自然数的历史
1. 自然数都有哪些
自然数有无数个。
如果想要计算自然数是不可能的,因为它数不尽,但是数字是可以数尽的,数字只有十个即0,1,2,3,4,5,6,7,8,9,俗称阿拉伯数字。由它们可以组合任合数。数有无限,但数字只有10个。用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数 。
表示物体个数的数叫自然数,自然数由0开始(包括0), 一个接一个,组成一个无穷的集体。
(1)自然数的历史扩展阅读:
整数包括自然数,所以自然数一定是整数,且一定是非负整数。
表示物体个数的数叫自然数,自然数一个接一个,组成一个无穷集体。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。
非负整数就是说:不是负数的整数。而整数又包括正整数,负整数和0。排除掉负整数(负整数属于负数)就只剩正整数和0了。因而也就不包括负分数了。
小于0的分数即为负分数。
或是可以化成分数的负有限小数和负无限循环小数。
人类最早用来计数的工具是手指和脚趾,但它们只能表示20以内的数字。当数目很多时,大多数的原始人就用小石子和豆粒来记数。渐渐地人们不满足粒为单位的记数,又发明了打绳结、刻画记数的方法,在兽皮、兽骨、树木、石头上刻画记数。
中国古代是用木、竹或骨头制成的小棍来记数,称为算筹。这些记数方法和记数符号慢慢转变成了最早的数字符号(数码)。如今,世界各国都使用阿拉伯数字为标准数字。
数字,是一种既陌生、又熟悉的名词。它由0~9十个字母组成。数字不单单包括计数,还有丰富的哲学内涵。
1:可以看作是数字“1”,一根棍子,一个拐杖,一把竖立的枪,一支蜡烛,一维空间……
2:可以看作是数字“2”,一只木马,一个下跪着的人,一个陡坡,一个滑梯,一只鹅……
3:可以看作是数字“3”,两只手指,乳房,斗鸡眼,树杈,倒着的w……
4:可以看作是数字“4”,一个蹲着的人,小帆船,小红旗,小刀……
5:可以看作是数字“5”,大肚子,小屁股,音符……
6:可以看作是数字“6”,小蝌蚪,一个头和一只手臂露在外面的人……
7:可以看作是数字“7”,拐杖,小桌子,板凳,三岔路口,“丁”形物,镰刀……
8:可以看作是数字“8”,数学符号“∞”,花生米,套环,雪人……
9:可以看作是数字“9”,一个靠着坐的人,小嫩芽……
0:可以看作是数字“0”,胖乎乎的人,圆形“○”,鞋底,脚丫,二维空间,瘦子的脸,鸡蛋……
数字在复数范围内可以分实数和虚数,实数又可以划分有理数和无理数或分为整数和小数,任何有理数都可以化成分数形式。
2. 自然数的发展史概括
--《近现代数学发展概论》张光远重庆出版社1991.12版《现代化知识文库--二十世纪数学史话》知识出版社1984.2上海注一:这是《二十世纪数学史话》的说法。winion整理,如要转载,请注明转载自国际数学界的最高奖?菲尔兹奖和国际数学家大会诺贝尔奖金中为什么没有设数学奖?对此人们一直有着各种猜测与议论。每年一度的诺贝尔物理、化学、生理学和医学奖,表彰了这几个学科中的重大成就,奖掖了科学精英,可谓举世瞩目。不设数学奖,对于这个重要的基础学科,岂不是失去了一个在世界范围内评价重大成就和杰出人才的机会?其实,数学领域中也有一种世界性的奖励,这就是每四年颁发一次的菲尔兹奖。在各国数学家的眼里,菲尔兹奖所带来的荣誉可与诺贝尔奖金媲美。菲尔兹奖是由国际数学联盟(简称IMU)主持评定的,并且只在每四年召开一次的国际数学家大会(简称ICM)上颁发。菲尔兹奖的权威性,部分地即来自于此。所以,这里先简单介绍一下“联盟”与“大会”。十九世纪以来,数学取得了巨大的进展。新思想、新概念、新方法、新结果层出不穷。面对琳琅满目的新文献,连第一流的数学家也深感有国际交流的必要。他们迫切希望直接沟通,以便尽快把握发展大势。正是在这样的情况下,第一次国际数学家大会在苏黎世召开了。紧接着,一九00年又在巴黎召开了第二次会议,在两个世纪的交接点上,德国数学家希尔伯特提出了承前启后的二十三个数学问题,使得这次大会成为名副其实的迎接新世纪的会议。自一九00年以后,大会一般每四年召开一次。只是因为世界大战的影响,在一九一六年和一九四0~一九五0年间中断举行。第二次世界大战以后的第一次大会是一九五0年在美国举行的。在这次会议前夕,国际数学联盟成立了。这个联盟联络了全世界几乎所有的主要数学家,她的主要任务是促进数学事业的发展和国际交流,组织进行四年一次的国际数学家大会及其他专业性国际会议,颁发菲尔兹奖。自此以后,大会的召开比较正常。