生物纳米探针
A. 简述几种分子成像方法
分子成像检验
分子成像检验是指活体内生物过程在细胞和分子水平上特征的显示,在分子水平上借助化学和生物制剂的作用以无创的方式成像的检测方式。为深入揭示疾病生理病理过程有关机制,以及对疾病和治疗进行实时、动态、细致、无创、靶向性的探测和跟踪提供了有效手段。
检查前准备
根据所采取方法的不同采取相应的准备措施,如放射性放射性核素分子成像、光学分子成像前需排除药物过敏;磁共振分子成像应详细了解病史,确保无任何金属或磁性物质植入体内等。
操作方法
常用的方法有放射性核素分子成像、磁共振分子成像、光学分子成像、超声分子成像、CT分子成像、多模式分子成像等。可以通过分子探针与靶点直接反应成像;也可以通过报告基因间接转录某种蛋白质基因后,其表达产物被报告探针检测,报告探针与报告基因的表达产物特异性结合之后被成像设备检测到而进行的成像;还可利用替代标志物探针来反映内源性分子或基因生物过程的下游结果等。
临床意义
分子探针与体内特定研究目标结合,可以定量地反映生物过程中分子水平上的变化。
1.肿瘤的应用
在肿瘤血管成像、基因成像、肿瘤细胞凋亡成像,肿瘤间质成像、受体成像和肿瘤代谢成像等肿瘤血管成像在肿瘤研究中占重要位置。
2.心血管应用
可帮助探讨动脉粥样硬化、心肌缺血、心肌无力、心力衰竭等心血管病的发病机制。如在动脉硬化研究中,针对硬化斑块成分、尖性细胞、增殖的平滑肌细胞,纤维蛋白及纤维蛋白原等设计不同探针,对斑块进行分析和诊断。
3.神经系统应用
利用放射性核素分子成像和磁共振脑功能定位成像方法对脑神经病变、肿瘤性疾病进行研究,如脑退行病变中的阿尔茨海默症、帕金森病等。
4.其他
分子成像从核酸-蛋白质、蛋白质-蛋白质分子间相互关系及生物特征表达反映发病机制,也为其他系统疾病的早期预警诊断和治疗提供基因水平评估方法。
B. 什么是纳米材料
纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。
而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的一些新的效应,也使其成为了研究热点,按照其中支撑体的种类可将它划分为无机介孔复合体和高分子介孔复合体两大类,按支撑体的状态又可将它划分为有序介孔复合体和无序介孔复合体。
在薄膜嵌镶体系中,对纳米颗粒膜的主要研究是基于体系的电学特性和磁学特性而展开的。美国科学家利用自组装技术将几百只单壁纳米碳管组成晶体索“Ropes”,这种索具有金属特性,室温下电阻率小于0.0001Ω/m;将纳米三碘化铅组装到尼龙-11上,在X射线照射下具有光电导性能, 利用这种性能为发展数字射线照相奠定了基础。
(2)生物纳米探针扩展阅读:
纳米新材料
纳米新材料配方是一门在100 纳米以内空间内,通过自然更改直接排序原子与分子创造出来的新纳米材料的项目。纳米新材料与该领域是现代力量和现代技术创新的起点,新的规律和原理的发现与全新的理念创设给予基础科学,提供了新的机会,这会成为许多领域的重要改革新动力。纳米新材料配方由于SAIZU细小,拥有很多奇特的性能。
1988年Baibich 等第一次在纳米Fe/ Cr MS里发现磁电阻变化率达到百分之五十,与一般的ME比起来要大一个级别,并且是负值的,各向一样,称作GMR 。之后还在纳米体系的、隧道结和Perovskite结构、颗粒膜中发现巨ME。里面Perovskite结构在一九九三年是发现且具有极大ME,叫做CMR ,在隧道结中找到的为TMR。
C. 几种纳米生物复合探针的构建及其在生物分析中的应用
作为一种多学科交叉的产物,纳米生物复合探针(Nanobio probe)也就应运而生[1]。目前已有多种纳米材料被应用于构建各种功能化的纳米生物探针,包括纳米金(Gold nanopartile,AuNP)、量子点(Quantum dot, QD)和碳纳米管(Carbon nanotube,CNT)等。相较于传统的检测探针,纳米生物复合探针具有多功能复合、多检测路径、易于信号放大、制备简便等多种优越性。现就本实验室在纳米生物复合探针的构建和应用的研究进展方面作一简要介绍。AuNP-DNA 复合探针:AuNP-DNA 复合探针利用合成DNA 末端修饰的巯基(-SH)基团,通过金硫键的形成使单链DNA 分子组装在纳米金界面上,其最主要的特点就是每个金纳米粒子上可以组装多个单链DNA 分子,本实验室即利用AuNP-DNA 复合探针作为电化学指示剂载体,实现了对低至fM 水平的靶DNA 的超灵敏传感检测[2]。此外,我们将一种特殊的DNA 分子,DNA 适配体(aptamer),以同样的方式构建AuNP-aptamer 复合探针,实现了对蛋白质和小分子等的高灵敏检测。AuNP-DNA-蛋白质共组装复合探针:DNA 和蛋白质在纳米金界面上的共组装可以对DNA 和蛋白质的种类、数量和比例等进行精确调控,定制满足不同需求的AuNP-DNA-蛋白质复合探针。该类探针即可用于DNA 检测,亦可用于蛋白质检测。本实验室成功制备了一种AuNP-DNA-HRP 探针,可以实现对低至pM 靶DNA 分子的目视快速检测,进而结合光学分析仪器,实现了更高灵敏度的超微量分析[3]。 Nano-蛋白质复合探针:随着多种纳米材料被越来越多地应用,各种形式和各种功能的纳米生物复合探针不断涌现,包括纳米自组装多肽、各种酶甚至病毒分子等。本实验室通过纳米自组装模式制备了如AuNP-Ab、QD-Avidin、CNT-Enzyme 等多种Nano-蛋白质复合探针,并实现了其在电化学传感和微流控芯片技术中的初步应用。纵而观之,纳米金生物复合探针呈现出多元化的发展态势。随着纳米生物技术的不断进步,我们将致力于更多种类、结构更加复杂、功能更加多样的纳米生物复合探针的构建及其在生命化学分析中的应用,为生物分析新技术的发展开拓更多的路径。
