物理学t
物理学是研究物质运动最一般规律及物质基本结构的学说.具体地说,按所研究的物质运动形态和具体对象,它涉及的范围包括:力学、声学、热学和分子物理学、电磁学、光学、原子和原子核物理学、基本粒子物理学、固体物理学以及对气体和液体的研究等. 物理学包括实验和理论两大部分,经过实践检验被证实为可靠的理论物理包括:理论力学、热力学和统计物理学、电动力学、相对论、量子力学和量子场论.当然这些理论也只能是相对真理,有各自的局限性.运用物理学的基本理论和实验方法研究各种专门问题,使物理学中各种新的分支不断涌现和形成如流体力学、弹性力学、无线电电子学、金属物理学、半导体物理、电介质物理、超导体物理、等离子物理、固体发光、液晶及激光等.一些边缘学科也随物理的广泛应用而陆续形成如化学物理、生物物理、天体物理及海洋物理等等.
B. 物理学类包括哪些专业
物理学是研究物质运动最一般规律和物质基本结构的学科。
物理学类包括的专业有物理学、应用物理学、核物理和声学。
一、物理学
主干学科:物理学
主要课程:高等数学、普通物理学、数学物理方法、理论力学、热力学与统计物理、电动力学、量子力学、固体物理学、结构和物性、计算物理学人门等。
学年:4年
授予学位:理学学士
培养目标:本专业培养掌握物理学的基本理论与方法,具有良好的数学基础和实验技能,能在物理学或相关的科学技术领域中从事科研、教学、技术和相关的管理工作的高级专门人才。
二、应用物理学
主干学科:物理学
主要课程:高等数学、普通物理学、电子线路、理论物理、结构与物性、材料物理、固体物理学、机械制图等课程。
学年:4年
授予学位:理学或工学学士
培养目标:本专业培养掌握物理学的基本理论与方法,能在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作的高级专门人才。
三、核物理
培养目标:培养在核物理与核科学技术领域内具有扎实、宽厚的理论基础、熟练的实验技能并获得科学研究的系统训练,具有较强的工作适应能力和后劲,能在工业、农业、国防、医学及环保及其相关领域从事核物理专业基础研究、应用研究、教学、管理等的高级专门人才。
主要课程:普通物理、电子技术基础、数学物理方法、理论力学、热力学与统计物理、电动力学、量子力学、固体物理、原子核物理学、核电子学、核物理实验方法、辐射剂量与防护、核技术基础。
C. 物理学分类
分为牛顿力学与分析力、电磁学与电动力学、热力学与统计力学、狭义相对论、广义相对论、量子力学、天体物理学等。物理学是一门自然科学,注重于研究物质、能量、空间、时间,尤其是它们各自的性质与彼此之间的相互关系。物理学是关于大自然规律的知识;更广义地说,物理学探索并分析大自然所发生的现象,以了解其规则。
物理学分类简介
牛顿力学与分析力学研究物体机械运动的基本规律及关于时空相对性的规律。
电磁学与电动力学研究电磁现象、物质的电磁运动规律及电磁辐射等规律。
热力学与统计力学研究物质热运动的统计规律及其宏观表现。
狭义相对论研究物体的高速运动效应以及相关的动力学规律。
广义相对论研究在大质量物体附近,物体在强引力场下的动力学行为。
量子力学研究微观物质的运动现象以及基本运动规律。
此外,还有:粒子物理学、原子核物理学、原子与分子物理学、固体物理学、凝聚态物理学、激光物理学、等离子体物理学、地球物理学、生物物理学、天体物理学等。
物理具体分类
经典力学、理论力学、 电磁学、电动力学、热力学、统计物理学、宇宙物理学量子力学、粒子物理学、原子核物理学、原子分子物理学、固体物理学、凝聚态物理学、激光物理学、等离子体物理学、地球物理学、生物物理学、天体物理学、声学、电磁学、光学、无线电物理学、热学、量子场论、低温物理学、半导体物理学、磁学、液晶、医学物理学、非线性物理学、计算物理学和空气动力学等等。具体分类非常多,而且随时间推移和研究,种类只会越来越多。
D. 物理学是学什么的
物理是研究物质结构、物质相互作用和运动规律的自然科学。是一门以实验为基础回的自然科学,物理学的一个永答恒主题是寻找各种序(orders)、对称性(symmetry)和对称破缺(symmetry-breaking)守恒律(conservation
laws)或不变性(invariance).
