当前位置:首页 » 历物理化 » 化学物质分析

化学物质分析

发布时间: 2021-08-08 21:05:15

A. 化学成分分析

彩色宝石化学成分复杂,微量元素种类多,对多数不具明显内部包体及生长特征的样品,其微量元素含量及其组合特征是产地鉴别最主要的“指纹性”特征。现阶段主要使用的无损及微损的元素分析方法有X射线荧光能谱仪(EDXRF)、激光烧蚀电感耦合质谱仪(LA-ICP-MS)、电子探针(EPMA)和二次离子质谱仪(SIMS)。各种方法仪器在性能、检出限等方面对样品的要求都不一样。其中,二次离子质谱仪为高集成、高精度的超大型仪器,除能对样品中的微量元素进行定量测试外,还能对样品的部分同位素组成进行定量测试。

(一)X射线荧光能谱仪(EDXRF)

X射线荧光能谱仪(图2-14)在珠宝玉石鉴定,特别是对样品的主要化学成分及微量元素的定性和半定量测试方面均有广泛应用,是众多化学成分分析仪器中少有的完全无损的分析仪器。

X射线荧光能谱仪由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线)激发被测样品,受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性,探测系统测量这些放射出来的二次X射线的能量及数量,然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。

图2-17 尖晶石中Cr、Fe含量分布相图

图2-18 不同产地天然变石中两种主要致色微量元素w(Fe2O3)/w(Cr2O3)二元系相图

(三)电子探针(EPMA)

电子探针可以定量或定性地分析物质的化学成分、表面形貌及结构特征,是一种有效、无损的化学成分分析方法。其基本原理是用聚焦很细的电子束照射所检测样品的表面,激发组成矿物元素的特征X射线。用分光器或检波器测定X射线荧光的波长,将其强度与标准样品对比,或根据不同强度校正直接计数出组分含量。由于电子束照射面积很小,因而相应的X射线特征谱线可反映出该微小区域内的元素种类及其含量。

为了便于选择和确定分析点,电子探针的镜筒内装有与电子束同轴的光学显微镜观察系统,以确保分析位置。目前电子探针可以检测到绝大多数元素,包括以前不能检测的轻量元素,这种微区定量的检测手段在彩色宝石产地鉴定方面发挥着重要作用。但由于样品制作有时需要磨制特定的探针片,且需要镀导电膜,故其主要应用于珠宝玉石研究中,在实际的珠宝玉石鉴定方面使用较少。

(四)激光诱导击穿光谱仪(LBS)

激光诱导击穿光谱仪(LIBS)应用的是一种光谱探测技术。其基本原理为用高能激光产生的能量脉冲烧蚀样品表面的微区,处于高温下的烧蚀样品的原子和离子均处于活跃性极强的激发态,因此会释放特定波长的光谱,通过用高灵敏度的光学光谱仪收集烧蚀样品表面的光谱,根据光谱测量得出样品中的化学元素组成。21世纪初,当市场上出现铍扩散处理的橙色蓝宝石时,由于常规的X射线荧光光谱仪不能检测出Be元素,而能检测出Be元素的仪器,如激光烧蚀等离子体质谱仪和二次离子质谱仪太昂贵,瑞士宝石研究所研发了用于珠宝玉石鉴定用的LIBS仪器。

激光诱导击穿光谱仪相对于其他测试Be元素的方法(如激光烧蚀等离子质谱仪LA-ICP-MS和次级离子质谱SIMS)而言,具有易于操作、体积较小等优越性。由于此仪器要用高能的激光器和CCD光谱仪,故价格比较昂贵,但其寿命较长,耐消耗,且灵敏度高,可以测试出很低含量的铍,同时几乎可以分析所有的化学元素,并且可根据谱峰的高低来对其含量进行比较,在珠宝玉石的鉴定、检测和研究中发挥着越来越重要的作用。

该仪器的缺点是只能定性分析样品的元素组成,无法实现其定量化。对宝玉石而言,LIBS技术仍是一种有损分析,会在其表面形成微小的熔坑,故应在可激发范围内尽量降低激光能量,利用环境气体来降低检测限及提高谱线强度,以减少损耗。

