当前位置:首页 » 历物理化 » 如辉生物

如辉生物

发布时间: 2021-08-06 16:01:33

① 如辉消毒液对肺结核有用吗

如辉消毒液灭杀致病病毒(结核杆菌,枯草杆菌黑色变种芽孢,流感病毒,手足口病毒等),如辉消毒液连枯草杆菌黑色变种芽孢病毒都可以灭杀,这个病毒是属于病毒系列最难杀死的病毒,所以扼杀结核杆菌是完全没有问题。它可以快速消毒,没有异味,总的来说如辉消毒液还是很靠谱的。

② 如辉消毒纸巾可以杀死腺病毒吗

参看“如辉”纸巾的使用说明书,可知其使用消毒液的有效成分为过氧化氢和苯扎溴铵。
过氧化氢是一种高效消毒剂,可有效杀灭常见的细菌、病毒等病原微生物
因而,含有“如辉”消毒液的纸巾,应该能杀灭腺病毒。

③ 地壳中有哪些元素

主量元素: 主量元素有时也称为常量元素,是指那些在岩石中(≠地壳中)含量大于1%(或0.1%)的元素,在地壳中大于1%的8种元素都是主量元素,除氧以外的7种元素在地壳中都以阳离子形式存在,它们与氧结合形成的氧化物(或氧的化合物),是构成三大类岩石的主体,因此又常被称为造岩元素。 地壳中重量百分比最大的10个元素的顺序是:O>Si>Al>Fe>Ca>Na>K>Mg>Ti>H,若按元素的原子克拉克值(原子个数),则原子个数最多的元素是:O>Si>H>Al>Na>Mg>Ca>Fe>K>Ti。Ti、H(P)在地壳中的重量百分比虽不足1%,但在各大类岩石中频繁出现,也常被称为造岩元素。 上述地壳中含量最高的十种元素,在各类岩石化学组成中都占重要地位。虽然不同类型岩石的矿物成分有差异,但主要矿物都是氧化物和含氧盐,尤其是各种类型的硅酸盐,因此可将整个地壳看成一个硅酸盐矿物集合体。 岩浆岩是地壳中分布最广的岩石大类,从酸性岩直到超基性岩,主要矿物都是硅酸盐,不同的是:超基性岩和基性岩主要由镁、铁(钙)的硅酸盐组成,中、酸性岩主要由钾、钠的铝硅酸盐和氧化物组成。大陆地壳中上部中酸性岩石占主导的地位,下部中基性岩为主体;大洋地壳以基性岩石为主,因此地球科学家常称地壳为硅酸盐岩壳。也有的学者将以中酸性岩为主的部分称为硅铝质地壳,将以基性岩为主的部分称为硅镁质地壳。 由此可知:地壳中主量元素的种类(化学成分)决定了地壳中天然化合物(矿物)的类型;主要矿物种类及组合关系决定了其集合体(岩石)的分类;而地壳中主要岩石类型决定了地壳的基本面貌。微量元素: 在地壳(岩石)中含量低于0.1%的元素,一般来说不易形成自己的独立矿物,多以类质同象的形式存在于其它元素组成的矿物中,这样的元素被称为微量元素。比如:钾、钠的克拉克值都是2.5%,属主要元素,在自然界可形成多种独立矿物。与钾、钠同属第一主族的铷、铯,由于在地壳中的含量低,在各种地质体中的浓度亦低,难以形成自己的独立矿物,主要呈分散状态存在于钾、钠的矿物中。硫(硒、碲)和卤族元素: 在地壳中,除氧总是以阴离子的形式存在外,硫(硒、碲)和卤族元素在绝大多数情况下都以阴离子形式存在。虽然硫在特定情况下可形成单质矿物(自然硫S2),硫仍是地壳中除氧以外最重要的呈阴离子的元素。硫在热液成矿阶段能与多种金属元素(如贵金属Ag、Au,贱金属Pb、Zn、Mo、Cu、Hg等)结合生成硫盐和硫化物矿物,这些矿物是金属矿床的物质基础 。若矿物结晶时硫含量不充分,硒可以进入矿物中占据硫在晶格中的位置,硫、硒以类质同象的方式在同种矿物中存在。