从一八九七年算起,总共举行了十九次大会,其中有九次是在一九五0~一九八三年间举行的。联盟的日常事务由任期四年的执行委员会领导进行,近年来,这个委员会设主席一人,副主席二人,秘书长一人,一般委员五人,都是由在国际数坛上有影响的著名数学家担任。每次大会的议程,由执委会提名一个九人咨询委员会来编定。而菲尔兹奖的获奖人,则由执委会提名一个八人评定委员会来遴选。评委会的主席也就是执委会的主席,可见对这个奖的重视。这个评委会首先由每人提名,集中提出近四十个值得认真考虑的候选人,然后进行充分的讨论并广泛听取各国数学家的意见,最后在评定委员会内部投票决定本届菲尔兹奖的得奖人。现在,国际数学家大会已是全世界数学家最重要的学术交流盛会了。一九五0年以来,每次参加者都在两千人以上,最近两次大会的参加者更在三千人以上。这么多的参加者再加上这四年来无数的新成果,用什么方法才能很好地交流呢?近几次大会采取了分三个层次讲演的办法。以一九七八年为例,在各专业小组中自行申请作十分钟讲演的约有七百人,然后由咨询委员会确定在各专业组中作四十五分钟邀请讲演的名单约二百个,以及向全会作一小时综述报告的人选十七位。被指定作一小时报告是一种殊荣,报告者是当今最活跃的一些数学家,其中有不少是过去或未来的菲尔兹奖获得者。菲尔兹奖的宣布与授予,是开幕式的主要内容。当执委会主席(即评委会主席)宣布本届得主名单之后,全场掌声雷动。接着由东道国的重要人士(当地市长、所在国科学院院长、甚至国王、总统),或评委会主席授予一块金质奖章,外加一干五百美元的奖金。最后由一些权威的数学家来介绍得奖人的杰出工作,并以此结束开幕式。菲尔兹奖是以已故的加拿大数学家约翰?查尔斯?菲尔兹命名的。一八六三年五月十四日,菲尔兹生子加拿大渥太华。他十一岁时父亲逝世,十八岁时又失去了慈母,家境不算太好。菲尔兹十七岁时进入多伦多大学专攻数学。一八八七年,菲尔兹二十四岁,就在美国约翰.霍普金斯大学获得了博士学位。又过了两年,他在美国阿勒格尼大学当上了教授。当时,世界数学的中心是在欧洲。北美的数学家差不多都要到欧洲学习、工作一段时间。一八九二年,菲尔兹远渡重洋,游学巴黎、柏林整整十年。在欧洲,他与福雪斯、弗劳伯纽斯等著名数学家有密切的交往。这一段经历,大大地开阔了菲尔兹的眼界。作为一个数学家,菲尔兹的工作兴趣集中在代数函数方面,成就不算突出,但作为一名数学事业的组织、管理者,菲尔兹却是功绩卓著的。菲尔兹很早就意识到研究生教育的重要,他是在加拿大推进研究生教育的第一人。现在人们都知道,一个国家的研究生培养情况如何,是衡量这个国家科学水平的一个可靠指数。而在当时,能有这样的认识实属难能可贵。菲尔兹对于数学的国际交流的重要性,对于促进北美州数学的发展,都有一些卓越的见解。为了使北美的数学迅速赶上欧洲,菲尔兹竭尽全力主持筹备了一九二四年的多伦多国际数学家大会(这是在欧洲之外召开的第一次大会)。这次大会使他精疲力尽,健康状况再也没有好转,但这次会议对于北美的数学水平的成长产生了深远的影响。一九二四年大会没有邀请德国等第一次世界大战的战败国的数学家。在此之前的一九二0年大会,因为是在法国的斯特拉斯堡(战前属德国)举行,德国拒绝参加(一九二八年的波伦亚大会只是由于希尔伯特坚持,德国才参加了。)。这些事情很可能触发了菲尔兹发起一项国际性奖金的念头,因为菲尔兹强烈地主张数学发展应该是国际性的。当菲尔兹知道了一九二四年大会的经费有结余时,他就建议以此作为基金设立一项这样的奖。菲尔兹奔走欧美谋求支持,并想在?九三二年苏黎世大会亲自提出正式建议,结果未及开幕他就逝世了。是多伦多大学数学系的悉涅,把这个建议和一大笔钱(其中包括一九二四年大会的结余和菲尔兹的遗产)提交苏黎世大会,大会立即接受了这一建议。按照菲尔兹的意见,这项奖金应该就叫国际奖金,而不应该以任何国家机构或个人的名字来命名。但是国际数学家大会还是决定命名为菲尔兹奖。数学家们希望用这一方式来表示对菲尔兹的纪念和赞许,他不是以自已的研究工作,而是以远见、组织才能和勤恳的工作促进了本世纪的数学事业。第一次菲尔兹奖颁发于一九三六年。不久,国际形势急剧恶化。原定一九四0年在美国召开的大会已成泡影。第二次的菲尔兹奖是在战后的第一次大会,即一九五0年大会上颁发的。以后,每次大会都顺利地进行了这一议程。?般是每届两名获奖者。但一九六六年、一九七0年、一九七八年得奖人是四名,据说是因为有一位不愿透露姓名的捐款人,使奖金可以临时增加到四份,一九八二年华沙会议因故而延期至一九八三年八月举行,获奖者为三名。总起来,获得菲尔兹奖的数学家己有二十七名。在一九三六年、?