D. 中国地质科学院地质研究所
中国地质科学院地质研究所是国家科技创新体系的重要组成部分,是国家基础地质研究和地质调查的重要力量,主要从事基础性、公益性、战略性和前沿性的基础地质调查及基础地质研究工作,同时承担地质学、地球物理学和地球化学等专业研究人才的教育和培养。通过50多年的建设和发展,地质研究所已经成为一个学科较齐全、人员结构较合理、设备较完善的综合性地学基础研究机构,20世纪90年代曾被国际地学刊物《地质时代》评为世界地学百强机构,是中国最有影响的两个地学机构之一。
所长兼党委书记侯增谦(右二)、副所长耿元生(左二)、副所长高锦曦(左一)、常委副书记兼纪检书记沈琳(右一)
松多榴辉岩带的新达朗榴辉岩露头
2009年地质研究所承担项目100余项,其中国家科技支撑课题11项、国家863课题1项、国家973课题2项、国家自然科学基金项目39项、地质大调查项目43项、深部探测技术与实验研究专项项目2项、公益性行业科研专项项目2项、国土资源部百人计划项目2项、非财政项目13项、基本业务费项目和院实验室项目若干项。获国土资源科学技术奖一等奖1项、二等奖1项。以第一作者发表论文210篇,其中SCI收录120篇(国际SCI论文40篇),国内核心期刊100篇,出版专著2部。
雅鲁藏布江大拐弯缝合带西侧“鲁郎—拉月韧性走滑剪切带”的野外照片
南迦巴瓦石榴辉石岩及其退变质岩的显微照片
2009年度重要科研成果
青藏高原周缘造山带的崛起及资源效应:中国地质调查局、国家自然科学基金资助项目,负责人为许志琴院士等。项目在拉萨地体中部发现了松多榴辉岩高压—超高压变质带,把拉萨地体解体为北拉萨地体和南拉萨地体,为古特提斯洋盆演化和多地体存在提供了新证据。厘定了南迦巴瓦的构造格架、地质年代序列和重要的构造岩浆事件;提出南迦巴瓦岩群经历了多期造山与再活化过程;获得了拉萨地体前寒武纪构造热事件的年代学证据;证明拉萨地体存在同俯冲/碰撞型埃达克岩;发现了高喜马拉雅造山带的EW向拆离构造,拆离构造始于27Ma,与南迦巴瓦变质地体向北挤出时限相当,提出新的隧道流和物质侧向运动的模式;确定了北喜马拉雅穹隆带中的两期富钠过铝质花岗岩浆事件,提出高级变质岩的部分熔融,可能是形成埃达克质岩浆及相关斑岩型铜金矿床的重要机制。通过阿尔金断裂—康西瓦断裂及喀喇昆仑断裂的几何学、运动学、年代学、走滑速率及地震位移的研究,阐明青藏高原西缘大型走滑断裂的动力学与物质运动方式,探索了地震强震复发周期。厘定了龙门山—锦屏山西缘的前震旦纪基底和盖层之间的一条大型拆离断裂;提出龙门山—锦屏山在白垩纪开始强烈隆升的挤出机制,认为高原北缘和东缘的强烈隆升发生在印度和亚洲碰撞之前的白垩纪,可能与班公湖—怒江特提斯洋盆的关闭有关。提出四川前陆盆地是晚三叠世—侏罗纪松潘—甘孜前陆盆地和白垩纪—第四纪龙门山—锦屏山再生前陆盆地叠合的中新生代前陆盆地。锑金多金属矿床的成矿作用与特提斯喜马拉雅前陆断褶带沿逆冲推覆构造事件诱发地壳部分熔融,导致岩浆侵位及成矿。开展了高原西北缘西昆仑和塔里木盆地盆山耦合研究,提出塔里木南缘的前陆盆地的北界为麻扎塔格逆冲断裂;重新厘定天山构造系和青藏高原构造系的界限以及动力学机制。
阿伊拉日居山地区喀喇昆仑韧性剪切带中的变形特征
阿尔金断裂带西段地区Landsat卫星影像、活动构造及火山岩的分布特征
青藏高原演化与资源环境效应:中国地质调查局基础地质调查与研究工作项目,负责人为肖序常院士。项目对羌塘中部高压变质带中已发现的榴辉岩、蓝片岩等进行了详细的研究,建立了相应的PTt轨迹;在绒玛地区发现了典型的蓝闪石;在冈玛错地区发现了新的榴辉岩出露点,对认识青藏高原早期形成演化、板块闭合及碰撞造山过程的研究具有重要意义。发现并确定了羌塘中部早古生代蛇绿混杂岩,对探讨特提斯洋的构造演化具有重要意义。推断羌南—保山板块基底与羌北—昌都板块和松潘—甘孜板块基底性质不同,而与印度板块和喜马拉雅造山带之间有很好的亲缘性。通过对晚古生界—三叠系剖面的实测,证实了北羌塘盆地南缘存在中下二叠统含特提斯暖水动物群的碳酸盐岩相地层;在上三叠统望湖岭组中发现浅海相生物化石;提出上二叠统吉普日阿组更可能为早中三叠世地层。对第四纪以来该区气候环境变迁作了探讨,发现了新石器时代遗存物。提出青藏高原油气成藏地质背景与西特提斯有一定对比性,指出了高原具有寻找油气藏的前景,提出“幔源(流)合成催化生油论”。
藏北羌塘榴辉岩位置图
羌塘中部角木日二叠纪蛇绿岩野外露头
榴辉岩显微照片
贺兰山群野外露头
中国西北地区若干重要演化阶段地层格架建立与对比研究:中国地质调查局、国家自然科学基金资助项目,负责人耿元生、姚建新、朱祥坤研究员等。项目分为3个专题开展工作,分别取得重要进展。
贺兰山群变质PT轨迹
中国西北部前寒武纪地层对比研究:查明和确定了赵池口群、贺兰山群和千里山群的分布、组成特征和形成环境、时代,改变了以往将贺兰山群和千里山群划归太古宙的认识;查明了贺兰山地区早前寒武纪岩浆事件的期次、特征;揭示出华北克拉通的西北缘古元古代晚期的岩浆启动和结束事件均早于北缘。在阿拉善岩群中识别出一些具有重要意义的变质变形的新元古代、晚古生代和中生代的岩浆岩。贺兰山群变质过程的PT演化轨迹的建立表明该区变质晚期是较慢的抬升减薄过程。通过对比研究,提出了阿拉善地块在不同阶段的大地构造属性。
塔里木重要区段古生代和中生代地层格架的建立及对比研究:在一些重要的地层中采集到孢粉、疑源类和几丁石等微体化石,为这些地层时代的确定与对比提供了新的证据。据发现的钙质超微化石、沟鞭藻化石进一步厘定了该区中—新生代地层层序,证实了库车坳陷及塔东北地区晚白垩世存在海相和陆相沉积,塔西南是近岸滨海—浅海沉积环境。确定麻扎地区火成岩具有岛弧性质,且形成于早石炭世。建立了柯坪地区早古生代三级层序,归并出二级层序,提出中—上奥陶统自东向西发生超覆。
