物理追击相遇问题
简单的话直接用算术解,复杂的话,可根据已知条件运用路程公式列方程求解。具体问题,到时具体分析。
Ⅱ 高一物理追击相遇问题!!!
其实这类问题,关键是要把双方的相对运动有几个阶段分清楚就好了。画一下图,或者自己拿两个东西模拟一下都行。。
这种题就两个步骤,先分析运动模型,再具体计算。
就你的这个例题,咱们就从甲车从乙车身边经过这个时刻开始分析,只有两(三)个阶段:
1) 一开始两车都在向前开,但是甲的速度大,所以肯定距离s越拉越大。
2) 因为甲车匀减速,总有一个时刻t,两车速度相等了(都变成4m/s)
3) 从此以后,甲车速度越来越慢,乙车不停地追上去,两者距离s越来越小。
从上面可以看出,这个距离s先从0开始变大,在t时刻达到最大,后来由慢慢变小等于0。现在我们就要求最大距离,也就是t时刻的两车距离。至此,分析结束,我们明确了为什么速度相等时距离最大了,接下来可以计算这个距离了。
你想一下答案什么意思?其实很简单也很巧妙,如果我们把乙车看成时静止的,那么从乙车的角度来看,第一个阶段甲车在干什么呢?甲车其实是以初速度为6m/s(=10-4)向前开,作匀减速运动一直到0m/s(双方速度相等,相对静止)。所以说就是一个从6匀减速到0的运动,你们老师肯定讲过,这就等价于一个从0开始匀加速到6的运动的逆过程。这个时间就是用v=at计算的,6=0.5t,所以t=12。第一阶段总的距离就是1/2 *a*t*t = 1/2 * 0.5 * 12 * 12 = 36米。
物体题的思想其实都很类似的,一通百通越做越有意思。最关键的是要静下心来把模型分析清楚了,运动问题把运动阶段分析清楚,力学问题把受力分析搞清楚,就容易解决了~
关于你开始提的问题,有没有速度相等位移差最小的情况?当然有啊,比如说,甲在追乙,甲的速度一开始比乙大,但是甲越跑越慢,乙越跑越快,你看是不是就是这种情况。(眼看着就要追上了但还没有追上,这时候甲乙速度相等了。接下来甲没劲儿了,慢了下来,乙却越来越快,于是差距就越来越大了。。)
Ⅲ 关于物理运动学中追击相遇问题
到底在哪些情况下两个物体速度相等时距离最大?
同时同向行驶的时候,一个是匀速,一个是匀加速的情况下,
为什么最大?因为两者的距离是速度差决定的,速度不相同时,距离一直在增加,速度相同后,加速运动的速度大于匀速,那么两者的距离就会减小,直到两者平行;
有没有速度相等位移差最小的情况?反向思维前面的说明,这就需要一个是匀速,一个是匀减速的过程,或者两个不同反向加速度的减速,两者之间要有一个距离,不能同时出发,就像你说的那个例子,
甲乙两辆骑车沿同一平直公路同向匀速运动,速度均为16m/s.在前面的甲车紧急刹,加速度为a1=m/s2,乙车由于司机的反应时间为0.5s而晚刹车,已知乙车的加速度为a2= 4m/s2,为了确保乙车不与甲车相撞不与甲车相撞,原来至少应该保持多大的车距?
为什么开始要求速度相等,是因为速度相等的时候,两车距离最短,为了保证不撞上,就要把这个最短距离求出来;
为什么速度相等时的位移差就能表示为车距?这个在前面说过了;
用位移解的话,思路是乙车停止时走过的位移刚好等于甲车走过的位移加上一开始的车距,这个思路为什么错?错在没考虑那0.5的反应时间,因为这意味着后车还要正常速度向前前进16*0.5,这个8米你一定没有计算进去,如果计算进去就对了;
两物体加速度和初速度以及运动的状态,问它们能否相遇以及能相遇几次,这种问题应该怎么解决?