九五0年、一九五四年这三次大会上,都是由一位数学家来介绍所有得奖人的工作的。一九三六年卡拉凯渥铎利还讲了一点获奖者的生平。一九五0年评委会主席玻尔就只用清晰而非专门的语言简述工作。一九五四年,由本世纪著名的数学家外尔介绍,他在结束语中盛赞两位得奖者“所达到的高度是自己未曾梦想到的”,“自已从未见过这样的明星在数学天空中灿烂地升起,”他说:“数学界为你们二位所做的工作感到骄傲。它表明数学这棵长满节瘤的老树仍然充满着汁液和生机。你们是怎样开始的,就怎样继续下去吧!”从一九五八年起,改成每位获奖者分别由一位数学家介绍。介绍的内容比较地局限于工作,对于获奖者个人的情况很少涉及。这个做法,一直延续到最近一次大会。菲尔兹奖只是一枚金质奖章,与诺贝尔奖金的十万美元相比真是微不足道。为什么在人们心目中,菲尔兹奖的地位竟然与诺贝尔奖金相当?原因看来很多。菲尔兹奖是由数学界的国际学术团体--国际数学联盟,从全世界的第一流数学家中遴选的。就权威性与国际性而言,任何其他的奖励都无法与之相比。菲尔兹奖四年才发一次,每次至多四名,因而获奖机会比诺贝尔奖要少得多。但是主要的原因应该是:迄今为止的获奖者用他们的杰出工作,证明了菲尔兹奖不愧为最重要的国际数学奖。事情就是这样:从表面上看,一项奖赏为获奖人带来了巨大荣誉;而事实上正相反,正是得奖工作的水准奠定了这项奖励的学术地位的基础。菲尔兹奖首先是一项工作奖(这一点与诺贝尔奖金相同),即授予的原因只能是“已经做出的成就”,而不能是服务优秀、活动积极等其他原因。但是菲尔兹奖只授予四十岁以下的数学家(起先是一种默契,后来就成为不成文的规定),因此也带有一点鼓励性。问题在于,如果放在整个数学家的范围里,菲尔兹奖的得奖工作地位如何?我们只举一个小小的例子。一九七八年,当代著名的老一辈数学家,布尔巴基学派创始人之一丢东涅发表了一篇题为《论纯数学的当前趋势》的论文,对于近二十年来纯数学各分支的前沿作了全面概述。在文章中,他列举了十三个目前处于主流的数学分支。其中十二个分支中的部分重要工作是由菲尔兹奖获得者作出的。这再清楚不过地说明了菲尔兹奖获奖成就的地位。人们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地或先或后地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。数学本身也在一日千里地发展着。全世界成千上万的数学工作者正在几十个分支成百个专门方向上孜孜研究着。他们每年提出大约二十万条新定理!重要论文数,如以《数学评论》的摘要为准,每八至十年翻一番。文献数量的爆炸再加上方法概念的迅速更新,使得工作在不同方向上的数学家连交谈也有点困难,更不用说非数学专业的人了。这样就产生了一个尖锐的矛盾。一方面,公众非常需要数学,他们渴望理解数学!另?方面,现代数学过于深刻、庞大、变得越来越不容易接近。因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。二十一世纪的曙光即将普照全球,要概述一下二十世纪的数学发展决非易事。就纯粹数学而言,我们觉得有两个主题可以起到提纲挈领的作用:一个是希尔伯特二十三问题的提出、解决现状与发展,另一个就是菲尔兹奖的获奖者及其工作。作为一种表彰纯数学成就的奖励,菲尔兹奖当然不能体现现代数学的全部内容。就这个奖本身而言也有种种缺点。但是,无论从哪一方面讲,菲尔兹奖的获得者都可以作为当代数学家的代表,他们的工作所属的领域大体上覆盖了纯粹数学主流分支的前沿。这样,菲尔兹奖就成了一个窥视现代数学面貌的很好的“窗口”。
3. 人类是怎样发现和记载自然数的
数的诞生
数学——自然科学之父,起源于用来计数的自然数的伟大发明。
若干年以前,人类的祖先为了生存,往往几十人在一起,过着群居的生活。他们白天共同劳动,搜捕野兽、飞禽或采集果薯食物;晚上住在洞穴里,共同享用劳动所得。在长期的共同劳动和生活中,他们之间逐渐到了有些什么非说不可的地步,于是产生了语言。他们能用简单的语言夹杂手势,来表达感情和交流思想。随着劳动内容的发展,他们的语言也不断发展,终于超过了一切其他动物的语言。其中的主要标志之一,就是语言包含了算术的色彩
人类先是产生了“数”的朦胧概念。他们狩猎而归,猎物或有或无,于是有了“有”与“无”两个概念。连续几天“无”兽可捕,就没有肉吃了,“有”、“无”的概念便逐渐加深。