(五)二次离子质谱仪(SIMS)

二次离子质谱仪(SIMS)采用质谱技术,利用离子束把待分析的材料从表面溅射出来,通过分析表面原子层以确定样品表面元素组成和分子结构,其特点是高灵敏度和高分辨率。

二次离子质谱仪的化学元素分析范围很广,由最小的氢至原子量很大的元素均可检测,其高灵敏度体现在它可以检测含量十亿分之几的微量元素(即检测极可达10-9)。二次离子质谱仪不但可作表面及整体的元素分析,又可直接作影像观察,其灵敏度及解析能力甚高。但是,SIMS要求一定的制样和仪器准备时间,分析成本相对于LA-ICP-MS尤其是LIBS来说要高。此外,如果经过了精确校准,SIMS也可以确定固体物质中的主要和次要同位素组成。到目前为止,SIMS在宝石学上的应用主要是彩色宝石的产地特征研究。

B.  化学成分

一、基本特点

根据黄铁矿的化学分析结果(表5-4),乳山金矿黄铁矿的化学成分有以下基本特点:

(1)与黄铁矿理想成分Fe46.55%、S53.45%,S/Fe=2比较,本区黄铁矿Fe、S的分析值都偏低,说明有较多杂质混入。S/Fe=1.93—2.06,其中S/Fe>2的比例为64.64%,以Fe亏损黄铁矿占优势,与胶西北栖霞金矿S/Fe特征值相近。

(2)同胶西北一样,乳山金矿黄铁矿的微量元素成分也十分复杂,已分析的达19种。按照各微量元素的均值(10-6),可划分为3000—500,500—100,100—50,50—10,<10等5组(表5-5)。19个元素的含量顺序是:As—Cu—Ag—Co—Pb—Bi—Te—Au—Ni—、Zn—Cr—Sb—Ga—Mo—Se—Tl—Cd~In—Hg。

按地壳元素丰度计算各种元素在黄铁矿中的富集系数(表5-6),其大小顺序发生明显变化,即:Te—Au—Ag—As—Bi—Se—Sb—In—Cu—Cd—TI—Pb—Co—Mo—Hg—Ni—Zn—Ga—Cr。

将两个序列中前15种元素的共有元素作为乳山金矿的特征元素,有Au、Ag、As、Sb、Bi、Se、Te、Cu、Pb、Co、Mo等11种。这与胶西北和我国23个金矿黄铁矿特征微量元素基本相同。

表5-4金青顶金矿黄铁矿化学成分

表5-5乳山金矿田黄铁矿微量元素含量分组(10-6

表5-6乳山金矿田黄铁矿微量元素富集系数分组

二、时空变化

1.不同阶段黄铁矿化学成分

黄铁矿主要化学成分及微量元素在早晚两个成矿期由早到晚表现出明显的规律性变化(表5-4,图5-3):

(1)S、Fe及S+Fe由早到晚逐渐下降。早成矿期由Ⅰ-2→Ⅰ-3阶段变化缓慢,晚成矿期由Ⅱ-2→Ⅱ-3阶段下降迅速。

(2)Co、Ni由早到晚逐渐上升,与S、Fe为反变关系,表明二者为黄铁矿中类质同象组分(代替Fe)的性质。

(3)Sb、Te由早到晚逐渐减少,与Se和Bi的逐渐增加形成互补关系。As在早成矿期与Se变化趋势相同,到晚成矿期变化不显著。As、Sb、Bi、Se、Te5种元素中,As含量为其他元素的n×10—n×103倍,Te、Bi的含量及变化也较大,这些元素主要呈类质同象取代S而存在。

(4)成矿元素Cu、Zn及Pb与不同阶段硫化物含量密切相关。Cu、Zn在 I-3、Ⅱ-2阶段明显增多。Au及Au+Ag在早成矿期 I-3阶段富集,与矿石的贫富具相应性。相比之下,晚成矿期主成矿阶段(Ⅱ-2)Au、Ag都不高,与晚成矿期矿化不强是一致的。