两个物体同时在同一条直线上(或互相平行的直线上)做直线运动,可能相遇或碰撞,这一类问题称为“追及和相遇”问题。
“追及和相遇”问题的特点:
(1)有两个相关联的物体同时在运动。
(2)“追上”或“相遇”时两物体同时到达空间同一位置。
“追及和相遇”问题解题的关键是:
准确分析两个物体的运动过程,找出两个物体运动的三个关系:(1)时间关系(大多数情况下,两个物体的运动时间相同,有时运动时间也有先后)。(2)位移关系。(3)速度关系。
在“追及和相遇”问题中,要抓住临界状态:速度相同。速度相同时,两物体间距离最小或最大。如果开始前面物体速度大,后面物体速度小,则两个物体间距离越来越大,当速度相同时,距离最大;如果开始前面物体速度小,后面物体速度大,则两个物体间距离越来越小,当速度相同时,距离最小。
[例1]:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?
[解析]:[方法一]:临界状态法
汽车在追击自行车的过程中,由于汽车的速度小于自行车的速度,汽车与自行车之间的距离越来越大;当汽车的速度大于自行车的速度以后,汽车与自行车之间的距离便开始缩小,很显然,当汽车的速度与自行车的速度相等时,两车之间的距离最大。设经时间t两车之间的距离最大。则
v汽 = t = v自 ∴ t = = s=2s
ΔSm = S自 - S汽 = v自t - t2 =6×2m - ×3×22m =6m
[探究]:汽车经过多少时间能追上摩托车?此时汽车的速度是多大?汽车运动的位移又是多大?
[方法二]:图象法
在同一个V-t图象中画出自行车和汽车的速度-时间图线,如图所示。其中Ⅰ表示自行车的速度图线,Ⅱ表示汽车的速度图线,自行车的位移S自等于图线Ⅰ与时间轴围成的矩形的面积,而汽车的位移S汽 则等于图线Ⅱ与时间轴围成的三角形的面积。两车之间的距离则等于图中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三角形的面积之差最大。
此时v汽 = t0 = v自
t0 = = s=2s
ΔSm = t0×v自= ×2×6m=6m
[方法三]:二次函数极值法
设经过时间t汽车和自行车之间的距离ΔS,则
ΔS = S自 - S汽 = v自t - at2 =6t - t2=- (t-2)2+6
当t=2s时两车之间的距离有最大值ΔSm,且ΔSm =6m.
※[方法四]:相对运动法
选自行车为参照物,则从开始运动到两车相距最远这段过程中,以汽车相对地面的运动方向为正方向,汽车相对此参照物的各个物理量的分别为:v0 = -6m/s, = 3 m/s2, vt = 0
对汽车由公式 2 S = vt2- vo2 得
Sm = = m =-6m
[例2]:A火车以v1=20 m/s速度匀速行驶,司机发现前方同轨道上相距100m处有另一列火车B正以v2=10m/s速度匀速行驶,A车立即做加速度大小为a的匀减速直线运动。要使两车不相撞,a应满足什么条件?
三、强化练习:
1.甲、乙两车同时从同一地点出发,向同一方向运动,甲以10 m/s的速度匀速行驶,乙以2 m/s2的加速度由静止开始运动,问:
(1)经多长时间乙车追上甲车?此时甲、乙两车速度有何关系?
(2)追上前经多长时间两者相距最远? 最远距离为多少?
Ⅳ 高中物理追击相遇问题
追击相遇问题的解决方法有三中,1、数学方法;2、图像法(画V-t图像);3、物理判断法(当两者速度相等时有最值:最近或最远)刹车和限速都可以用。
追击包括同向追及、相向追击;追上或没追上;追击过程中有最近或最远距离。而撞车属于追击。相遇就是到最后一定到同一地点,也是追击问题
Ⅳ 高中物理追击和相遇问题
1.追及和相遇问题
当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距会越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题.
2.追及问题的两类情况
(1)速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):
①当两者速度相等时,若两者位移之差仍小于初始时的距离,则永远追不上,此时两者间有最小距离.
②若两者位移之差等于初始时的距离,且两者速度相等时,则恰能追上,也是两者相遇时避免碰撞的临界条件.
③若两者位移之差等于初始时的距离时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个极大值.
(2)速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):
①当两者速度相等时有最大距离.
②若两者位移之差等于初始时的距离时,则追上.
3.相遇问题的常见情况
(1)同向运动的两物体追及即相遇.
(2)相向运动的物体,当各自发生的位移大小和等于开始时两物体的距离时即相遇.