碲与硫的晶体化学性质差别比硒大,故碲通常不进入硫化物矿物,当硫不足时,它可以结晶成碲化物。 氯、氟等卤族元素,通过获得一个电子就形成稳定的惰性气体型(8电子外层)的电层结构,它们形成阴离子的能力甚至比氧、硫更强,只是因为卤族元素的地壳丰度较氧、硫低得多,限制了它们形成独立矿物的能力。卤族元素与阳离子结合形成典型的离子键化合物。离子键化合物易溶于水,但气化温度较高,在干旱条件下,卤化物还是比较稳定的。当卤族元素的浓度较低,不能形成独立矿物时,它们进入氧化物,在含氧盐矿物中,常见它们以类质同象方式置换矿物中的氧或羟基金属成矿元素: 在地质体中金属元素多形成金属矿物(硫化物、单质矿物或金属互化物,部分氧化物),在矿产资源中作为冶炼金属物质的对象。 金属成矿元素按其晶体化学和地球化学习性以及珍稀程度可以分为:贵金属元素、金属元素、过渡元素、稀有元素、稀土元素。 贵金属元素Ag、Au、Hg、Pt等,贵金属元素在地壳中主要以单质矿物,硫化物形式存在,在地质体中含量低,成矿方式多样,但矿物易分选,元素化学稳定性高,成矿物质的经济价值高; 金属元素Pb、Zn、Cu(又称贱金属元素)、Sb、Bi等,在地壳中主要以硫化物形式存在。成矿物质主要通过热液作用成矿,硫(硒、碲)的富集对成矿过程有重要意义。矿床中成矿元素含量较高,是国民经济生活中广泛应用的矿产资源; 过渡元素Co、Ni、Ti、V、Cr、Mn和W、Sn、Mo、Zr、Hf等,这些元素在自然界多以氧化物矿物形式存在,部分也可形成硫化物(如钼)或硫盐(如锡)。 稀有元素Li、Be、Nb、Ta、Ti、Zr在地壳中含量很低,主要形成硅酸盐或氧化物。 稀土元素钇和镧系元素统称为稀土元素,地壳中稀土元素含量低,但它们常成组分布。稀土元素较难形成自己的独立矿物,主要进入钙的矿物,在矿物中类质同象置换钙。较常见的稀土元素矿物和含稀土元素的矿物都是氧化物或含氧盐类矿物。亲生物元素和亲气元素: 主要有C、H、O、N和P、B,它们是组成水圈、大气圈和生物圈的主要化学成分,在地壳表层的各种自然过程中起着相当重要的作用。部分微量元素(如Zn、Pb、Se等)以及在地壳表层和水圈中富集的元素Ca、Na、F、Cl等对生命的活动有重要意义,具亲生物的属性。某些亲生物元素的过量或馈乏不仅会影响生命物体的正常发育,严重时还会引起一些物种的绝灭。放射性元素: 现代地壳中存在的放射性元素(同位素)有67种。原子量小于209的放射性同位素仅有十余种,它们是:10Be,14C,40K,50V,87Rb,123Te,187Re,190Pt,192Pe,138La,144Na,145Pm,147Sm,148Sm和149Sm,自84号元素钋(Po)起,元素(同位素)的原子质量都等于或大于209,这些原子核都有放射性,它们都是放射性同位素。 现代核物理技术的高度发展,已经能够通过中子活化及核合成技术生成许多新的放射性元素(同位素),若将这些元素计算在内,元素周期表内的元素总数应增加到109个。(2)矿物的分类、晶形及其物理性质 地壳中各种元素多数组成化合物,并以矿物的形式出现。矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。矿物学是地球科学中研究历史最悠久的分支学科之一。自有人类以来就开始了对矿物的认识和利用,人类有了文字就有了对矿物认识的记载。