(5)相对高温元素Mo在早成矿期由早到晚下降迅速。

2.金青顶不同标高黄铁矿化学成分

据表5-4,主成矿阶段黄铁矿化学成分在不同深度的变化特征可归纳如下:

(1)主元素Fe、S随深度增大而减小;

(2)微量元素Co、Ni、Se、Bi随深度增加而增加,Te、Sb随深度增加而减小。As主要受矿化强度制约,如—155m,—235m,ZK13-6,ZK17-2等富矿地段As明显富集,而—195m,ZK13-8、ZK17-3等贫矿段相对分散。

(3)成矿元素Cu随深度增大显著减小,Zn呈变小的趋势,Pb则不甚明显,反映黄铜矿在矿体上部相对比较发育,下部相对贫化,方铅矿和闪锌矿变化不太明显。在—155——235m不大的深度范围内,Au变化无规律,Ag则向下增多。

图5-3金青顶矿区不同阶段黄铁矿化学成分变化

Ⅰ2—黄铁矿石英阶段;Ⅰ-3—石英黄铁矿阶段;Ⅱ-2—多金属硫化物阶段;Ⅱ-3—石英绿泥石阶段

三、标型意义

1.黄铁矿形成条件

徐国风(1980)认为,沉积成因黄铁矿S、Fe含量与FeS2理论值相近或硫略多。陈光远等(1989)据胶东36个黄铁矿成分研究,提出低温或沉积成因黄铁矿S/Fe比值较大的统计规律。本区黄铁矿S、Fe含量偏离理论值甚大,铁亏损明显,表现了低温热液成因黄铁矿的特点。

一般认为,高温下黄铁矿中Se较高而Te较低,低温下Se低而Te较高,S随温度变化不大。由此,Юшко-Захарова(1964)提出:黄铁矿的S/Se>20×104为沉积成因,(1—2.67)×104为热液成因;Se/Te=6—10为岩浆成因,0.2左右为热液成因。根据乳山金矿的实际,在相对较高温的I-2和Ⅱ-2阶段Te高Se低,较低温的I-3、Ⅱ-3阶段Se高Te低,S在晚成矿期也有明显变化。另外,本矿床S/Se=(4.57—33.33)×104,其中大于20×104的数据占36%,而矿床显然不是沉积或岩浆成因,此外,热液成因的玲珑、三山岛、栖霞等金矿黄铁矿S/Se均值分别为49.52×10、52.04×104和53.08×104,沉积成因的二台子金矿却为17.31×104(陈光远等,1989)。看来,黄铁矿S/Se作为矿床成因判据需慎重对待。本矿床的Se/Te=0.005—16.04,变化较大,多数(55%)小于0.2,大于6者占27%。所以,使用S/Se、Se/Te判别矿床成因的标志值,尚需统计大量资料才能确定。如果以S/Se和Se/Te作纵横坐标式判别图,不同成因区将有较大的重叠。

由于Co2+的亲硫性比Ni2+、Fe2+都大,热液期高温阶段Co2+优先进入黄铁矿替代Fe2+,故高温阶段Co/Ni较大,本区早晚两个成矿期随时间演化Co/Ni降低,说明黄铁矿的形成温度是逐渐下降的,这与石英包体测温结果是一致的。

邵洁涟(1984)指出:低温热液黄铁矿以富As、Ag、Tl为特征、中温较富Ga、Ge,高温富Re,本区黄铁矿Ag、As富集系数均较高,说明本矿床属偏低温的中低温矿床,也与测温结果一致。

2.物质来源

据文献报道(邵洁涟,1984),与基性岩浆活动有关的热液黄铁矿含一定数量的Bi,其量从极微到100×10-6,平均21×10-6。据目前掌握的资料来看,Bi在各种成因的黄铁矿中是一种相当普遍的元素。我国23个不同类型中低温金矿黄铁矿统计(陈光远等,1989)表明,以浸染状产于变质岩中的银坑山金矿黄铁矿含Bi最高,为107.30×10-6,产于中酸性花岗岩中的浸染状和脉状金矿黄铁矿含Bi—8.20—45.22)×10-6,总平均36×10-6,富集系数211。金青顶金矿黄铁矿含Bi量变化很大,从(0.6—856.5)×10-6,其最高值出现在石英绿泥石阶段的黄铁矿中。本区金矿的形成与胶东群中幔源物质的活化是有一定联系的。