重点难点突破
一、追及和相遇问题的常见情形
1.速度小者追速度大者常见的几种情况:
类型
图象
说明
匀加速追匀速
①t=t0以前,后面物体与前面物体间距离增大
②t=t0时,两物体相距最远为x0+Δx
③t=t0以后,后面物体与前面物体间距离减小
④能追及且只能相遇一次
注:x0为开始时两物体间的距离
匀速追匀减速
匀加速追匀减速
2.速度大者追速度小者常见的情形:
类型
图象
说明
匀减速追匀速
开始追及时,后面物体与前面物体间距离在减小,当两物体速度相等时,即t=t0时刻:
①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件
②若Δx<x0,则不能追及,此时两物体间最小距离为x0-Δx
③若Δx>x0,则相遇两次,设t1时刻Δx1=x0两物体第一次相遇,则t2时刻两物体第二次相遇
注:x0是开始时两物体间的距离
匀速追匀加速
匀减速追匀加速
二、追及、相遇问题的求解方法
分析追及与相遇问题大致有两种方法,即数学方法和物理方法,具体为:
方法1:利用临界条件求解.寻找问题中隐含的临界条件,例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离.
方法2:利用函数方程求解.利用不等式求解,思路有二:其一是先求出在任意时刻t两物体间的距离y=f(t),若对任何t,均存在y=f(t)>0,则这两个物体永远不能相遇;若存在某个时刻t,使得y=f(t)≤0,则这两个物体可能相遇.其二是设在t时刻两物体相遇,然后根据几何关系列出关于t的方程f(t)=0,若方程f(t)=0无正实数解,则说明这两物体不可能相遇;若方程f(t)=0存在正实数解,则说明这两个物体可能相遇.
方法3:利用图象求解.若用位移图象求解,分别作出两个物体的位移图象,如果两个物体的位移图象相交,则说明两物体相遇;若用速度图象求解,则注意比较速度图线与t轴包围的面积.
方法4:利用相对运动求解.用相对运动的知识求解追及或相遇问题时,要注意将两个物体对地的物理量(速度、加速度和位移)转化为相对的物理量.在追及问题中,常把被追及物体作为参考系,这样追赶物体相对被追物体的各物理量即可表示为:s相对=s后-s前=s0,v相对=
v后-v前,a相对=a后-a前,且上式中各物理量(矢量)的符号都应以统一的正方向进行确定.
三、分析追及、相遇问题的思路和应注意的问题
1.解“追及”、“相遇”问题的思路
(1)根据对两物体运动过程的分析,画出物体的运动示意图.
(2)根据两物体的运动性质,分别列出两物体的位移方程.注意要将两物体运动时间的关系反映在方程中.
(3)由运动示意图找出两物体位移间的关联方程.
(4)联立方程求解.
2.分析“追及”、“相遇”问题应注意的几点
(1)分析“追及”、“相遇”问题时,一定要抓住“一个条件,两个关系”:
“一个条件”是两物体的速度满足的临界条件,如两物体距离最大、最小、恰好追上或恰好追不上等.
“两个关系”是时间关系和位移关系.其中通过画草图找到两物体位移之间的数量关系,是解题的突破口.因此,在学习中一定要养成画草图分析问题的良好习惯,因为正确的草图对帮助我们理解题意、启迪思维大有裨益.
(2)若被追赶的物体做匀减速运动,一定要注意追上该物体前是否停止运动.
(3)仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,往往对应一个临界状态,要满足相应的临界条件.
典例精析
1.运动中的追及和相遇问题
【例1】在一条平直的公路上,乙车以10 m/s的速度匀速行驶,甲车在乙车的后面做初速度为15 m/s,加速度大小为0.5 m/s2的匀减速运动,则两车初始距离L满足什么条件时可以使(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动).
【解析】设两车速度相等经历的时间为t,则甲车恰能追上乙车时,应有
v甲t- =v乙t+L
其中t= ,解得L=25 m
若L>25 m,则两车等速时也未追及,以后间距会逐渐增大,即两车不相遇.
若L=25 m,则两车等速时恰好追及,两车只相遇一次,以后间距会逐渐增大.
若L<25 m,则两车等速时,甲车已运动至乙车前面,以后还能再次相遇,即能相遇两次.
【思维提升】对于追及和相遇问题的处理,要通过两质点的速度进行比较分析,找到隐含条件(即速度相同时,两质点间距离最大或最小),再结合两个运动的时间关系、位移关系建立相应方程求解.
