Kipushi Zn-Cu-Pb硫化物矿床及纳米比亚Tsumeb Pb-Cu-Zn硫化物矿床中,富锗矿带位于高纯度铜矿石内部。矿床中含有锗的硫化物矿物:硫铜锗矿、锗石和少量灰锗矿。这些矿物也作为显微包裹体分散在许多深成矿石的内部。Kipushi矿床中硫铜锗矿的数量相当丰富(Intiomsle和Oosterbosh,1974)。Tsumeb矿床的锗石储量为28吨(Søhnge,1964)。
Bischoff等(1983)利用发射光谱方法分析了9件北纬21°东太平洋隆起带内热水沉积成因的硫化物、硫酸盐和硅的混合物中的锗含量。富闪锌矿和纤锌矿的样品中锗含量(96~270)×10-6,而其他样品则为<1.5×10-6~27×10-6。这一结果意味着,锗有可能中度富集在富锌的黑矿型和其他海底热液衍生的块状硫化物矿床中。
四、不同地质作用过程中锗的地球化学
锗在岩浆作用中表现为典型的分散元素,不能产生有工业价值的富集现象。它在普通岩浆岩中呈相当均匀的分布,并且沿着两条途径进入晶格内:一是以六次配位进入矿物置换与Al3+相似的一系列离子;另一是以四次配位状态置换硅而进入硅酸盐矿物中。戈尔德施密特、费尔斯曼等的早期研究认为,锗在岩浆岩中的含量大体上与硅含量呈正比,即锗和硅平行增加富集并在残余熔体中发生最大限度的富集。后来的研究逐渐发现,锗是一个分布很广的元素,几乎在所有岩浆岩及岩浆矿物中都发现锗的存在。锗在所有类型岩浆岩中的丰度大约为1.n×10-6,并且在基性岩和酸性岩之间没有差别。此外,单矿物中的锗含量分析表明,与石英和长石相比,橄榄石和辉石中一般富集锗(刘英俊等,1984)。
锗在岩浆作用过程中的地球化学行为特征主要表现为亲铁和亲石性。在900℃,500×105Pa条件下,锗在铁橄榄石和Fe-FeS体系中高度亲铁(Wei等,1968;Wei,1974)。铁金属中可含高达20%的锗(原子比)(Viaene,1972)。Christopher等(1999)在1200℃、1×105Pa和不同氧逸度条件下,测定了锗在(成分接近钙长辉长无球粒陨石)熔体与硅酸盐相之间的分配系数。实验结果表明,(熔体/硅酸盐相)分配系数变化范围为2.35~1070,随着氧逸度的增加,分配系数呈降低趋势。因此,锗强烈地倾向于分配在含铁-镍相中。Capobianco和Watson(1982)发现,在合成的玄武岩熔体中锗紧密地跟随硅的行为:在105Pa条件下的镁橄榄石结晶过程中,锗选择性进入熔体的程度与硅是一样的。尽管在低压条件下,熔体中的w(Ge)/w(Si)比值几乎为常量,橄榄石结晶时岩浆中锗还是发生了一定程度的富集。Argollo和Schilling(1978)在夏威夷的一套火山岩中发现晚期分异的产物中富集Ge和Si,但两者含量比值在所有岩石中几乎为常量。
因此,富铁镁质的基性岩从早期形成的相对低锗的岩浆中结晶时,由于锗在某些结晶出的矿物中具有相对较高的分配系数,锗发生了一定程度的富集;在晚期的花岗质的岩浆分异过程中,相反的情况占主导地位,由于锗在整个结晶体系中的分配系数降低,且岩浆结晶过程中w(Ge)/w(Si)比值始终保持常量,锗并不表现出明显的富集。这可能是导致基性和花岗质岩石中全岩锗含量基本一致的主要原因。此外可能也与锗具有置换造岩矿物中许多元素的能力有关。
在伟晶岩形成作用中,与岩浆作用过程相比,锗发生了某些富集。锗在气成-热液作用过程中优先进入硅酸盐成分中,较少地存在于氧化物中,在硫化物内的更少。锗在花岗岩熔体与共存流体相中的分配实验结果亦表明,锗在流体相中的含量很低,DGe(流体/熔体)为0.0003~0.06,表明锗强烈倾向分布在花岗岩熔体相中(T.B.Bai等,1999)。锗相当集中见之于云英岩内,其中锗的含量为(3~10)×10-6。在云英岩、矽卡岩和含锡的高温石英脉矿床中,锗可在黄晶(平均为200×10-6~300×10-6)、石榴子石(0.001%~0.0n%)、电气石(<10×10-6~100×10-6)中发生富集。锗在这些矿物中的富集可能与Ge4+和Al3+的替代或这些矿物的聚合程度较低有关。