后来,群居发展为部落。部落由一些成员很少的家庭组成。所谓“有”,就分为“一”、“二”、“三”、“多”等四种(有的部落甚至连“三”也没有)。任何大于“三”的数量,他们都理解为“多”或者“一堆”、“一群”。有些酋长虽是长者,却说不出他捕获过多少种野兽,看见过多少种树,如果问巫医,巫医就会编造一些词汇来回答“多少种”的问题,并煞有其事地吟诵出来。然而,不管怎样,他们已经可以用双手说清这样的话(用一个指头指鹿,三个指头指箭):“要换我一头鹿.你得给我三枝箭。”这是他们当时没有的算术知识。
大约在1万年以前,冰河退却了。一些从事游牧的石器时代的狩猎者在中东的山区内,开始了一种新的生活方式——农耕生活。他们碰到了怎样的记录日期、季节,怎样计算收藏谷物数、种子数等问题。特别是在尼罗河谷、底格里斯河与幼发拉底河流域发展起更复杂的农业社会时,他们还碰到交纳租税的问题。这就要求数有名称。而且计数必须更准确些,只有“一”、“二”、“三”、“多”,已远远不够用了。
底格里斯河与幼发拉底河之间及两河周围,叫做美索不达米亚,那儿产生过一种文化,与埃及文化一样,也是世界上最古老的文化之一。美索不达米亚人和埃及人虽然相距很远,但却以同样的方式建立了最早的书写自然数的系统——在树木或者石头上刻痕划印来记录流逝的日子。尽管数的形状不同,但又有共同之处,他们都是用单划表示“一”。
后来(特别是以村寨定居后),他们逐渐以符号代替刻痕,即用1个符号表示1件东西,2个符号表示2件东西,依此类推,这种记数方法延续了很久。大约在5000年以前,埃及的祭司已在一种用芦苇制成的草纸上书写数的符号,而美索不达米亚的祭司则是写在松软的泥板上。他们除了仍用单划表示“-”以外,还用其它符号表示“+”或者更大的自然数;他们重复地使用这些单划和符号,以表示所需要的数字。
公元前1500年,南美洲秘鲁印加族(印第安人的一部分)习惯于“结绳记数”——每收进一捆庄稼,就在绳子上打个结,用结的多少来记录收成。“结”与痕有一样的作用,也是用来表示自然数的。根据我国古书《易经》的记载,上古时期的中国人也是“结绳而治”,就是用在绳上打结的办法来记事表数。后来又改为“书契”,即用刀在竹片或木头上刻痕记数.用一划代表“一”。直到今天,我们中国人还常用“正”字来记数.每一划代表“一”。当然,这个“正”字还包含着“逢五进一”的意思。
人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。
数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。
古罗马的数字相当进步,现在许多老式挂钟上还常常使用。
实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数:
1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。
2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。
3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示 "15,000",""表示"165,000"。
我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。
从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。
说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。
如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。
但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。
除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。在长期实际生活的应用中,十进制最终占了上风。
现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。
数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。
随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。
随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。