【拓展1】两辆游戏赛车a、b在两条平行的直车道上行驶.t=0时两车都在同一计时处,此时比赛开始.它们在四次比赛中的v-t图象如图所示.哪些图对应的比赛中,有一辆赛车追上另一辆 ( AC )
【解析】由v-t图象的特点可知,图线与t轴所围成面积的大小,即为物体位移的大小.观察4个图象,只有A、C选项中,a、b所围面积的大小有相等的时刻,故A、C正确.
2.追及、相遇问题的求解
【例2】在水平轨道上有两列火车A和B相距s,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0应满足什么条件?
【解析】解法一:(物理分析法)A、B车的运动过程(如图所示)利用位移公式、速度公式求解.
对A车有sA=v0t+ ×(-2a)×t2
vA=v0+(-2a)×t
对B车有sB= at2,vB=at
两车有s=sA-sB
追上时,两车不相撞的临界条件是vA=vB
联立以上各式解得v0=
故要使两车不相撞,A车的初速度v0应满足的条件是v0≤
解法二:(极值法)利用判别式求解,由解法一可知sA=s+sB,即v0t+ ×(-2a)×t2=s+ at2
整理得3at2-2v0t+2s=0
这是一个关于时间t的一元二次方程,当根的判别式Δ=(2v0)2-4×3a×2s<0时,t无实数解,即两车不相撞,所以要使两车不相撞,A车的初速度v0应满足的条件是v0≤
解法三:(图象法)利用速度—时间图象求解,先作A、B两车的速度—时间图象,其图象如图所示,设经过t时间两车刚好不相撞,则对A车有vA=v=v0-2at
对B车有vB=v=at
以上两式联立解得t=
经t时间两车发生的位移之差,即为原来两车间的距离s,它可用图中的阴影面积表示,由图象可知
s= v0•t= v0•
所以要使两车不相撞,A车的初速度v0应满足的条件是v0≤
【思维提升】三种解法中,解法一注重对运动过程的分析,抓住两车间距有极值时速度应相等这一关键条件来求解;解法二中由位移关系得到一元二次方程,然后利用根的判别式来确定方程中各系数间的关系,这也是中学物理中常用的数学方法;解法三通过图象不仅将两物体运动情况直观、形象地表示出来,也可以将位移情况显示,从而快速解答.
【拓展2】从地面上以初速度2v0竖直上抛物体A,相隔Δt时间后再以初速度v0竖直上抛物体B.要使A、B在空中相遇,Δt应满足什么条件?
【解析】A、B两物体都做竖直上抛运动,由s=v0t- gt2作出它们的s-t图象,如图所示.显然,两图线的交点表示A、B相遇(sA=sB).
由图象可看出Δt满足关系式 时,A、B在空中相遇.
易错门诊
3.分析追及、相遇问题的思路
【例3】现检测汽车A的制动性能:以标准速度20 m/s在平直公路上行驶时,制动后40 s停下来.若A在平直公路上以20 m/s的速度行驶时发现前方180 m处有一货车B以6 m/s 的速度同向匀速行驶,司机立即制动,能否发生撞车事故?
【错解】设汽车A制动后40 s的位移为x1,货车B在这段时间内的位移为x2.
据a= 得车的加速度a=-0.5 m/s2
又x1=v0t+ at2得
x1=20×40 m+ ×(-0.5)×402 m=400 m
x2=v2t=6×40 m=240 m
两车位移差为400 m-240 m=160 m
因为两车刚开始相距180 m>160 m
所以两车不相撞.
【错因】这是典型的追及问题.关键是要弄清不相撞的条件.汽车A与货车B同速时,两车位移差和初始时刻两车距离关系是判断两车能否相撞的依据.当两车同速时,两车位移差大于初始时刻的距离时,两车相撞;小于、等于时,则不相撞.而错解中的判据条件错误导致错解.
【正解】如图,汽车A以v0=20 m/s的初速度做匀减速直线运动经40 s停下来.据加速度公式可求出a=-0.5 m/s2.当A车减为与B车同速时,是A车逼近B车距离最多的时刻,这时若能超过B车则相撞,反之则不能相撞.
据v2- =2ax可求出A车减为与B车同速时的位移
x1= m=364 m
此时间t内B车的位移为x2,则t= s=28 s
x2=v2t=6×28 m=168 m
Δx=364 m-168 m=196 m>180 m
所以两车相撞.