在内生迁移过程中,锗的最大富集发生于热液作用阶段,这主要与锗具有相当的活动性、化合物易挥发性和高溶解性有关。锗的独立矿物、甚至具有工业价值的锗矿床,都属于热液成因。
在热液作用中锗的地球化学行为的典型特征是它表现的亲硫性质,并使之堆积于中温特别是低温条件下的硫化物及硫盐中。锗常存在于含Zn、Sn、Fe、Cu的矿物中。高温热液条件下,锗的亲硫性质表现不强;随着热液温度的降低,同时也是硫浓度的增高,锗愈来愈多地进入硫化物矿物晶格,开始表现其强烈的亲硫性质。
所有原生含锗矿物在地表条件下都是不稳定的,以各种速度发生氧化分解。在一些富锗的热液硫化物矿床的氧化带中,锗常被大量地淋失。大多数情况下,锗呈4价状态被淋滤溶解而进入水溶液中(刘英俊等,1984)。
在海水中,锗含量约0.05×10-9,并且随着深度的变化而减少,Ge/Si(原子比)为0.7×10-6(Wardana,1957;Burton,1959)。除溶解的无机锗外,Lewis等(1985)发现河流入海口或海湾中有甲基锗和二甲基锗存在,其含量与盐度呈线性正相关。河水含锗约(0.03~0.10)×10-9(Heide和Korner,1962),远离工业区和燃煤源的河水中Ge/Si原子比约为0.6×10-6。富含有机质的水体中Ge/Si原子比明显升高(Pokrovski,1998)。水体中的锗含量与许多重要的配位基(如Cl-、HCO3-、H2S、Na+等)含量之间缺乏正相关关系,表明锗不能与这些配位体形成配合物。锗氟配合物稳定性的实验数据表明,只有在酸性(pH<3)、富氟(>0.01mol/L)的溶液中,锗氟配合物才是稳定的(很难在地表环境中发现)。大多数热水和地表环境的氧化还原电位太高,以致不能形成二价锗的配合物,如Ge2+、GeOH+或。因此,锗主要以四价锗的氢氧配合物形式,存在于除海水和富有机质地表水外的大多数天然水体中(Pokrovski,1998)。
因为GeO2的高溶解度,转入表生溶液中的锗大部分被迁移较远,在迁移过程中由于一定物理化学条件通过不同方式固定于各种沉积物(尤其是富含有机质的沉积物)中。沉积岩中锗的丰度主要取决于矿物成分。普通沉积物和沉积岩中锗的平均含量为:页岩1.6×10-6,砂岩0.8×10-6,碳酸岩0.2×10-6,深海沉积碳酸盐岩0.2×10-6,粘土2.0×10-6(Turekian和Wedepohi,1961)。富锗硫化物矿床氧化带的胶体形成物和褐铁矿中也常富集锗,个别情况下甚至形成锗的独立氧化物矿物。
变质岩中锗的平均丰度被定为1.7×10-6。主要变质岩类型锗的平均含量为:石英岩1.4×10-6、石英千枚岩1.5×10-6、千枚岩2.5×10-6、片岩1.7×10-6、正片麻岩1.7×10-6、副片麻岩1.5×10-6(巴顿,1959;威宁格,1965;斯奇朗,1968)。
关于变质反应中锗的地球化学行为尚未很好研究,值得指出的是,沉积变质的铁矿石有的已成为具有工业价值的锗原料。在铁矿石中,磁铁矿较赤铁矿富含锗。锗在沉积变质磁铁矿内以六次配位状态进入磁铁矿晶格置换Fe3+,其置换方式为Ge4++Fe2+→2Fe3+。锗由吸附状态进入磁铁矿晶格,大概是在胶体氢氧化铁经受静压变质作用,去水再结晶形成无水氧化铁的过程中形成的。Johan等(1983)发现在闪锌矿内部以显微包裹体形式存在的几个矿物中具有异常高的锗含量。这些矿物赋存在法国Pyrenees中部的几个变质成因的闪锌矿矿床中。这些矿床含有Argutite(四面体GeO2)、锗磁铁矿和少量灰锗矿、carboirite(锗替代硬绿泥石中的硅)和锗铁黑云母(表5-2)。这些矿床中榍石、黝帘石、褐帘石、绿泥石和石英可含有相当数量的锗,远远高于原来报道的这些矿物天然样品中的锗含量。这些矿床中的闪锌矿含锗(60~150)×10-6(Geldron,1983)。
近年来,一些学者基于对硅和锗全球地球化学循环的考虑,较系统地研究了海洋、地表水体、大陆地热体系以及现代洋中脊热水溶液中硅和锗的地球化学行为。