但是,在数字的发展过程中,一件不愉快的事发生了。让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他们认为"数"是万物的本源,支配整个自然界和人类社会。因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。他们所说的数是指整数。分数的出现,使"数"不那样完整了。但分数都可以写成两个整数之比,所以他们的信仰没有动摇。但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。如果设这个数为X,既然,推导的结果即x2=2。他画了一个边长为1的正方形,设对角线为x ,根据勾股定理x2=12+12=2,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的。可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数。这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密。而希帕索斯还是忍不住将这个秘密泄露了出去。据说他后来被扔进大海喂了鲨鱼。然而真理是藏不住的。人们后来又发现了很多不能用两整数之比写出来的数,如圆周率 就是最重要的一个。人们把它们写成 π、等形式,称它们为无理数。
有理数和无理数一起统称为实数。在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度。这时人类的历史已进入19世纪。许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了。但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁。于是数学家们就规定用符号"i "表示"-1"的平方根,即i=,虚数就这样诞生了。"i "成了虚数的单位。后人将实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数。在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈。随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了。
数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了。可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念。所谓四元数,就是一种形如的数。它是由一个标量 (实数)和一个向量(其中x 、y 、z 为实数)组成的。四元数的数论、群论、量子理论以及相对论等方面有广泛的应用。与此同时,人们还开展了对"多元数"理论的研究。多元数已超出了复数的范畴,人们称其为超复数。
由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰。这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数。尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。到目前为止,数的家庭已发展得十分庞大。
4. 自然数e是何时发明的最初是用来做什么
您好!以下内容详见https://ke..com/item/自然常数/1298918?fr=aladdin&fromid=4734540&fromtitle=e
e是一个无限不循环小数,它的约值为 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔 引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
e的历史可以追溯到很久很久以前。第一次提到常数e,是约翰·纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利。
已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。
用e表示的确实原因不明,但可能因为e是“指数”一字的首字母。另一看法则称a,b,c和d有其他经常用途,而e是第一个可用字母。不过,欧拉选这个字母的原因,不太可能是因为这是他自己名字Euler的首字母,因为他是个很谦虚的人,总是恰当地肯定他人的工作。
希望能帮助到您!感谢采纳!