【思维提升】分析追及问题应把两物体的位置关系图(如解析中图)画好.通过此图理解物理情景.本题也可以借助图象帮助理解,如图所示,阴影区是A车比B车多通过的最大距离,这段距离若能大于两车初始时刻的距离则两车必相撞.小于、等于则不相撞.从图中也可以看出A车速度成为零时,不是A车比B车多走距离最大的时刻,因此不能作为临界条件分析.
Ⅵ 物理追及和相遇问题,详细讲解
1.追及问题的解决方法:这类问题一般是同向的、速度快的追慢的,或者后走的追先走的一类问题。如果由同一地点出发,追上时两者的路程相等,难理解得是你走他也走,总觉得动态很乱套,但只要理解和运用好速度之差,就不难了。若求追及的时间:就用该路程除以两者速度之差;若求路程:就用某一速度乘以其走得时间;若求某一速度:就要先找出其走的路程,再除以所用得时间。
2.相遇问题的解决方法:这类问题一般是从甲乙两地相向而行,相遇时两者的路程之和等于甲乙间的距离。若求相遇的时间:就用两者的距离除以两者速度之和;若求两地的距离:就用两者速度之和乘以相遇时用的时间;若求某一速度:就要先找出其走的路程,再除以所用得时间。
Ⅶ 初中物理追击和相遇问题的运用与例解
一·追及问题的特征及处理方法: “追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: ⑴ 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度相等,即vv=乙甲。 ⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。 判断方法是:假定速度相等,从位置关系判断。 ①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇 ③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 ⑶ 匀减速运动的物体甲追赶同向的匀速运动的物体已时,情形跟⑵类似。 判断方法是:假定速度相等,从位置关系判断。 ①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇 ③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 3、分析追及问题的注意点: ⑴ 要抓住一个条件,两个关系: ①一个条件是两物体的速度满足的临界条件,如 两物体距离最大距离最大距离最大距离最大、最小最小最小最小,恰好追上恰好追上恰好追上恰好追上或恰好追不上等好追不上等好追不上等好追不上等。 ②两个关系是时间关系时间关系时间关系时间关系和位移关系位移关系位移关系位移关系, 通过画草图找两物体的位移关系是解题的突破口。 ⑵若被追赶的物体做匀减速运动,一定要注意追上前追上前追上前追上前该物体是否已经停止是否已经停止是否已经停止是否已经停止运动。 ⑶仔细审题,充分挖掘题目中的隐含条件,同时注意vt−图象的应用。
二·相遇 ⑴ 同向运动的两物体的相遇问题即追及问题,分析同上。 ⑵ 相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
三·例题
例1.在十字路口,汽车以20.5ms的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5ms的速度匀速驶过停车线与汽车同方向行驶,求: (1) 什么时候它们相距最远?最远距离是多少? (2) 在什么地方汽车追上自行车?追到时汽车的速度是多大?
例2.客车以20m/s的速度行驶,突然发现同轨前方120m处有一列货车正以6m/s的速度同向匀速前进,于是客车紧急刹车,刹车引起的加速度大小为0.8m/s2,问两车是否相撞?
例3.汽车正以10m/s的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s2的匀减速运动,汽车恰好不碰上自行车、求关闭油门时汽车离自行车多远?
例4.A、B两车沿同一直线向同一方向运动,A车的速度vA=4 m/s,B车的速度vB=10 m/s.当B车运动至A车前方7 m处时,B车以a=2 m/s2的加速度开始做匀减速运动,从该时刻开始计时,则A车追上B车需要的时间是多少?
~~~~~~~~~楼主给我分~~~~~~~~~~~
Ⅷ 物理有关追击相遇问题的方法,例如什么时候距离最大
有关追击、相遇问题中速度相等是两个物体距离最大、最小的临界条件。
1、当减速追匀速避碰问题中,随减速物体的速度减小,两物体间的距离减小,当两个物体速度相等时,距离最小,以后两物体间的距离将增大。
2、当加速追匀速追击问题中,随加速物体的速度增大,两物体间的距离增大,当两个物体速度相等时,距离最大,以后两物体间的距离将减小。
Ⅸ 物理问题 追击相遇问题
追击相遇问题有以下两个特殊的时刻:
当位移差等于开始距离时候,追上.
当速度相等时有最大距离.
追上的时用时间相等.
等等.