与河流、海洋和大陆岩石中的Ge/Si(原子比)相比较,热液中的Ge/Si(原子比)要高出许多,而且在大多数热水中,Ge浓度和Ge/Si(原子比)随温度的增高而增加。远离工业区和燃煤源的河水中Ge/Si(原子比)约为0.6×10-6(Pokrovski,1998)。太平洋海底黑烟囱的Ge/Si(原子比)为(8~14)×10-6,入海口河水中的Ge/Si(原子比)为0.54×10-6,而循环海水中的Ge/Si(原子比)为0.7×10-6(Mortlock,1993)。冰岛地热系统的Ge/Si(原子比)约为10-5(Arnorsson,1984)。法国MassifCentral热水中的Ge/Si(原子比)为10-4~10-3(Criaud和Fouillac,1984)。富含有机质的水体中Ge/Si(原子比)明显升高(Pokrovski,1998)。海水中含锗约0.05×10-9,并且随着深度的变化而减少(Wardana,1957;Burton,1959)。河水含锗约(0.03~0.10)×10-9(Heide和Korner,1962)。与河水和海水相比,锗在地热水和一些地下水中相对富集。日本地热水中一般含锗(1~15)×10-9,最高可达40×10-9。冰岛地热水中锗含量变化范围为(2~30)×10-9,并且锗含量与水温总体上呈正相关(Arnorsson,1984)。
锗含量与许多重要的配位基(如 Cl-、、H2S、Na+等)含量之间缺乏正相关关系,表明锗不能与这些配位体形成配合物。锗氟配合物稳定性的实验数据表明只有在酸性(pH<3)富氟(>0.01mol)的溶液(很难在地热环境中发现)中锗氟配合物才是稳定的。大多数热水和地表环境的氧化还原电位太高,以致不能形成二价锗的配合物,如 Ge2+、GeOH+或。因此,锗主要以四价锗的氢氧配合物形式,存在于除海水和富有机质地表水外的大多数天然水体中(Pokrovski,1998)。在 25~350℃、酸性至碱性溶液、饱和蒸气压条件下,四面体GeO2的溶解度及溶液中锗的赋存状态的实验研究结果表明,锗的溶解度与温度呈明显的正相关;在 20~350℃、pH 值 0~8 条件下,溶液中的锗主要以形式存在;在pH>8~9 时,离子的数量明显增加。理论计算结果表明锗的氢氧配合物与温度和pH的关系与硅的氢氧配合物类似,但是,生成焓和热容的明显差别,将导致与含锗硅酸盐平衡的溶液中温度与 Ge/Si(原子比)出现较大变化。例如,计算结果表明,当温度从25℃升高至 500℃,与含锗硅灰石(Ca(Si,Ge)O3)平衡的溶液中 Ge/Si 比值增加了一个数量级。从理论上揭示了地热流体中 Ge/Si(原子比)与温度的关系(Pokrovski,1998)。
Koga(1967)注意到新西兰Tanpo火山带地热系统中某些热液蚀变岩石中锗强烈亏损,硅华中具有相当高的锗含量。与新鲜原岩相比,Arnorsson(1984)发现冰岛活动的高温地热系统中某些蚀变玄武岩中锗含量降低;活动地热田中5件硅泉华中锗含量为<0.1~1.6×10-6,平均0.8×10-6,其Ge/Si比值小于共存热水中的Ge/Si值;5件钙华样品中锗含量<0.1~2.5×10-6,平均0.9×10-6,钙华自pH为6~7的温水中沉积,并含有一些不定形硅。
『拾』 锗的化学性质
锗是第四周期IVA族元素,C、Si、(Ge)、Sn、Pb,原子序数是32,是一种灰白色的类金属。锗的性质与硅和锡类似,具有半导体性质。化合价常见为+2、+4价,+4价混合物稳定。
锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。
与盐酸、稀硫酸不起作用。
浓硫酸在加热时,锗会缓慢溶解。
在硝酸、王水中,锗易溶解。
碱溶液与锗的作用很弱,但与熔融的碱在空气中,能使锗迅速溶解。
锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。