矿物学作为一门独立的学科已有近三个世纪的历史了,20世纪20年代以来在矿物学研究中逐步引入了现代科学技术的研究手段和方法,使矿物学进入了由表及里、由宏观到微观的研究层次,开始了矿物成分、结构与物理性质、开发应用综合研究的新阶段。 迄今发现的矿物种数已达3000余种。常见的造岩矿物只有十余种,如石英、正长石、斜长石、黑云母、白云母、角闪石、辉石、橄榄石等,其余属非造岩矿物。按矿物中化学组分的复杂程度可将矿物分成单质矿物和化合物。化合物按与阴离子的结合类型(化学键)划分大类,主要大类有:硫化物(包括砷、锑、铋、碲、硒的化合物);氧的化合物;以及卤化物。在各大类中按阴离子或络阴离子种类可将矿物划分类,各类中按矿物结构还可以划分亚类,在亚类中又可以进一步划分部、族和矿物种。硫化物及其类似化合物: 在矿物分类中,硫化物大类还可以分成三个矿物类。硫化物矿物的总特征是:首先,它们由金属阳离子与硫等阴离子之间以共价键方式结合形成。它们在地壳中的总量很低(<1%),但矿物种较多,占矿物种总数的16.5%。硫化物矿物的生成多与成矿作用有关,即绝大多数矿床中的金属矿物都属硫化物大类;其次,硫化物类矿物透明度和硬度较低,但通常色泽鲜艳、有金属(半金属)光泽、比重也较大;最后,结晶程度较好,硫与其它元素结合时配位方式多样,因此晶体结构类型多,晶体形态多样,容易识别。 在成员众多的硫化物矿物家族中,方铅矿(PbS)、闪锌矿(ZnS)、黄铜矿(CuFeS2)、黝锡矿(Cu2SnFeS4)和黄铁矿(FeS2)、斑铜矿(Cu5FeS4)、雄黄(As4S4)、雌黄(As2S3)、辰砂(HgS)等是最常见的硫化物。此外,还有硒化物和碲硫化物。氧的化合物: 几乎所有造岩矿物都是硅酸盐和氧化物,如长石、云母、角闪石、辉石等。但也有一些氧化物和含氧盐主要与成矿作用有关,如锡石(SnO2)和黑钨矿((FeMn)WO4)、磁铁矿(Fe2+Fe3+O4)、钛铁矿(FeTiO3),是锡、钨、铁矿床中的资源矿物(矿石矿物)。单质及其类似物: 它们在矿物分类中也是一个大类,包括由单质原子结晶的矿物和多种原子结合的金属互壳重量的1%,但成矿能力很强,如自然铜(Cu)、银金矿(AgAu)、自然铂(Pt)、金刚石(C)、石墨(C)和自然硫(S)都可富集成矿。单质矿物中原子以金属键或共价健和分子健相结合,原子间紧密堆积,矿物晶体对称性高。宝石矿物: 宝石鲜艳的颜色和绚丽的光泽使其具有很高的价值 在矿物学分类中并未划分此大类,但它们是具特殊经济意义的矿物群体。经过加工,能用于装饰的矿物,称为宝石矿物。宝石矿物主要有以下特点:第一是晶莹艳丽,光彩夺目,即矿物的颜色和光泽质地优良。第二是质地坚硬,经久耐用,即宝石矿物的硬度较大;第三是稀少,即矿物产量少,又有一定的价值。据以上特征,能称为宝石矿物的只可能是氧的化合物和单质矿物中的少数非金属矿物。自然界的宝石矿物共有百种,较重要的约20种。最贵重的宝石有四种:钻石、红宝石、蓝宝石和祖母绿(见彩色照片)。 钻石的宝石矿物是金刚石(C),它属单质非金属矿物,是硬度最大的矿物。金刚石结晶温度(>1100℃)和压力(>40Pa)很高,是元素碳在距地表大约200km或更深处结晶的晶体。 红宝石和蓝宝石是两种极贵重的宝石,其宝石矿物都是刚玉(Al2O3)。刚玉虽是较常见的矿物,但能成为宝石矿物的刚玉仅出现在某些石灰岩和中酸性岩浆岩的接触带、基性岩墙及纯橄榄岩中,成为宝石矿床还需经过沉积作用,即在碎屑矿物中聚集。 