5. 发展史是什么自然数的发展史又是什么啊
发展史就是指一个事物的发展的全过程。
自然数的发展史:
自然数由数数而起。自然数最初的表示法是用一个符号代表每个物体,
古巴比伦数字
比如||||可以用来代表四个苹果、或者四块石头、或者四头牛。这种表示方法在古巴比伦(约公元前2000年 )的记数法中有所体现。
其後记数系统的创立,使得人们能以更少的符号去表示大数。巴比伦人便是使用六十进制的,比如数字75,他们便会以“1,15”表示(当然是用他们的符号)。但如果观察一下他们所使用的1至59的数,就会发现当中也有十进制的影子。古埃及人也建立了十进制的记数系统,包括个位、十位…直至一百万。
之后进一步的发展是把0视为一个数的想法。由考古成果,我们已知约在公元前700年,巴比伦人就已经使用类近“0”的数字作为占位符,但当0是最后一个数位时,他们会省去不记。
印度学者婆罗摩笈多于公元628年提出零的观念,一般认为是首个接近现代意义上的0。[6] 印度数字后来经阿拉伯人传至欧洲。欧洲人起初仍对零作为数字感到抗拒,认为零不是一个“自然”数。认为自然数不包含零的其中一个理由是因为人们在开始学习数字的时候是由“一、二、三...”开始,而不是由“零、一、二、三...”开始, 因为这样是很不自然的。[7]
在中国古代也有0这个概念,但并没有0这个阿拉伯数字的字样,而是以空位表示。中国古代使用算筹进行计算,在算盘上,以空位表示0。公元1世纪的《九章算术》说:“正负术曰:同名相除,异名相益,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之。”(这段话的大意是“减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数。”)以上文字里的“无入”通常被数学史家认为是零的概念。虽然如此,但是当时并没有使用符号来表示零。
6. 自然数是人类历史上最早出现的数,自然数在计数和测量
计数和测量,标号和排序
7. “0”从什么时候开始变成自然数了
你并不丢脸。这是一个有争议的问题。中国传统的教课书中,自然数不包括 0,自从美国有人把 0 包含中自然数中后,大家就没了主见。
从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。目前,国外的数学界大部分都规定0是自然数。为了方便于国际交流,1993年颁布的《中华人民共和国国家标准》(GB 3100-3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。
表示物体个数的数0、1、2、3、4、5、6、……叫自然数。
8. 自然数的起源简介
自然数是在人类的生产和生活实践中逐渐产生的。人类认识自然数的过程是相当长的。在远古时代,人类在捕鱼、狩猎和采集果实的劳动中产生了计数的需要。
起初人们用手指、绳结、刻痕、石子或木棒等实物来计数。例如:表示捕获了3只羊,就伸出3个手指;用5个小石子表示捕捞了5条鱼;一些人外出捕猎,出去1天,家里的人就在绳子上打1个结,用绳结的个数来表示外出的天数。
这样经过较长时间,随着生产和交换的不断增多以及语言的发展,渐渐地把数从具体事物中抽象出来,先有数目1,以后逐次加1,得到2、3、4……,这样逐渐产生和形成了自然数。
因此,可以把自然数定义为,在数物体的时候,用来表示物体个数的1、2、3、4、5、6……叫做自然数。自然数的单位是“1”,任何自然数都是由若干个“1”组成的。自然数有无限多个,1是最小的自然数,没有最大的自然数。
自然数用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
(8)自然数的历史扩展阅读:
自然数是一切等价有限集合共同特征的标记。
注:整数包括自然数,所以自然数一定是整数,且一定是非负整数。
但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不总是成立的。用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数 。表示物体个数的数叫自然数,自然数一个接一个,组成一个无穷集体。
自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。
自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论:自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。
(序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义)
自然数集N是指满足以下条件的集合:
①N中有一个元素,记作1。
②N中每一个元素都能在 N 中找到一个元素作为它的后继者。
③1是0的后继者。
④0不是任何元素的后继者。
⑤不同元素有不同的后继者。
⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数 , 记作1 。
类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。
自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。
自然数是整数(自然数包括正整数和零),但整数不全是自然数,例如:-1 -2 -3......是整数 而不是自然数。自然数是无限的。
全体非负整数组成的集合称为非负整数集,即自然数集。
在数物体的时候,数出的1.2.3.4.5.6.7.8.9……叫自然数。自然数有数量、次序两层含义,分为基数、序数。
基本单位:计数单位:个、十、百、千、万、十万......
总之,自然数就是指大于等于0的整数。当然,负数、小数、分数等就不算在其内了。
9. 自然数e的由来
自然对数
当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828...
它用e表示
以e为底数的对数通常用于㏑
而且e还是一个超越数
e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。
涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星……
螺线特别是对数螺线的美学意义可以用指数的形式来表达:
φkρ=αe
其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。
、“自然律”之美
“自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数:
(1+1/x)^x
当X趋近无穷时的极限。
人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究
(1+1/x)^x
X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。
现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。
生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。
“自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。
如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。
e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。
英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗?
我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。
古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。
有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线!
有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。
“自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)