柯坪同古四布隆寒武系灰岩野外露头
新元古代—早古生代重大转折期的同位素记录和生物与环境的协调发展:通过对陡山沱组盖帽碳酸盐岩Sr同位素研究,揭示了新元古代“雪球地球”事件之后强烈的化学风化作用和巨量的陆源物质输入。过渡族元素(铁、铜、锌)同位素分析表明,相对于碳酸盐岩,黑色页岩Fe重同位素富集、Zn重同位素亏损、Cu同位素组成无明显差异。Fe、Cu和Zn同位素在不同沉积相存在着差异,表明海水存在化学分层。陡山沱期早期,从台地相、斜坡相到深海盆地相,海水由表层氧化逐渐向深海的还原状态转化。
峡东地区九龙湾剖面盖帽碳酸盐岩的稀土元素和锶同位素特征
都兰单元南带榴辉岩中首次发现石榴子石的柯石英包体
柴北缘超高压榴辉岩野外露头
祁连—阿尔金造山带构造演化及其对成矿作用的制约:中国地质调查局、国家自然科学基金资助项目,负责人张建新、李海兵研究员。项目划分并确定了祁连—阿尔金造山带的构造单元和构造属性,明确了被阿尔金断裂所切割的阿尔金山和祁连山古构造单元具可对比性;首次在柴北缘榴辉岩中发现柯石英,在都兰识别出新的高压麻粒岩单元;建立了南阿尔金—柴北缘高压/超高压变质带的年代学格架;明确了北祁连—北阿尔金早古生代具有冷洋壳俯冲性质,而且早古生代洋壳俯冲存在穿时性;确定了北阿尔金红柳沟蛇绿岩的完整组合,获得北祁连SSZ蛇绿岩时限。南北两条俯冲(碰撞)杂岩带控制了这一地区基本的古构造格架和矿产资源的时空分布。
阿尔金断裂带被识别出新生代有多期强烈活动,至少存在3次快速隆升过程;最大走滑位移量由韧性和脆性走滑位移量组成;祁连山西段新生代火山岩和东段白垩纪火山岩特征为阿尔金断裂活动时限及演化提供了新的佐证;区域山脉的形成可能与阿尔金断裂走滑作用伴随的逆冲断裂活动有关。祁连山在白垩纪开始抬升,形成了青藏高原雏形的北部边界,新近纪的快速抬升造就了现今的高原北部面貌。白垩纪昌马盆地具有较大的旋转量,而柴达木地块并没有发生整体顺时针旋转。柴达木盆地和酒西盆地的主要油气构造是伴随阿尔金断裂走滑过程的产物,对冲构造发育区是上述盆地中的有利储油构造。
青藏高原南部地幔岩及铬铁矿成因:中国地质调查局、国家自然科学基金资助项目,负责人为杨经绥研究员。项目在罗布莎铬铁矿中发现呈斯石英假象的柯石英,推测是由更高压相的斯石英减压相变形成,提供了铬铁矿可能来自>300km的地幔深部的重要证据;在铬铁矿的锇铱矿中发现原位金刚石,表明金刚石形成在高温高压(T>2000℃,P>5GPa)环境;在罗布莎、康金拉和香卡山矿区的铬铁矿及其围岩中发现了金刚石,为探讨铬铁矿、蛇绿岩的成因提供了新的重要证据。
在俄罗斯极地乌拉尔铬铁矿中首次发现金刚石等异常地幔矿物,并在金刚石中发现纳米级柯石英包裹体,证明金刚石为原位产出,提供了铬铁矿成因的关键证据;罗布莎铬铁矿中发现的新矿物罗布莎矿、曲松矿、藏布矿和雅鲁矿获国际新矿物委员会的批准;高温高压实验证明,铬铁矿中发现的硅金红石形成于超高压环境;发现碳硅石的原位δ13C亏损,经对比认为其可能来自下地幔;提出地幔橄榄岩经历了洋底扩张,在板块汇聚边缘经历了高Mg熔体的交代。橄榄岩中的锆石年龄(130Ma)代表了岩体的侵位阶段,提出康金拉铬铁矿成矿物质来自深部而不是容矿围岩。认为地幔橄榄岩中发现的壳源锆石、石英、红柱石、蓝晶石等可能存在早期俯冲地壳物质的再循环,支持了“地幔不均匀”理论,罗布莎地幔橄榄岩和铬铁矿体均可能形成于地幔柱背景。
呈斯石英假象的柯石英及其共生矿物
白水江群灰岩块体中的牙形石
a—Ligonodina sp.;b—Icrios culicellus;c,d—Icrios sp.
南秦岭主要构造岩带及其形成环境研究:中国地质调查局、国家自然科学基金资助项目,负责人王宗起研究员等。项目重新梳理了白水江群、碧口群、横丹群、西乡群、三花石群、耀岭河群、郧西群、洞河群的岩石组成特征,结合构造变形样式及古生物化石,认为南秦岭白水江群等志留系、北大巴山地区洞河群和部分志留系分别具有增生杂岩和弧后混杂岩的典型特征,碧口群、西乡群与耀岭河群/郧西群则为晚古生代岛弧杂岩,北大巴山地区则为古生代弧后杂岩及弧后陆缘组合序列。泥盆纪孢子、几丁虫、虫颚等微体化石的发现证明碧口群和广义的西乡群主体时代为晚古生代,对前人有关北大巴山腹地没有晚古生代地层的认识做出了重要更正。早石炭世微体化石的发现和玄武岩、凝灰岩锆石年龄表明安康一带耀岭河群主要形成于晚古生代。原划为奥陶纪大堡组的生物灰岩块中发现了中泥盆世化石,白水江群碎屑锆石年龄及花岗侵入岩年龄表明南秦岭增生杂岩带形成的最终时间为二叠纪末或三叠纪初。
全国区域地质综合研究试点:中国地质调查局基础地质调查与研究工作项目,负责人李廷栋院士、丁孝忠研究员。完成了全国区域地质志编写技术要求的研究,基本满足了地质志编写专业构架内容的要求。在区域地层综合研究、大地构造综合研究、岩浆岩综合研究、地球物理和深部地质综合研究、编图、第四纪地质综合研究及地质志数据库建设方面提出了整体编图的指导思想、编图原则和地质志图件、数据库的基本构架。江西省的试点工作全面覆盖了区域地质、矿产、环境三部分。通过资料总结研究和初步的野外调查对江西省的诸如双桥山群研究等重大地质疑难问题的研究有了重要的新发现和新认识,为指导和规范全国地质志的编写提供了有益的经验和范例。
双桥山群和河上镇群地层柱及锆石U-Pb谐和图
内蒙古中部晚新生代湖泊演化与古气候研究:中国地质调查局基础地质调查与研究工作项目,负责人为王永研究员。项目结合卫星遥感影像解译及野外地质调查,综合分析湖泊沉积地层、孢粉组合及环境磁学特征,将内蒙古中部第四纪晚期以来湖泊演变及气候环境演化划分出3个阶段:150ka、21ka、10ka,此期间曾大范围发育湖泊,为一较温暖的半湿润气候环境。将之与阳原全新世剖面对比分析,证实了中国北方第四纪晚期气候变化的波动性与阶段性,同时也存在区域性差异。浑善达克沙地在晚更新世就已经存在,经历了3次明显的气候干冷事件。