来自网络
E. 什么是物理学
物理学是研究自然界的物质结构、物体间的相互作用和物体运动最一般规律的自然科学。物理学研究的范围
——
物质世界的层次和数量级物理学
(Physics)质子
10-15
m空间尺度:物
质
结
构物质相互作用物质运动规律微观粒子Microscopic介观物质mesoscopic宏观物质macroscopic宇观物质cosmological类星体
10
26
m时间尺度:基本粒子寿命
10-25
s宇宙寿命
1018
s绪
论E-15E-12E-09E-06E-031mE+03E+06E+09E+12E+15E+18E+21E+24E+27最小
的细胞原子原子核基本粒子DNA长度星系团银河系最近恒
星的距离太阳系太阳山哈勃半径超星系团人蛇吞尾图,形象地表示了物质空间尺寸的层次物理现象按空间尺度划分:量子力学经典物理学宇宙物理学按速率大小划分:
相对论物理学非相对论物理学按客体大小划分:
微观系统宏观系统
按运动速度划分:
低速现象高速现象
实验物理理论物理计算物理今日物理学物理学的发展。
物理学是人们对无生命自然界中物质的转变的知识做出规律性的总结。这种运动和转变应有两种。一是早期人们通过感官视觉的延伸,二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果,间接认识物质内部组成建立在的基础上。物理学从研究角度及观点不同,可分为微观与宏观两部分,宏观是不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的,微观物理学随着科技的发展理论逐渐完善。
其次,物理又是一种智能。
F. 物理学包含哪些东西
物理包含很广了,主要包括,力学,热学,光学,电磁学,声学,原子物理,还有相对论物理等等,然而只只是大的划分,细分之后就更多了,比如,理论力学,分析力学,工程力学,相对力学,统计力学等等。至于物理嘛,自然是最重要的,最基本的一门科学了,你回头看,历史上几次大的生成力的进步,哪一次不是有物理学的进步来推动的?现在虽然表面上物理的作用没那么大了,但这绝对是错的,好多的工科都是要以物理的知识做为基础的,其作用自然不用说。
至于怎么学好嘛,初中的物理是很简单的了,关键还是理解,然后可以都看一些物理方面的书,来培养一下兴趣,兴趣是最好的老师嘛。
G. 物理学分为哪些类我要全面的
1、牛顿力学(Newton mechanics)与分析力学(analytical mechanics)研究物体机械运动的基本规律及关于时空相对性的规律
2、电磁学(electromagnetism)与电动力学(electrodynamics)研究电磁现象,物质的电磁运动规律及电磁辐射等规律
3、热力学(thermodynamics)与统计力学(statistical mechanics)研究物质热运动的统计规律及其宏观表现
4、狭义相对论(special relativity)研究物体的高速运动效应以及相关的动力学规律。
5、广义相对论(general relativity)研究在大质量物体附近,物体在强引力场下的动力学行为。
6、量子力学(quantum mechanics)研究微观物质运动现象以及基本运动规律
此外,还有:粒子物理学、原子核物理学、原子与分子物理学、固体物理学、凝聚态物理学、激光物理学、等离子体物理学、地球物理学、生物物理学、天体物理学等等。
(7)物理学t扩展阅读:
物理学的六大性质
1、真理性:物理学的理论和实验揭示了自然界的奥秘,反映出物质运动的客观规律。
2、和谐统一性:神秘的太空中天体的运动,在开普勒三定律的描绘下,显出多么的和谐有序。物理学上的几次大统一,也显示出美的感觉。