魏明秀(1986)认为,与I型花岗岩有关的热液黄铁矿Co含量高,Co/Ni=1.9—5,与S型花岗岩有关的热液黄铁矿含Co低,Co/Ni≈1或<1。金青顶金矿黄铁矿Co/Ni=0.40—14.37,显示了胶东群重熔和荆山群混染并进一步成岩成矿的特点。

3.成矿期、成矿阶段

从图5-3可看出,在 I-3、Ⅱ-2阶段之间,主元素和多种微量元素的趋势线出现明显的“断层”现象,这是早、晚两个成矿期更迭的标志,从而再次表明两个成矿期的存在。

不同阶段黄铁矿化学成分有一定的差异,尤以Cu、Co、Ni、As、Mo、Cd显著。Cu是Ⅱ-2阶段的特征元素,I-3阶段Cu也较高。As是I-3阶段特征元素,Ⅱ-3阶段次之。Ⅱ-3阶段以富Bi为特征,而 I-2阶段以富Mo为特征。

4.矿床剥蚀程度

原苏联西伯利亚和中亚西亚古生代褶皱带金矿中的黄铁矿,在矿体上部富Ba、Hg、Ag、Sb、(As),中部富Au、Cu、Pb、Bi、(Ag),根部附近则含 Ni、Co、Ti、Cr、(As)、(Cu)较高(Κοробеинников,1985)。金青顶金矿黄铁矿元素的垂向变化表明,本矿床与西伯利亚及中亚西亚等地金矿黄铁矿元素分带特征大体相符。Cu、Sb和Pb随深度增大而下降,Co、Ni、Bi随深度增大而增加,近地表处的黄铁矿Hg、Ag含量不高,若按上述分带,则矿体的剥蚀属上部偏下,上带已基本无存。—770m处ZK17-3中黄铁矿虽最富Co、Ni,但富集系数也仅7.1和3.4,且同时有很高的中带元素Bi,其富集系数高达1704。所以,—770m似未达矿化地段根部,向下仍有很大的前景。

5.矿化强度

在表5-4中,15528、11527、195123、1385、17328及19511为贫矿阶段和贫矿段样品,15569、2355、1364、1724和11512为富矿阶段和富矿段样品,分别统计二者的微量元素含量(表5-7),可以得出本区金矿找矿的黄铁矿微量元素标志:

表5-7乳山金矿田黄铁矿微量元素(10-6)与矿化强度

(1)无论贫矿或富矿黄铁矿,其Au+Ag异常明显,这是金矿的直接指示标志。

(2)微量元素中,As+Sb+Bi具最高含量,富矿黄铁矿之As+Sb+Bi高于贫矿黄铁矿,这是本区金矿黄铁矿最重要的间接找矿标志。

(3)黄铁矿中Cu+Pb+Zn总量次于As+Sb+Bi,但仍是重要的特征元素,富矿高于贫矿。

(4)Co、Ni的含量排序位居Pb、Zn之前,富矿略高于贫矿,可作找矿的参考。

(5)Se+Te在全部含金黄铁矿中均值均较高,它们的富集系数很大,是重要的找金标志元素。

(6)富矿黄铁矿的微量元素总量(表5-4中除S、Fe外前10项之和)大大高于贫矿黄铁矿,这是众多金矿研究的共同结论。

C. 分析物质成分有什么方法

使用现抄代分析仪器袭方可以较为准确的分析物质组成成分的,常规的有红外扫描(IR)、紫外扫描(UV)质谱(MS)、液质联用(HPLC-MS)、核磁共振(NMR)等,英格尔分析是成分分析方面的权威,很多人要分析物质成分是招他们代为分析的。