还有一种宝石 祖母绿也十分名贵,它的宝石矿物是绿柱石(Be3Al2〔Si6O18〕),绿柱石是环状构造硅酸盐,主要产于岩浆晚期形成的伟晶岩和一些高温热液形成的脉状岩石中,作为宝石矿物的绿柱石主要产在热液脉中,而且十分罕见。 矿物的形态由矿物的晶形和结晶程度决定。矿物的结晶程度主要受矿物生长时的物理化学环境控制,而矿物的晶形则与矿物的晶体结构有关。晶体是晶体结构的最小单位(晶胞)在三维空间重复增长的结果,如果晶体结构的对称性高,晶体的对称性也高。三维对称的晶体呈粒状晶体(如金刚石、方铅矿等),二维对称的晶体沿C轴发育的为长柱状(如针镍矿),若C轴不发育的呈片状(如辉钼矿、云母等)。化学键的各向异性也影响晶体的形态,如金红石、辉锑矿的八面体化学键沿C轴延伸,它们的晶体发育成柱状、针状或毛发状(图4-1)。硅酸盐矿物晶形与其结构的对应关系,将在岩浆岩组成矿物中作简要介绍。 晶体:a石英 b长石 c石榴子石 矿物的比重是单位体积中矿物的重量与4℃水重量之比,矿物的密度是单位体积中矿物的质量,两者概念不同,但数值相当。决定矿物比重和密度的主要因素是:阳离子的原子量、晶体中的原子间距和原子的配位数。例如,方解石CaCO3和菱锌矿ZnCO3结构相同,但Ca、Zn的原子量分别是40.08和65.57,因而方解石的密度(2.71g/cm3)就比菱锌矿(4.45g/cm3)小。又如文石和方解石的成分都是CaCO3,但两者的配位数分别为9和6,两者的密度就有差异,分别是2.95g/cm3和2.23g/cm3。 矿物硬度是矿物内部结构牢固性的表现,主要取决于化学键的类型和强度:离子键型和共价健型矿物硬度较高,金属键型矿物硬度较低。硬度也与化学键的键长有关,键长小的矿物硬度较大。离子价态高低和配位数大小对矿物硬度有一定影响,离子价态高,配位数较大的矿物硬度也较大。 矿物的颜色由矿物的成分和内部结构决定。组成矿物的离子的颜色,矿物晶体中的结构缺陷,以及矿物中的杂质和包裹体等,都可影响矿物的颜色。在离子键矿物晶体中,矿物的颜色主要与离子的颜色有关,如Cu2+?离子为绿色,铜的氢氧化物,碳酸盐和硫酸盐矿物都呈绿(黄)色,又如Ca2+?离子无色,Fe2+?、Mn2+?离子主要呈灰、红色,故白钨矿(CaWO4)为灰白色,黑钨矿(MnFe)WO4为黑 褐色。共价键化合物矿物中离子受极化作用的影响,矿物的颜色与离子的颜色无明确关系,如黄铜矿为金黄色,而辉铜矿则是烟灰色。 矿物的透明度指矿物对光吸收性的强弱。受矿物颜色、裂隙、放射性物质含量等影响,也与化合物化学键类型有关。 矿物表面反射光的能力称为光泽,按反射光能力由强到弱可分为金属光泽、半金属光泽、金刚光泽和玻璃光泽。矿物光泽受化合物化学键型、矿物的成分结构和矿物表面的性质等条件的制约。光泽是评价宝石的重要标志。 矿物的导电性与化学键类型有关,金属键型矿物导电性强、离子键和共价键矿物不导电或仅有弱导电性。某些矿物有特殊的电学性质,如电气石在加热时可产生电荷,具焦电性,石英晶体在加压时可产生电荷,具压电性,这些性质被应用于现代技术和军事工业。 矿物还有一些其他的物理性质,如过渡性元素的矿物(磁铁矿、磁黄铁矿等)常具磁性。某些矿物具磁性是壳幔产生局部磁场的基础,矿物的热导性、热膨胀率、放射性、表面吸附能力等物理性质对矿物的利用价值也有影响。