牛顿用三大定律和万有引力定律把天上和地上所有宏观物体统一了。麦克斯韦电磁理论的建立,又使电和磁实现了统一。爱因斯坦质能方程又把质量和能量建立了统一。光的波粒二象性理论把粒子性、波动性实现了统一。爱因斯坦的相对论又把时间、空间统一了。
3、简洁性:物理规律的数学语言,体现了物理的简洁明快性。如:牛顿第二定律,爱因斯坦的质能方程,法拉第电磁感应定律。
4、对称性:对称一般指物体形状的对称性,深层次的对称表现为事物发展变化或客观规律的对称性。如:物理学中各种晶体的空间点阵结构具有高度的对称性。竖直上抛运动、简谐运动、波动镜像对称、磁电对称、作用力与反作用力对称、正粒子和反粒子、正物质和反物质、正电和负电等。
5、预测性:正确的物理理论,不仅能解释当时已发现的物理现象,更能预测当时无法探测到的物理现象。例如麦克斯韦电磁理论预测电磁波存在,卢瑟福预言中子的存在,菲涅尔的衍射理论预言圆盘衍射中央有泊松亮斑,狄拉克预言电子的存在。
6.精巧性:物理实验具有精巧性,设计方法的巧妙,使得物理现象更加明显。
物理学的发展:
应用物理学专业的毕业生主要在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作。科研工作包括物理前沿问题的研究和应用,技术开 发工作包括新特性物理应用材料如半导体等,应用仪器的研制如医学仪器、生物仪器、科研仪器等。
应用物理专业的就业范围涵盖了整个物理和工程领域,融物理理 论和实践于一体,并与多门学科相互渗透。
应用物理学专业的学生如具有扎实的物理理论的功底和应用方面的经验,能够在很多工程技术领域成为专家。
我国每年培养本科应用物理专业人才约12000人。和该专业存在交叉的专业包括物理专业,工程物理专业,半导体和材料专业等。人才需求方面,我国对应用物理专业的人才需求仍旧是供不应求。
H. 物理学具体是什么
物理学是一门自然科学,注重于研究物质、能量、空间、时间,尤其是它们各自的性质与彼此之间的相互关系。物理学是关于大自然规律的知识;更广义地说,物理学探索分析大自然所发生的现象,以了解其规则
物理学是最古老的学术之一。在过去两千多年间,物理学与化学、天文学都归属于自然哲学的范畴,直到十七世纪欧洲的科学革命之后,物理学才从自然哲学中独立出来,成为了一门自然科学。物理学与其它很多跨领域研究有相当的交集,如量子化学、生物物理学等等。物理学的疆界并不是固定不变的,物理学里的创始突破时常可以用来解释这些跨领域研究的基础机制,有时还会开启崭新的跨领域研究。
物理学是自然科学中最基础的学科之一。经过严谨思考论证,物理学者会提出表述大自然现象与规律的假说,倘若这假说能够通过大量严格的实验检验,则可以被归类为物理定律,但正如很多其他自然科学理论一样,这些定律不能被证明,其正确性只能靠着反复的实验来检验[7]。
通过创立新理论与发展新科技,物理学对于人类文明有极为显著的贡献。例如,由于电磁学的快速进展,电灯、电动机、家用电器等新产品纷纷涌现,人类社会的生活水平也得到大幅提升。由于核子物理学日趋成熟,核能发电不再是蓝图构想,但引致的安全问题也使人们意识到地球的脆弱。
物理学涵盖广泛的自然现象,从微乎其微的基本粒子(像:夸克、中微子、电子)到庞大无比的超星系团都是研究对象。很多千变万化、无奇不有的现象,都可基于更基础的现象来做合理的描述与解释。物理学是一门基础科学。物理学者致力于追根究底,发掘这些现象的根本原因,并试图寻觅这些原因之间的任何连结关系。这些经过物理学者近百年努力所得到的结果,可以大致归纳为一些明确的基础定律。其它许多学术领域,像生物学、化学、地质学、工程学等等,所涉及的物质系统都遵守这些基础定律。但是,这些基础定律仍不完全。物理学对于自然现象所给出的描述与解释,只是最好的近似事实,而不是完全的绝对事实。