浩来呼热古湖泊遥感影像图
典型珍稀化石特征研究:中国地质调查局基础地质调查与研究工作项目,负责人为姬书安研究员。项目基本查明收藏的恐龙蛋化石、哺乳动物化石以及其他类型化石的产出地点以及时代分布;完成了中国恐龙蛋化石分布、河南省恐龙蛋化石分布、和政地区晚新生代哺乳动物化石分布图等图件。对发现于河南潭头盆地的恐龙蛋壳进行了详细研究,确定了2个属3个种恐龙蛋,极大地丰富了前人对该盆地恐龙蛋的认识。在甘肃兰州盆地中铺一带发现了恐龙蛋壳,为甘肃省境内恐龙蛋化石的首次记录。识别出了恐龙蛋化石、和政哺乳动物头骨化石标本中几类不同形式的作假现象,对以后相关工作的开展具有借鉴意义。
内蒙古中部地区全新世以来孢粉组合特征
中国白垩纪恐龙蛋化石分布图
河南潭头盆地恐龙蛋化石
中国大陆科学深钻主孔钻井
中国大陆科学钻探工程综合研究(东海):中国地质调查局、国家自然科学基金资助项目,负责人为许志琴院士、刘福来研究员等。项目通过钻探,在原有金红石矿体下又发现了厚达400m的金红石矿体,为富含钛磁铁矿的辉长岩经超高压转变成富金红石榴辉岩的结果。在岩心及附近地表露头岩石的锆石中普遍发现柯石英,表明苏鲁地体由榴辉岩及其围岩的原岩所组成的巨量陆壳物质曾整体发生深俯冲。发现有经超高压变质的侵入性超镁铁岩(CCSD主孔、PP3卫星孔)和残余地幔楔(PP1和PP6卫星孔);在主孔岩心橄榄岩和榴辉岩岩屑中鉴定出金刚石、方铁矿、自然铁、自然铬、自然金、自然铝、镍纹石、铁纹石等数十种矿物,初步判断它们来自于深部地幔。矿物氧同位素组成研究证实超高压地体的原岩形成于被动大陆边缘的构造环境,陆壳岩石曾与寒冷的冰水发生过广泛的交换作用。建立了苏鲁地体“俯冲—超高压变质—折返—隆升—去顶”全过程的年龄谱系和各阶段的俯冲与抬升速率,表明苏鲁超高压变质带经历了快速俯冲—快速折返以及慢速隆升和极慢速去顶的演化过程。显微构造分析发现橄榄岩和榴辉岩在深俯冲过程中经历了强烈的高温塑性变形。将苏鲁超高压岩石的流体—岩石相互作用划分为7个演化阶段,提出大陆板块的深俯冲可以将相当多的流体和其中的溶解物质从地表带入到地幔深处;在锆石中发现了与柯石英共存的原生流体包裹体和超临界富硅酸盐的含水熔体,表明苏鲁地体的榴辉岩及其围岩在超高压峰期变质阶段有流体参与。提出了苏鲁地体分片俯冲—折返的穿时模型和深俯冲的物质沿板块汇聚边界的多层隧道呈多重/分片样式“挤出”的折返模式。首次利用科学钻探验证了结晶岩区地球物理成果,并建立了主孔区6000m深度的结构剖面,为陆—陆碰撞带的深根和苏鲁UHP变质地体三维结构的建立奠定了基础。
5100m钻探岩性剖面
汶川地震钻探专项:为科技部项目,总负责人为许志琴院士,由8个子课题组成在汶川特大地震发生及其余震尚在继续的特殊时期,快速实施汶川地震断裂的科学钻探是认识地震发生的机制、提高地震监视和预警的能力的一条重要途径,是研究地震破裂、应力解除过程的最佳时段。WFSD—1完成了1200m的钻进目标,在589~700m深度发现北川—映秀地震主断裂。主断裂带由厚达200m的黑色断层泥、碎裂岩和断层角砾岩组成,发现了罕见的20m厚的断层泥;在主断裂上部的彭灌杂岩中发现近20条古地震断裂带。开钻以来通过30000次余震的监测以及随钻实时流体监测,发现流体异常与余震及断裂带有相关关系。
脊椎动物化石研究取得了突破性进展:为中国地质调查局、国家自然科学基金、科技部973课题共同资助的阶段性成果。在辽西热河生物群研究中取得了突破性进展:新的哺乳动物化石——亚洲毛兽的发现为早期哺乳动物的中耳演化提供了重要线索。新属新种孔子天宇龙恐龙化石的发现不仅将异齿龙类恐龙的分布扩展至亚洲,而且填补了羽毛早期演化中的一个空白。达尔文翼龙化石的发现填补了由原始翼龙向进步翼龙演化的过渡类型的空白。中国猛龙恐爪龙类足迹化石的发现(河北省赤城县土城子组地层)成为世界上最古老的、最小的恐爪龙类足迹。
大型科学仪器远程共享公共服务系统取得重大进展:由北京离子探针中心牵头承担的国家科技基础条件平台重点项目“用于微束分析的大型科学仪器远程共享公共服务系统”和“离子探针示范系统”项目实现了微束分析大型科学仪器远程共享公共服务系统和离子探针远程共享控制系统,接入了中国地质科学院、中国计量科学研究院、吉林大学、南京大学、西北大学、北京大学、天津地矿所、宜昌地矿所和澳大利亚Curtin大学及ASI公司等单位的微束仪器,提供了针对地球科学、材料科学、生命科学、医学、纳米技术等学科的远程科学实验,提高了该类仪器的使用效率和应用水平。
我国台湾地区第一个SHRIMP远程工作站建成。SHRIMPII中国台湾地区远程工作站(SROS工作站)于2009年3月16日下午顺利通过调试,并在3月16日至19日期间与北京连线进行了约80个小时的实际样品远程定年。系统运转稳定,测试工作圆满成功。SROS得到国际地学界的广泛认可和高度评价,SHRIMPII远程测试工作已在全球范围内成功地常规化开展。中国台湾地区远程工作站的建立,将进一步加强海峡两岸在地学研究方面的互动与交流,为地质研究所与台湾地学界同仁开展全方位的合作打开新局面。
汶川地震科学钻探
台北中研院地球科学研究所所长江博明教授和中心主任刘敦—研究员在2009年3月建立的台北SROS工作站观摩SHRIMP远程实验
E. 单细胞生物都有哪些
单细胞生物有:
硅藻,硅藻,衣藻,眼虫,蓝藻,青霉,硅藻,曲霉
疟原虫,小球藻,变形虫,酵母菌,草履虫,太阳虫
放射虫,喇叭虫,大肠杆菌,梅毒螺旋体,嗜热酸细菌
圆褐固氮菌,螺旋菌金褐藻,阿米巴变形虫,金黄色葡萄球菌
F. 知网下载时当前用户并发数已满是什么意思
请下载附件,及时采纳答案!