D. 化学分析名词解释

化学分析是指确定物质化学成分或组成的方法。根据被分析物质的性质可分为无机分析和有机分析。根据分析的要求,可分为定性分析和定量分析。根据被分析物质试样的数量,可分为常量分析、半微量分析、微量分析和超微量分析。工业上的原材料、半制品、成品、农业上的土壤、肥料、饲料以及交通运输上的燃料、润滑剂等,在研究、试制、生产或使用的过程中,都需要应用化学分析。
分析化学是大学本科的主干基础课,包括“定量化学分析”理论课、定性化学分析,基本化学实验课和“仪器分析”理论课、实验课。授课对象为化学类专业和生物、医学、地学类专业的本科生。分析化学有很强的实用性,同时又有严密、系统的理论,是理论与实际密切结合的学科。学习分析化学有利于培养学生严谨的科学态度和实事求是的作风,使学生初步掌握科学研究的技能并初步具备科学研究的综合素质。分析化学涉及的内容十分广泛,发展非常迅速。在讲授基本理论的同时,尽量穿插一些运用基础理论解决实际问题的例子,包括药物、环境、生物等各个领域中分析化学的新进展,新成果。保持化学分析理论的系统性并不断充实新内容,保持仪器分析内容的相对稳定性并及时融进新发展、新技术,将经典分析化学与现代分析化学融合在一起。
仪器分析方法:以物质的物理和物理化学性质为基础的分析方法称物理和物理化学分析法。这类方法都需要较特殊的仪器,通常称为仪器分析方法。最主要的仪器分析方法有以下几种:

1、光学分析法

根据物质的光学性质所建立的分析方法。主要包括:分子光谱法、分光分析法、分子荧光及磷光分析法;原子光谱法,如原子发射光谱法、原子吸收光谱法。

2、电化学分析法

根据物质的电化学性质所建立的分析方法。主要包括电位分析法、极谱和伏安分析法、电重量和库伦分析法、电导分析法。

3、色谱分析法

根据物质在两相(固定相和流动相)中吸附能力、分配系数或其他亲和作用的差异而建立的一种分离、测定方法。这种分析法最大的特点是集分离和测定于一体,是多组分物质高效、快速、灵敏的分析方法。主要包括气相色谱法、液相色谱法。[2]

E. 化学成分分析和化学多元素分析有什么区别

成分分析主要是对样品中的晶形分析,确定各类化合物的结构,一般用X射线衍射仪可以搞定
元素分析就是对样品中所含的元素进行分析,用X射线荧光光谱仪一般可以对C以上的元素进行定性分析,精度1PPM,并可以进行半定量分析,结合XRD和XRF的数据可以对矿石组成有个大致的判断。

F. 岩石化学成分分析

一、全岩化学成分分析

在采样点xj2,xj5,xj11上的样品中各挑选了一些样品共14个糜棱岩及其原岩进行了全岩化学成分分析,结果如表4-4所示。 从表中可以看出,在采样点xj2和xj5上,各自几个糜棱岩样品的化学成分是比较接近的,其原岩(分别为花岗岩和片岩)的成分也相近。 为便于比较,取其平均值。 但在采样点xj11上,两个糜棱岩样品的成分相差较大,说明其中一个糜棱岩样品的原岩可能不是xj11-10花岗岩。 参考xj2的数值,取xj11 -9糜棱岩样品的化学成分,与其他两个采样点的成分平均值一起列在表4-5中。 为使成分对比更直观,我们作了成分对比直方图(图4-8至图4-10)。 图4-8和图4-10都是花岗岩与糜棱岩的成分对比,它们有相同之处,也有一定差别。 相同之处在于,糜棱岩中的SiO2含量都比花岗岩高,而Al2O3,FeO,CaO,TiO的含量都略低;最明显的不同之处在于xj2采样点糜棱岩中的K2O含量比花岗岩低,而Na2O含量则高,xj11采样点糜棱岩中K2O含量比花岗岩高,Na2O含量基本相同。 从图4-9的片岩与糜棱岩的成分对比可以看出,SiO2,CaO,Na2O的含量糜棱岩比片岩低,其他成分则高。

表4-4 糜棱岩及其围岩全岩化学分析结果(常量元素%)

表4-4(续1) 糜棱岩及其围岩全岩化学分析结果(微量元素wB/10-6)

表4-4(续2) 糜棱岩及其围岩全岩化学分析结果(微量元素wB/%)