④ 如辉消毒纸巾能擦碗筷吗

不建议用如辉“消毒”纸巾来擦拭碗筷。
如辉消毒液的主要成分为过氧化氢和苯扎溴铵,从消毒效果来说,可以杀灭常见的细菌、病毒等病原微生物,但过氧化氢和苯扎溴铵都属于不能口服的物品,如用如辉纸巾擦拭碗筷,势必会有残留,从而危害身体健康。
如果担心饭店的碗筷不干净,可以使用自来水冲洗或用开水浇烫,虽不能完全杀灭碗筷上可能存有的微生物,但还是能除去绝大部分。

如何利用矿物鉴定矿物

物理方法:用矿物的一些物理性质来区分矿物,这是最简单实用的方法,是我们在野外鉴定的主要方法,这些物理性质主要有:1)形状:片状、肾状、鲕状、菱形、立方状、板状、致密状、短柱状等。2)颜色 矿物的颜色是最容易引起注意的。分为三种:自色—矿物本身所固有的颜色。它色—矿物中混入杂质,带色的气泡所导致的颜色。假色—由矿物表面氧化膜、光线干涉等作用引起的颜色。3)条痕:矿物粉末的颜色。将矿物在白瓷板上刻划后留下粉末的颜色。它可以消除假色,减弱他色,保存自色,但矿物硬度一定要小于白瓷板。具体简单的物理方法区别,准备2个道具,第一是一把小刀,第二是一块白色瓷砖。石英:玻璃光泽透明,解理较好,硬度比小刀大,小刀划不出明显的痕迹出来长石:玻璃光泽比石英硬度稍小 比较常见,主要是钠长石和钾长石滑石:白色,半透明,硬度很低,可以用指甲画出痕迹出来,放在舌头上还有种粘的感觉。萤石:具很强荧光,用小刀可以刻出明显痕迹。长石分两大类——正长石(钾长石)和斜长石,二者区别在于两组解理的夹角,正长石等于90度,斜长石小于90度 一般颜色多样,有些正长石显肉红色,是由于含有铁的原因黄铁矿:浅黄铜黄色,表面常具黄褐色锖色。放在白色瓷砖上划出的条痕绿黑或褐黑。强金属光泽菱铁矿:一般为晶体粒状或不显出晶体的致密块状、球状、凝胶状。颜色一般为灰白或黄白黄铜矿:很容易和金矿混淆。从它的颜色和条痕当中鉴别出来,它和黄铁矿相像,但是硬度不如黄铁矿。鉴定时,指甲刻不出明显痕迹,但如果是金矿的话,指甲可以划出痕迹。

⑥ 谁知道化石、土壤、岩石的形成原因

化石
化石是埋藏在地层里的古代生物的遗物。最常见的化石是由牙齿和骨骼形成的。古代动物死后,尸体的内脏、肌肉等柔软的组织很快便会腐烂,牙齿和骨骼因为有机质较少,无机质较多,却能保存较长的时间。如果尸体恰好被泥沙掩埋,与空气隔绝,腐烂的过程便会放慢。泥沙空隙中有缓慢流动的地下水。水流一方面溶解岩石和泥沙内的矿物质,另一方面将水中过剩的矿物质沉淀下来或成为晶体,随着水流会逐渐渗进埋在泥沙中的骨内,填补牙齿和骨骼有机质腐烂后留下的空间。如果条件合适,由外界渗进骨内的矿物质在牙齿和骨骼腐烂解体之前能有效地替代骨骼原有的有机质,牙齿和骨骼便完好地保存成为化石。由于化石中的大量矿物质是极为细致地慢慢替代其中的有机质,所以能完整地保存牙齿和骨骼原来的形态,连电子显微镜才能看清的组织形态都能原样保存。天长日久,骨骼的重量不断增加,由原来的牙齿和骨头变成了还保存牙齿和骨头原有的外形和内部结构的石头,这个过程被称作“石化过程”。

化石是由地制裁历史时期生物的遗体或其他生活活动的遗迹被沉积物埋藏之后,在沉积物的压实、固结成岩过程中,经过石化作用形成的。

现在,我们来看一看化石形成和保存所需要的条件。化石的形成和保存主要与以下条件有关:

⑴生物体是否具有由化学性质较稳定的物质组成的硬体(如贝壳、骨骼等),具有硬体的生物保存为化石的可能性较大;