【题名】荧光纳米探针的构建及其在生物医学影像中的应用研究
【作者】钟旖菱 苏媛媛 何耀
【机构】苏州大学功能纳米与软物质研究院 江苏苏州215123
【刊名】《东南大学学报:医学版》2011年 第1期 108-113页共6页
G. 目前市场上是否有纳米技术的产品
8位粉丝
现在所谓的那么多什么纳米纳米的,基本上都是广告,目前我可以告诉你,没有多少东西真正需要那纳米技术,目前只有那么几类东西真正用到了
芯片,特别是处理器的芯片,比如你电脑里边那, 这个才真的是用到了纳米技术
看看现在INTEL和AMD的那些处理器,65纳米制程,45纳米制程,已经是在纳米尺度内,他们是通过改变硅原子位置,进行切割硅片,制造电路的,所以,这就是纳米技术
而其他的那些什么电灯泡,冰箱,电视都说什么纳米,简直就是广告吹的,一点意义都没有,因为根本上,在那些地方根本不需要什么纳米技术。
编辑于 2007-06-27
查看全部3个回答
北京岛金供应纳米碳,纳米碳,德国技术保证
北京德科岛金科技有..广告
韩国帕克原子力显微镜公司-Park Systems
关注原子力显微镜的人也在看
高分辨高精度,实现非接触模式把探针损耗降低,拥有全面的「AFM解决方案」!帕克原子力显微镜公司在1989年开发出世界首台商业原子力显微镜,拥有三十年历史!
Park Systems广告
7条评论
别白看,评论几句再走~
热心网友3
说的好
热心网友2
我觉得这位老师答的不是很好。不过还是算可以。
查看全部7条评论
— 你看完啦,以下内容更有趣 —
如何检测技术?专业产品鉴定分析检测
检测技术?微谱技术是专业产品鉴定,分析检测机构,提供产品成份分析报告,协助提升产品性能,研发等一站式服务。一对一客户服务定制鉴定。节约客户时间。
广告2020-04-30
有关纳米的技术应用的报道
纳米材料技术在汽车上的应用 汽车技术的发展有赖于材料技术的发展,而现在风靡全球的纳米技术在汽车上的应用,为新材料技术的发展奠定了基础。 纳米是一个计量单位,1纳米为百万分之一毫米。这么微小的空间,实际上就是组成物质的基本单位,成为原子和分子的空间。自从80年代初发明了电子扫描隧道显微镜后,世界就诞生了一门以纳米为单位的微观世界研究学科——纳米科学。在100纳米以下的微小结构中对物质进行研究处理的技术称为纳米技术。进入90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。那么汽车纳米技术又是怎么回事呢? 专家预测,纳米界面材料技术即超双亲性二元协同界面材料技术(亲水亲油)和超双疏型界面材料技术(疏水疏油),可以在任何材质表面实现。因此,如果国产橡胶材料应用这两种技术,那么困扰国产汽车的漏油、渗油等问题将得到解决。 汽车制造中应用的塑料数量将越来越多。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。由于纳米粒子尺寸小于可见光的波长,纳米塑料可以显示出良好的透明度和较高的光泽度,这样的纳米塑料在汽车上将有广泛的用途。经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍,例如纳米陶瓷轴承已经应用在奔驰等高级轿车上。 目前我国已经研制出一种用纳米技术制造的乳化剂,以一定比例加入汽油后,可使像桑塔纳一类的轿车降低10%左右的耗油量。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 武汉大学化学与分子科学院在纳米级二氧化钛的研究方面取得了突破。采用武汉大学专利技术生产纳米级二氧化钛,其成本只有国外成本的1/4左右。纳米级二氧化钛的问世是上世纪80年代后期二氧化钛研究领域的一个新进展。日、美科学家发现该物质可以广泛应用于高级轿车金属色面漆等方面。日本已在高速公路两侧和隧道内设置涂覆了纳米级二氧化钛的光催化板除氮氧化物防汽车尾气。目前,世界上仅有少数几家公司能够生产纳米级二氧化钛。 相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 纳米技术在光电领域的应用 纳米静电屏蔽材料,是纳米技术的另一重要应用 纳米技术在生物工程上的应用
43赞·386浏览2016-12-01
纳米技术是怎样造成的?
纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手段。纳米技术以物理、化学的微观研究理论为基础,以当代精密仪器和先进的分析技术为手段,是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。 1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。 其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。纳米科技是90年代初迅速发展起来的新兴科技,其最终目标是人类按照自己的意识直接操纵单个原子、分子,制造出具有特定功能的产品。 纳米科技以空前的分辨率为我们揭示了一个可见的原子、分子世界。这表明,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高了前所未有的高度。有资料显示,2010年,纳米技术将成为仅次于芯片制造的第二大产业。
1赞·20浏览2020-03-30
纳米科技在生活中的应用举例
纳米在生活中的应用 纳米科技实际上涵盖了一切在纳米范围的物理、化学的技术和工艺,说它包罗万象也不算过分。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。不过现在有很多都在炒作概念,很多都局限于实验室的理论阶段,比较现实的是机械方面的润滑剂,化工方面的催化剂,还有医学方面的定点超效药剂。 建筑领域 在建筑领域中使用纳米技术可以使结果相差很大. 的确,一些纳米技术的已经在市场上得到了应用. 举例来说, 在环保项目上我们所看到的新的智能材料和纳米二氧化钛粒子混合,应用于窗户自我清洁,建筑物和道路上。(在米兰,有7000平方米道路应用了这些能材料从而减少了减少60%的二氧化氮水平)。 还有一些纳米物质加在了新的施工材料中,从而提高机械强度,耐久性和绝缘性,同时相对于传统的材料降低了重量。举例来说, 纳米陶瓷被应用于水泥中增加强度。传感器系统将越来越多地用于施工中,包括监察楼宇的环境和任何机械的强度。 传感器系统 一些传感器系统被应用于建筑中, 类似于在环境一节中讨论的,但这传感被更多的应用于测试建筑物的结构构强度, 磨损等, 从而让人们知道在建筑物中存在的安全隐患。 当传感器连接到采暖/空调系统选用最佳设定,基于传感器搜集到的数据能为建筑物提供环境监测甚至温度控制。 纳米技术也可以帮助提供一个系统范围内查看“建筑物的感觉“的详细信息。所有传感器和监测数据传达到中央节点处理后付诸实施。 电子参与会较小,但是同样(甚至更多)强大. 他们将更有效率使用能源,甚至可以把小型太阳能电池,有效地使他们自己的权力. 作为一个结果,有可能使这一系统的免维护和长久的。 纳米家电 目前有很多电器公司已相继推出了新颖的纳米家电。所谓纳米家电,就是采用纳米技术生产出来的家用电器。 在纳米世界里,物质发生了质的飞跃。如导电性能良好的铜在纳米级就不导电了,而绝缘的二氧化硅在纳米级就开始导电了;二氧化硅陶瓷在通常情况下是很脆的,但当二氧化硅陶瓷颗粒缩小到纳米级时,脆性的陶瓷竟然具有了韧性。 当把物质细化到纳米级,制造出来的纳米材料性质特殊,用途极大。将纳米材料加入飞机中,可以吸收雷达波,于是隐性飞机问世了。用纳米材料制成的刀具,比钻石刀具还硬。将电脑芯片和光盘,加工成纳米级,其运算速度和记录密度高于常态的各个数量级。 目前纳米技术在家电领域还主要用于抗菌、抑菌等“健康”方面。如目前市面上销售的纳米冰柜,即是在人手易接触及细菌易侵入的部位,使用了经纳米化处理的材料,这种材料可有效抑制细菌的生长,从而提高冰柜的抗菌能力。 纳米洗衣机,就是洗衣机的外桶采用了纳米材料,这样使洗衣机不仅能防高温,耐磨 擦,而且有很强的防垢能力。 可以预见,随着纳米技术被更多的家电企业所采用,纳米家电将成为未来市场的流行产品。同时,我国重大基础研究纳米材料科学家专家组首席专家张立德研究员明确指出:“纳米科技要像信息技术一样产生广泛而深刻的影响,那将是二三十年以后的事情。”
204赞·10,869浏览2020-03-04
哪些方面应用到了纳米技术?
纳米技术的应用: (1)用纳米技术在纤制品和纺织品中添加纳米微粒,可以除味杀菌; (2)用纳米材料做衣服既漂亮又能防静电,可称“绿色”服装; (3)用纳米材料做的无菌餐具、无菌食品包装用品已经问世; (4)用纳米粉末,可以使废水彻底变成清水,完成能够饮用; (5)用纳米做的食品色香俱全,还有益于健康; (6)用含纳米微粒的建筑材料还可以吸收对人体有害的紫外线; 用纳米陶瓷有望成为汽车、轮船、飞机发动机部件的理想材料,大大提高发动机效率、工作寿命和可靠性。 神奇的纳米技术以渗透到我们日常生活的方方面面,它将创造许多新的奇迹,带给我们新的生活!
69赞·9,946浏览
哪些地方使用了纳米技术
纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 7、纳米技术在农业中的应用 8、 纳米技术在日常生活中的应用 衣 在纺织和化纤制品中添纳米微粒,可以除味杀菌。化纤布挺括结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。 食 利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准,纳米食品色香味俱全,还有益健康。 住 纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。 行 纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率、工作寿命和可靠性。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。 医 利用纳米技术制成的微型药物输送器,可携带一定剂量的药物,在体外电磁信号的引导下准确到达病灶部位,有效地起到治疗作用,并减轻药物的不良的反映。用纳米制造成的微型机器人,其体积小于红细胞,通过向病人血管中注射,能疏通脑血管的血栓。清除心脏动脉的脂肪和沉淀物,还可“嚼碎”泌尿系统的结石等。纳米技术将是健康生活的好帮手。 纳米技术应用前景十分广阔,经济效益十分巨大,美国权威机构预测,2010年纳米技术市场估计达到14400亿美元,纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,象电脑工作装、无静电服、防紫外线服等纳米服装都已问世。加入纳米技术的新型油漆,不仅耐洗刷性提高了十几倍,而且无毒无害无异味。纳米技术正在改善着、提高着人们的生活质量 查看全部28个回答 泛普纳米黑板支持多种书写方式,防水防暴 纳米黑板采用自动感应识别技术,表面大量积水仍可正常触控!纳米黑板纯平外观,具备信号拼接转换功能,单屏,双屏自由组合 苏州泛普科技股份有..广告 溧阳朝阳是球形活性炭 厂家直销 当天发货 朝阳活性炭是专业的球形活性炭,供应污水处理活性炭,脱色/除臭/吸附活性炭。朝阳柱状废气处理活性炭,比表面积大,吸附迅速快,平均使用寿命长,诚信厂家。当天发货 溧阳市朝阳活性炭厂广告 相关问题全部 我们的生活中什么地方已经用到纳米技术?纳米技术是通过什么方式予以实现的? 我们生活中冰箱已经用到了纳米技术,纸张也用到了纳米技术。纳米技术是通过科技来实现的。 61 浏览51892020-03-17 你会把纳米技术运用到生活中的哪些地方? 纳米技术运用到生活中的哪些地方?这个一般情况下就是很多的衣食住行都会用的像我们穿的一些衣服都是用纳米的材料做的。 243 浏览17542020-03-05 纳米技术应用在那些地方 美国军用方面,日本医疗方面。 中国目前就一家安然纳米公司,运用在民用上面。 17 浏览1962017-09-12 如果让你利用纳米技术你会把它应用在生活中的哪些地方? 如果让我利用了纳米技术,我会把它应用在生活的方方面面。 首先就是日常的衣食住行使用纳米技术。 我们可以穿使用纳米纤维织成的衣服,不仅气密性更好,而且还可以防水。 另外还可以使用纳米材料建造房屋,肯定更加牢固可靠,抗震性更好。 而且使用纳米技术制造的汽车飞机之类的也就会更加牢固,不容易产生破碎或者变形。 187 浏览5122020-03-15 纳米技术运用在哪些方面? 纳米技术在生活中的应用体现在衣食住行。 1、衣 在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。 2、食 利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。纳米食品色香味俱全,还有益健康。 3、住 纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。 4、行 纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率、工作寿命和可靠性。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。 (7)生物纳米探针扩展阅读: 纳米材料是80年代中期发展起来的新型材料,它比负氧离子先进50年。由于纳米微粒(1-100nm)的独特结构状态,使其产生了小尺寸效应、量子尺寸效应、表面效应、宏观量子隧道效应等,从而使纳米材料表现出光、电、热、磁、吸收、反射、吸附、催化以及生物活性等特殊功能。 纳米材料具有许多独特功能,而且用量少,但却赋予材料意想不到的高性能,附加值甚高。纳米复合高分子材料、纳米抗菌、保鲜、除臭材料等等,由于纳米材料的尺寸小,比血液中的红血球小一千多倍,比细菌小几十倍,气体通过其扩散的速度比常规材料快几千倍。纳米颗粒与生物细胞膜的化物作用很强,极易进入细胞内。 194 浏览21292020-03-05 85评论 zrd0103great98 真是有文化的人😊 热心网友51 我 热心网友42 哈
304赞·9,951浏览2020-03-23
纳米技术的产品_找纳米技术的产品就上拼多多_拼团优惠
纳米技术的产品,热卖排行,纳米技术的产品_超值性价比,品质保障。免费下载拼多多APP查看热门商品。
上海寻梦信息技术有..广告
新2020安然_帮助了有梦想的朋友取得成功
安然是直销发展的趋势,符合目前形式的要求。让有理想有格局的一批朋友了解安然,登上成功舞台。
温州影迷电子商务有..广告
卫生间墙面不能做防水,做防水贴了砖会掉,这种说法有道理吗?