举例而言,古希腊人知道像琥珀一类的物质,当与毛皮磨擦时,会出现吸引力,使得这两种磨擦物互相吸引。这性质后来称为电性。在十七世纪,学者开始慎密地研查这性质。另外,在亚洲大陆的那一端,古中国人观测到某些石头(磁石),会通过某种看不见的作用力互相吸引。这性质后来称为磁性。也是在十七世纪,学者开始严格地穷究其起因。经过燃膏继晷、废寝忘食的努力,物理学者终于明白了这两种自然现象的基本成因——电和磁。但是,在二十世纪,经过更深入的研究,物理学者发现这两种作用力是电磁力的两种不同表现。今天,这统一各种各样作用力的程序仍旧方兴未艾,物理学者认为电磁力和弱核力是弱电相互作用的两种不同表现。物理学者的终极目标是找到一个完美的万有理论,能够解释大自然的一切本质。
I. 物理学 有几大类
1、牛顿力学与分析力学:研究物体机械运动的基本规律及关于时空相对性的规律
2、电磁学与电动力学:研究电磁现象,物质的电磁运动规律及电磁辐射等规律
3、热力学与统计力学:研究物质热运动的统计规律及其宏观表现
4、狭义相对论:研究物体的高速运动效应以及相关的动力学规律。
5、广义相对论:研究在大质量物体附近,物体在强引力场下的动力学行为。
6、量子力学:研究微观物质运动现象以及基本运动规律。
此外还有:粒子物理学、原子核物理学、原子与分子物理学、固体物理学、凝聚态物理学、激光物理学、等离子体物理学、地球物理学、生物物理学、天体物理学等等。
(9)物理学t扩展阅读
物理学的方法和科学态度:提出命题 → 理论解释 → 理论预言 → 实验验证 →修改理论。
现代物理学是一门理论和实验高度结合的精确科学,它的产生过程如下:
1、物理命题一般是从新的观测事实或实验事实中提炼出来,或从已有原理中推演出来。
2、首先尝试用已知理论对命题作解释、逻辑推理和数学演算。如现有理论不能完美解释,需修改原有模型或提出全新的理论模型。
3、新理论模型必须提出预言,并且预言能够为实验所证实。
4、一切物理理论最终都要以观测或实验事实为准则,当一个理论与实验事实不符时,它就面临着被修改或被推翻。
J. 物理学是什么
物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。它的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,它是当今最精密的一门自然科学学科。
物理学是人们对无生命自然界中物质的转变的知识做出规律性的总结。这种运动和转变应有两种。一是早期人们通过感官视觉的延伸,二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果,间接认识物质内部组成建立在的基础上。
(10)物理学t扩展阅读:
物理学的主要研究领域分为:
1、凝聚态物理
研究物质宏观性质,这些物相内包含极大数目的组元,且组员间相互作用极强。最熟悉的凝聚态相是固体和液体,它们由原子间的键和电磁力所形成。
2、原子,分子和光学物理
研究原子尺寸或几个原子结构范围内,物质-物质和光-物质的相互作用。这三个领域是密切相关的。因为它们使用类似的方法和有关的能量标度。
3、高能/粒子物理
粒子物理研究物质和能量的基本组元及它们间的相互作用;也可称为高能物理。因为许多基本粒子在自然界不存在,只在粒子加速器中与其它粒子高能碰撞下才出现。据基本粒子的相互作用标准模型描述,有12种已知物质的基本粒子模型(夸克和轻粒子)。
4、天体物理
天体物理和天文学是物理的理论和方法用到研究星体的结构和演变,太阳系的起源,以及宇宙的相关问题。因为天体物理的范围宽。它用了物理的许多原理。包括力学,电磁学,统计力学,热力学和量子力学。1931年卡尔发现了天体发出的无线电讯号。
参考资料来源:网络-物理学