⑵生物遗体或遗迹所在环境的物理化学条件是否适合于保存,波浪作用强烈的水域环境不利于生物遗体和遗迹的保存;当环境介质的PH值小于7.8时,由碳酸钙组成的生物硬体容易受到溶蚀,故也不利于生物遗体的保存;氧化条件下不利于有机质的保存;

⑶生物死亡后是否迅速被埋藏,如果生物死亡后,它的遗体能够被迅速而长期埋藏,那就比较容易形成化石;

⑷沉积物的类型对化石的形成和保存也有重要影响;如果生物遗体被化学沉积物(如CaCO3)或生物成因的沉积物所掩埋,形成化石的可能性比较大;

⑸在沉和物固结成岩的化石过程中,强烈的压实作用和重新结晶的作用,不利于化石的形成和保存。

由于形成化石的条件不同,保存在岩层中的化石也有不同类型。按化石保存特点不同,大致有实体化石、模铸化石、遗迹化石和化学化石四种类型。其中研究得比较深入、意义比较的是实体化石。在实体化石中,生物遗体全部保存为化石的十分罕见,较常见的只保存了生物体的某一部分,如一颗牙齿、一块骨头、一枚贝壳或一片叶子等。

必须指出,在化石石化过程中,生物硬体原来的成分可能部分或全部被地下水中的矿物质所取代,或者其中稳定性较低的含氮、含氧物质经分解和升溜作用而挥发消失、仅留下了稳定性高的碳质部分,如植物的叶子化石通常是碳质和薄膜。由于化石的形成和保存需要苛刻的条件。因此,保存在岩层中的化石实际上只是当时生存物的非常少的一部分,这就是生物史记录的不完备性。尽管如此,我们仍可通过化石的研究,揭示不同地质历史时期生物界的概貌。

土壤

土壤母质是由矿物岩石经过风化而成。土壤母质的性质决定于矿物岩石的化学成分,分化特点和分解的产物。土壤矿物质一般占土壤固体物质的95%左右,是构成土壤的最基本物质。形成岩石的矿物称为造岩矿物。矿物是地壳中具有一定的物理性质、化学成分和内部构造的天然化合物,它以各种形态(固态、液态、气态)存在于自然中。大多数矿物是由两种以上元素所组成。自然界矿物种类很多,主要成土矿物是:石英、长石类(正长石、斜长石)、云母类(黑云母、白云母)、辉石和角闪石、铁矿类(赤铁矿、褐铁矿、黄铁矿)、方解石、石膏、磷灰石和粘土矿物。成土的主要岩石:一是岩浆岩(又称火成岩),是由岩浆冷却而成,其中岩浆侵入地壳深层生成的称为深成岩(侵入岩);岩浆冲破地壳在地上形成的称为喷出岩(火山岩)。岩浆岩根据Sio2含量分为酸性岩(如花岗岩,流纹岩),中性岩(如正长石,粗面岩、安山岩),基性岩(如辉长石、玄武岩),超基性岩(如辉岩);二是沉积岩,由岩浆岩经过风化,搬运、沉积而成,或由生物遗体堆积而成的次生岩石,如砾岩、砂岩、页岩、石灰岩等;三是变质岩,是由岩浆岩或沉积岩在高温高压下使内部组织改变或重新结晶而成的岩石,如板岩、片岩、片麻岩、大理岩、石英岩等。

岩石矿物经过风化作用产生的土壤母质,除少量仍然留在原来生成的地方外,大多数成土母质经风力、水力、冰川力或重力等外加的作用,沿地表进行搬运,并在一定地区堆积下来形成不同的成土母质:(1)定积母质(残积物),一般分布在山区比较平缓的高地上,是山区的主要成土母质;(2)运积母质是指流水沉积母质(包括坡积物,洪积物,淤积物),静水沉积母质,海水沉积母质,风积母质和重积母质,是我国三大平原农业基地(华北平原、东北平原、长江中下游)以及湖泊及滨海周围,西北地区的内陆性沙丘,黄河故道的河岸两傍沙地和山麓谷地等地区的主要成土母质;(3)第四纪沉积母质,其形成距今已有一百万年左右,在当时的外力作用下进行剥蚀,搬运的风化物,堆积覆盖在地层的最上层,这些沉积物是形成近代土壤的重要母质。