卫生间洗浴时水会溅到邻近的墙上,如没有防水层的保护,隔壁墙和对顶角墙易潮湿发生霉变。所以一定要在铺墙
9条回答·144人在看
如果人死了,指纹还能解锁手机吗?
理论上,一个人死后,他不能通过指纹解锁手机。科学家发现了指纹解锁的原理。每个人的指纹都不一样。甚至同
6条回答·65人在看
动物尸体变透明?原来是“毒液”搞得鬼
图说:注入vDISCO技术的小鼠神经系统发出绿色荧光 近日在加州圣地亚哥举行的神经科学学会会议上,来自德国慕尼黑大学的科学家们展示了一项使老鼠尸体变得像塑料一样透明、坚硬的新技术——vDISCO,这
199人在看
00:58
太岁是什么?犯太岁又是什么意思?
热词课代表
61,365播放
为什么说眼镜布不是用来擦眼镜的?
眼镜布容易存有灰尘和异物,这就像用砂纸摩擦镜片一样。当眼镜花了,在镜片上吸一口气,并用眼镜布或衣服擦
6条回答·85人在看
H. 科研常用的几种显微镜原理及应用介绍
在科研中常见的几种科研型显微镜主要有扫描探针显微镜,扫描隧道显微镜和原子力显微镜几种,下面对这几种显微镜逐一做以介绍:
扫描探针显微镜
扫描探针显微镜
扫描探针显微镜(ScanningProbeMicroscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜AFM,激光力显微镜LFM,磁力显微镜MFM等等)的统称,是国际上近年发展起来的表面分析仪器,是综合运用光电子技术、激光技术、微弱信号检测技术、精密机械设计和加工、自动控制技术、数字信号处理技术、应用光学技术、计算机高速采集和控制及高分辨图形处理技术等现代科技成果的光、机、电一体化的高科技产品。
扫描探针显微镜以其分辨率极高(原子级分辨率)、实时、实空间、原位成像,对样品无特殊要求(不受其导电性、干燥度、形状、硬度、纯度等限制)、可在大气、常温环境甚至是溶液中成像、同时具备纳米操纵及加工功能、系统及配套相对简单、廉价等优点,广泛应用于纳米科技、材料科学、物理、化学和生命科学等领域,并取得许多重要成果。SPM作为新型的显微工具与以往的各种显微镜和分析仪器相比有着其明显的优势:
首先,SPM具有极高的分辨率。它可以轻易的“看到”原子,这是一般显微镜甚至电子显微镜所难以达到的。
其次,SPM得到的是实时的、真实的样品表面的高分辨率图像。而不同于某些分析仪器是通过间接的或计算的方法来推算样品的表面结构。也就是说,SPM是真正看到了原子。
再次,SPM的使用环境宽松。电子显微镜等仪器对工作环境要求比较苛刻,样品必须安放在高真空条件下才能进行测试。而SPM既可以在真空中工作,又可以在大气中、低温、常温、高温,甚至在溶液中使用。
因此SPM适用于各种工作环境下的科学实验。SPM的应用领域是宽广的。无论是物理、化学、生物、医学等基础学科,还是材料、微电子等应用学科都有它的用武之地。SPM的价格相对于电子显微镜等大型仪器来讲是较低的。任何事物都不是十全十美的一样,SPM也有令人遗憾的地方。
由于其工作原理是控制具有一定质量的探针进行扫描成像,因此扫描速度受到限制,测效率较其他显微技术低;由于压电效应在保证定位精度前提下运动范围很小(目前难以突破100μm量级),而机械调节精度又无法与之衔接,故不能做到象电子显微镜的大范围连续变焦,定位和寻找特征结构比较困难;目前扫描探针显微镜中最为广泛使用管状压电扫描器的垂直方向伸缩范围比平面扫描范围一般要小一个数量级,扫描时扫描器随样品表面起伏而伸缩,如果被测样品表面的起伏超出了扫描器的伸缩范围,则会导致系统无法正常甚至损坏探针。
因此,扫描探针显微镜对样品表面的粗糙度有较高的要求;由于系统是通过检测探针对样品进行扫描时的运动轨迹来推知其表面形貌,因此,探针的几何宽度、曲率半径及各向异性都会引起成像的失真(采用探针重建可以部分克服)
扫描隧道显微镜
扫描隧道显微镜
扫描隧道显微镜(scanningtunnelingmicroscope,STM)扫描隧道显微镜的英文缩写是STM。这是20世纪80年代初期出现的一种新型表面分析工具。由德国人宾宁(G.Binnig,1947-)和瑞士人罗勒(H.Roher,1933-)1981年发明,根据量子力学原理中的隧道效应而设计。
宾宁和罗勒因此获得1986年诺贝尔奖.1988年,IBM科学家从由扫描隧道显微镜激发的纳米尺度的局部区域观测到了光子发射,从而使发光及荧光等现象能够在纳米尺度上进行研究。1989年,IBM院士(IBMFellow)DonEigler成为第一个能够对单个原子表面进行操作的人,通过用一台“扫描隧道显微镜”操控35个氙原子的位置,拼写出了“I-B-M”3个字母。1991年,IBM科学家演示了一个原子开关。
基本原理:其基本原理是基于量子力学的隧道效应和三维扫描。它是用一个极细的尖针,针尖头部为单个原子去接近样品表面,当针尖和样品表面靠得很近,即小于1纳米时,针尖头部的原子和样品表面原子的电子云发生重叠。此时若在针尖和样品之间加上一个偏压,电子便会穿过针尖和样品之间的势垒而形成纳安级10A的隧道电流。通过控制针尖与样品表面间距的恒定,并使针尖沿表面进行精确的三维移动,就可将表面形貌和表面电子态等有关表面信息记录下来。扫描隧道显微镜具有很高的空间分辨率,横向可达0.1纳米,纵向可优于0.01纳米。它主要用来描绘表面三维的原子结构图,在纳米尺度上研究物质的特性,利用扫描隧道显微镜还可以实现对表面的纳米加工,如直接操纵原子或分子,完成对表面的刻蚀、修饰以及直接书写等。目前扫描隧道显微镜取得了一系列新进展,出现了原子力显微镜AFM、弹道电子发射显微镜BEEM、光子扫描隧道显微镜PSTM,以及扫描近场光学显微镜SNOM等。
或者用一个金属针尖在在样品表面扫描。当针尖和样品表面距离很近时(1nm以下),针尖和样品表面之间会产生电压。当针尖沿X和Y方向在样品表面扫描时,就会在针尖和样品表面第一层电子之间产生电子隧道。该显微镜设计的沿Z字形扫描,可保持电流的恒定。因此,针尖的移动是隧道电流的作用,并且可以反映在荧光幕上。连续的扫描可以建立起原子级分辨率的表面像。
特点:与电子显微镜或X线衍射技术研究生物结构相比,扫描隧道显微镜具有以下特点∶
①高分辨率扫描隧道显微镜具有原子级的空间分辨率,其横向空间分辨率为lÅ,纵向分辨率达0.1Å,
②扫描隧道显微镜可直接探测样品的表面结构,可绘出立体三维结构图像。
③扫描隧道显微镜可在真空、常压、空气、甚至溶液中探测物质的结构,它的优点是三态(固态、液态和气态)物质均可进行观察,而普通电镜只能观察制作好的固体标本,由于没有高能电子束,对表面没有破坏作用(如辐射,热损伤等)所以能对生理状态下生物大分子和活细胞膜表面的结构进行研究,样品不会受到损伤而保持完好。
④扫描隧道显微镜的扫描速度快,获取数据的时间短,成像也快,有可能开展生命过程的动力学研究。