表4-5 糜棱岩及其围岩全岩化学分析结果平均值对比(常量元素wB/%)

图4-8 采样点xj2花岗岩与糜棱岩平均全岩化学成分对比

图4-9 采样点xj5片岩与糜棱岩平均全岩化学成分对比

图4-10 采样点xj11花岗岩与糜棱岩平均全岩化学成分对比

二、长石成分电子探针分析

在进行全岩化学成分分析的上述3个采样点的样品中挑选了47个钾长石和斜长石晶粒,用电子探针方法测定了其化学成分,其结果表示在表4-6中。 从表中可以看出,在各个剖面上,同类岩性样品的同种矿物的成分还是很接近的,有的是相差无几。 我们取其平均值,将结果表示在表4-7中。 为便于对比作了直方图,图4-11至图4-14为各类长石平均含量对比图。 采样点xj2糜棱岩中的钾长石与花岗岩中的钾长石相比,其Ab,Or,An和镁铁比没有明显差别(图4-11),而两种岩石的斜长石成分对比表明,Or和An则明显减少(图4-12);采样点xj5糜棱岩与片岩中斜长石成分相比,其中的Ab,Or, An含量几乎没有差别(图4-13);

表4-6 糜棱岩及其围岩中长石化学成分电子探针分析结果对比(wB/%)

续表

续表

表4-7 糜棱岩及其围岩中长石化学成分电子探针分析结果平均值对比(wB/%)

图4-11 采样点xj2花岗岩与糜棱岩中钾长石平均成分对比

图4-12 采样点xj2花岗岩与糜棱岩中斜长石平均成分对比

图4-13 采样点xj5片岩与糜棱岩中斜长石平均成分对比

图4-14 采样点xj11花岗岩与糜棱岩中斜长石平均成分对比

采样点xj11糜棱岩与花岗岩斜长石成分相比,Ab增加,An减少,Or基本一样(图4-14)。

再对比其化学成分。 因为其次要成分相差甚微,为简化图形只取其主要成分,所作直方图表示在图4-15至图4-18中。 糜棱岩与花岗岩相比,xj2钾长石的主要化学成分几乎一样(图4-15);xj2斜长石,CaO和K2O的含量降低,其他成分基本一样(图4-16);xj5斜长石的主要成分基本一样(图4-17);xj11斜长石的Al2O3和CaO的含量减少,SiO2和Na2O的含量增加(图4-18)。 与矿物成分的对比结果是一致的。

图4-15 采样点xj2花岗岩与糜棱岩中钾长石主要化学成分平均值对比

图4-16 采样点xj2花岗岩与糜棱岩中斜长石主要化学成分平均值对比

图4-17 采样点xj5花岗岩与糜棱岩中斜长石主要化学成分平均值对比

图4-18 采样点xj11花岗岩与糜棱岩中斜长石主要化学成分平均值对比

G. 化学物质分析,厉害的来,最好是老师!!

A: Na2CO3
B: Al2(SO4)3
C: MgCl2
D: Ba(OH)2
E: NaHSO4

H. 化学品成分分析

做化学品这种产品的分析检测,给你个建议

I. 化学成分分析的步骤和方法,大家相互讨论、学习

电镀液的配方书上很多,要看你具体是哪种,不同的分析方法不一样,操作也有区别,

热点内容
2017高考全国数学卷一 发布:2025-06-24 03:02:56 浏览:706
高二地理考点 发布:2025-06-24 02:48:27 浏览:339
巴南教育城 发布:2025-06-24 02:29:48 浏览:702
安全教育平台帐号 发布:2025-06-23 23:31:44 浏览:155
放疗做多久 发布:2025-06-23 21:31:35 浏览:69
小学英语教师个人述职 发布:2025-06-23 17:08:54 浏览:167
感恩教师节班会 发布:2025-06-23 15:07:00 浏览:101
2017高考数学全国卷 发布:2025-06-23 13:04:52 浏览:66
六年级下册英语教学计划 发布:2025-06-23 12:52:09 浏览:410
中国国家地理在线阅读 发布:2025-06-23 12:01:19 浏览:784