土壤的形成受自然因素(母质、气候、地形、生物、时间)和人为的耕种等的影响,经过不同的成土过程(如原始成土过程,有机质聚积过程,粘化过程,脱钙和积钙过程,盐化和脱盐过积,碱化和脱碱过程,灰化过程,富铝化过程,潜育化和潴育化过程,白浆化过程,熟化过程)形成了不同的土壤发育层次(如覆盖层、淋溶层、淀积层、母质层、母岩层)和剖面形态特征(如土壤颜色、土壤结构、土壤质地、土壤松紧度和孔隙状况、土壤湿度、新生体和侵入体),从而形成各种各样的土壤(如黑土、白土、黄土、红壤、绵土、塿土、粘土、砂土等),中国约分布有61个土类、231个亚类,2473个土种。

岩石

岩石分三类
火成岩
这种产生于地球深处含挥发份的高温粘稠的硅酸盐熔融物质就是岩浆。岩浆可以随地壳的活动运移到地壳的不同深处,也可以由火山活动喷溢到地表,冷凝而形成不同类型的火成岩。
沉积岩
地表条件下,地壳上先期存在原始物质,经过搬运、沉积和成岩等一系列地质作用,最终形成沉积岩。组成沉积岩的这些原始物质的来源主要有:母岩风化作用的产物--陆源碎屑、溶解物质和粘土物质;生物物质--生物残骸及有机生物残体;深源物质--火山喷发带到地表的火山碎屑物质、沿断裂带进入地表的热卤水、温泉水、热液等;宇宙源沉积物--从宇宙空间降落地表的陨石及尘埃物质。原始沉积物中母岩的风化产物是构成沉积岩的主要组分。这些原始物质可以通过机械、化学、生物等不同的搬运和沉积方式,并经受同生、成岩和后生等地质作用而形成多种类型的沉积岩。
变质岩
组成地壳的岩石都是在一定的地质作用和条件下形成和存在的,它们必然处于不断地运动、变化和发展之中。地壳中已经形成的岩石由于其所处地质环境的改变,在新的物理、化学条件下,就会发生矿物成分和结构构造等多方面的改造与转变。由地球内力作用下,随着物理、化学条件的改变,地下的固态岩石因受温度、压力及化学活动性流体的影响,其原岩组分、矿物组合、结构、构造等发生转化即形成多种不同类型的变质岩。这种地质作用我们称为变质作用。需要说明的是,岩石的变质是由地球内力引起的,基本上是在固体状态下进行的,因而既不同于沉积作用,也不同于岩浆作用。

⑦ 如辉消毒纸巾可以杀流感病毒吗

根据其使用说明书,“如辉”纸巾使用的消毒液,其有效成分为过氧化氢和苯扎溴铵。
过氧化氢是一种高效消毒剂,可有效杀灭常见的各种细菌、病毒等病原微生物。因而,含有“如辉”消毒液的纸巾应该能杀灭流感病毒。

⑧ 如辉消毒纸巾可以杀手足口病毒吗

根据“如辉”纸巾使用说明书介绍的情况,可以知道其使用消毒液的有效成分为过氧化氢和苯扎溴铵。
过氧化氢是一种高效消毒剂,可有效杀灭常见的细菌、病毒等病原微生物。
因此,含有“如辉”消毒液的纸巾,应该能杀灭手足口病毒。

热点内容
一年级班主任工作计划小学 发布:2025-06-29 12:05:08 浏览:959
语文是美丽的 发布:2025-06-29 10:43:39 浏览:78
泉州市教师招聘公告 发布:2025-06-29 10:29:35 浏览:858
师德专题培训总结 发布:2025-06-29 10:28:45 浏览:974
学考物理试卷 发布:2025-06-29 07:17:27 浏览:225
牛肉炖多久熟 发布:2025-06-29 06:34:20 浏览:377
乐高的老师一月多少钱 发布:2025-06-29 06:07:28 浏览:158
教师工资收入 发布:2025-06-29 02:13:44 浏览:914
多久会不疼 发布:2025-06-29 00:30:31 浏览:410
老师述职报告范文 发布:2025-06-29 00:19:39 浏览:630