⑤不需任何透镜,体积小,有人称之为"口袋显微镜"(pocketmicroscope)。
原子力显微镜
原子力显微镜
原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分。
它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。
扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面结构信息。它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。
I. 王卫的研究方向
有机化学:
1) 有机合成新方法学:不对称催化和绿色化学有机反应
2) 具有生物活性的复杂天然产物的全合成
化学生物学(Chemical Biology)和系统生物学 (System Biology):
1) 细胞凋亡(Apoptosis):小分子为探针去理解生物过程中蛋白-蛋白之间的相互作用,开发和研制新型的抗癌,抗HIV和抗炎新药
2) 分子成像(Molecular Imaging):化学小分子为探针进行体内氧自由基、糖、激酶生物作用和机理的研究和癌症的诊断
3) 组合化学(Combinatorial Chemistry):设计、合成和高通量筛选化学库,快速寻找先导化学物
4) 新药的开发(Drug Discovery):以计算机辅助设计、先导化学物为起点,有目的得设计和合成化学集中库,进行生物活性的测定和构效关系的研究
5) 药剂化学(Pharmaceutical Chemistry):利用生物手段进行药物的控制释放,改进药物的理化性能和生物利用率,降低药物的毒性,和提高药物的靶向性和耐药性
材料化学(Material Chemistry):
1) 分子的印刷(Molecular Imprinting): 设计和合成具有识别和记忆功能的人造纳米材料,模仿酶催化反应和药物的控制释放
2) 生物材料(Biomaterials): 设计和合成具有生物功能的骨材料
近期发表的研究论文:
1) Wang, J.; Li, H.; Mei, Y.; Lou, B.; Xu, D.; Xie, D.; Guo, H.; and Wang, W.* “Direct, Facile Aldehyde and Ketone a-Selenenylation Reactions Promoted by L-Prolinamide and Pyrrolidine Sulfonamide Organocatalysts” J. Org. Chem., 2005, in press.
2) Wang, W.;* Li, H.; Wang, J. “Pyrrolidine Sulfonamide Promoted Direct, Enantioselective Aldol Reactions of a, a-Dialkyl Aldehydes: Synthesis of Quaternary Carbon-Containing b-Hydroxy Carbonyl Compounds” Tetrahedron Lett., 2005, in press.
3) Wang, W.;* Li, H.; Wang, J. “Enantioselective, Organocatalytic Mukaiyama-Michael Addition of Silyl Ethers to a, b-Unsaturated Aldehydes” Org. Lett., 2005, 7, 1637-1639.
4) Wang, W.;* Mei, J.; Li, H.; Wang, J. “A Novel Pyrrolidine Imide Catalyzed Direct Formation of a, b-Unsaturated Ketones from Unmodified Ketones and Aldehydes” Org. Lett., 2005, 7, 601-604.
5) Wang, W.;* Wang, J.; and Li, H. “Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition Reactions of Aldehydes to Nitrostyrenes” Angew. Chem. Int. Ed., 2005, 44, 1369-1371.
6) Wang, W.;* Wang, J.; Li, H. “A Simple and Efficient L-Prolinamide-Catalyzed a-Selenenylation Reactions of Aldehydes,” Org. Lett., 2004, 6, 2817-2820.
7) Wang, W.;* Li, H. “An Efficient Synthesis of the Intrinsic Fluorescent Peptide Labels, (S) and (R) (6,7-Dimethoxyl-4-coumaryl)alanines via Asymmetric Hydrogenations” Tetrahedron Lett., 2004, 45, 8479-8481.
8) Wang, W.;* Li, H.; Wang, J., Liao, L.-X. “Direct, Organocatalytic alpha-Sulfenylation of Aldehydes and Ketones” Tetrahedron Lett., 2004, 45, 8229-8231.
9) Wang, W.;* Wang, J.; Li, H., Liao, L.-X. “A Novel Amine Sulfonamide Organocatalyst for Promoting Direct? Highly Enantioselective a-Aminoxylation Reactions of Aldehydes and Ketones”, Tetrahedron Lett., 2004, 45, 7235-7238.
10) Wang, W.;* Wang, J.; Li, H. “Catalysis of Highly Stereoselective Mannich-Type Reactions of Ketones with a-Imino Esters by a Pyrrolidine Sulfonamide. Synthesis of Unnatural a-Amino Acids,” Tetrahedron Lett., 2004, 45, 7243-7246.