补体的生物学活性
补体系统的生物学作用包括炎症介质作用、杀菌作用、免疫作用、调理作用、病毒作用等,大多是由补体系统激活时产生的各种活性物质(主要是裂解产物)发挥的。
杀菌作用,补体能溶解红细胞、白细胞及血小板等。补体还能溶解或杀伤某些革兰氏阴性菌;调理作用,补体裂解产物C3b与细菌或其他颗粒结合,可促进吞噬细胞的吞噬,称为补体的调理作用。
免疫作用,免疫复合物激活补体之后,可通过C3b而粘附到表面有C3b受体的红细胞、血小板或某些淋巴细胞上,形成较大的聚合物,可能有助于被吞噬清除;病毒作用,在病毒与相应抗体形成的复合物中加入补体,则明显增强抗体对病毒的中和作用,阻止病毒对宿主细胞的吸附和穿入。
(1)补体的生物学活性扩展阅读
补体是一种血清蛋白质,存在于人和脊椎动物血清及组织液中,不耐热,活化后具有酶活性、可介导免疫应答和炎症反应。可被抗原-抗体复合物或微生物所激活,导致病原微生物裂解或被吞噬。可通过三条既独立又交叉的途径被激活,即经典途径、旁路途径和凝集素途径。
补体系统参与机体的特异性和非特异性免疫机制,表现为抗微生物防御反应,免疫调节及介导免疫病理的损伤性反应,是体内一个重要的效应系统和效应放大系统,而补体C3是补体系统中含量最高的成分。
⑵ 简述补体系统的生物学活性
补体最主要的生物学功能有1.形成攻膜复合物MAC,促使细胞溶解 2.某些补体成分是炎症分子,介导炎症反应 3.补体成分C3d与B细胞上的供受体成分CD21(CR2)结合,强化信号传导 4.免疫复合物粘附的补体成分C3b与红细胞或者血小板表面的CR1结合,运行到在肝脏清除。 5.某些补体成分介导调理作用
⑶ 试阐述补体的主要生物学作用
(一) MAC介导的生物学效应 细胞裂解作用
补体系统活化 膜攻击复合物
溶解靶细胞(如:奈氏细菌等G阴性菌,异型红细胞等)。
实际意义:A. 抗感染;
B. 自身免疫病。
(二) 补体活化片段介导的生物学作用
1. 调理作用
Ag(颗粒性)-Ab 复合 C3b、
C4b、iC3b 结合于吞噬细胞CR 吞噬免疫复合物。
实际意义:抗感染。
2. 免疫复合物清除作用
Ag-Ab复合物(可溶性) C3b或C4b
与血细胞(如红细胞、血小板)CR结合
吞噬清除。
实际意义:
a. 清除免疫复合物,如抗病毒感染;
b. 引起免疫性疾病,如免疫复合物沉
积,引起肾小球肾炎。
3. 炎症介质作用
A. 过敏毒素作用:
过敏毒素(anaphylatoxin): C5a、C3a和C4a
C5a、C3a 肥大细胞和嗜碱性粒细胞(C5aR、C3aR) 释放活性介
质(如;组胺、白三烯及前列腺素等)
过敏反应性病理变化。
B. 趋化作用:
趋化因子(chemotaxin): C5a、C3a、 C4a 和 C5b67
C5a、C3a 吞噬细胞向感染部位聚集 炎症反应。
C. 激肽样作用:
C2a、C4a 能增强血管的通透性 炎性渗出、水肿。
实际意义:
a. 抗感染及清除异物;
b. 引起变态反应性疾病及炎性损伤。
4. 免疫调节作用
A. C3b 促吞噬细胞;
B. C3b 与B细胞表面CR1结合
促B细胞增殖分化。
⑷ 补体的生物活性有哪些
主要包括:MAC的生物生物效应;
活化补体片段的生物效应。
(一)
MAC介导的生物学效应
细胞裂解作用
补体系统活化
膜攻击复合物
溶解靶细胞(如:奈氏细菌等G阴性菌,异型红细胞等)。
实际意义:A.
抗感染;
B.
自身免疫玻
(二)
补体活化片段介导的生物学作用
1.
调理作用
Ag(颗粒性)-Ab
复合
ɨ...
⑸ 补体的生物学功能
补体系统可通过3条既相对独立又相互联系的途径被激活,从而发挥调理吞噬、裂解细胞、介导炎症、免疫调节和清除免疫复合物等多种生物学效应,包括增强吞噬作用,增强吞噬细胞的趋化性;增加血管的通透性;中和病毒;细胞溶解作用;免疫反应的调节作用等。
补体C3(C3)和补体C4(C4)在血清中的含量高于其他补体分子,二者在完成补体系统的多种功能中具有十分重要的作用,实验室测定对于疾病的诊断、治疗和病因探讨具有重要作用。
(5)补体的生物学活性扩展阅读:
补体的组成
脊椎动物血液或新鲜制备的血清中存在的血清蛋白质系统,由血浆补体成分、可溶性和膜型补体调节蛋白、补体受体等30余种糖蛋白组成,是一个具有精密调控机制的蛋白质反应系统。
或多分子系统,包括可溶性蛋白、膜结合性蛋白和补体受体,故称为补体系统。根据补体系统各成分的生物学功能,可将其分为补体固有成分、补体调控成分和补体受体(CR)。
⑹ 简述补体的生物学活性包括哪些方面
1、细胞毒及溶菌、杀菌作用
补体能溶解红细胞、白细胞及血小板等。当补体系统的膜攻击单位C5~C9均结合到细胞膜上,细胞会出现肿胀和超威结构的改变,细胞膜表面出现许多直径为8~12mm的圆形损害灶,最终导致细胞溶解。
补体还能溶解或杀伤某些革兰氏阴性菌,如霍乱弧菌、沙门氏菌及嗜血杆菌等,革兰氏阳性菌一般不被溶解,这可能与细胞壁的结构特殊或细胞表面缺乏补体作用的底物有关。
2、调理作用
补体裂解产物C3b与细菌或其他颗粒结合,可促进吞噬细胞的吞噬,称为补体的调理作用。C3裂解产生出的C3b分子,一端能与靶细胞(或免疫复合物)结合;其另一端能与细胞表面有C3b受体的细胞(单核细胞、巨噬细胞、中性粒细胞等)结合,在靶细胞与吞噬表面之间起到桥染作用,从而促进了吞噬。
LgG类抗体借助于吞噬细胞表面的lgG-Fe受体也能起到调理作用;为区别于补体的调理作用而称其为免疫(抗体)的调理作用。LgM类抗体本身起调理作用,但在补体参与下才能间接起到调理作用。
3、免疫粘附作用
免疫复合物激活补体之后,可通过C3b而粘附到表面有C3b受体的红细胞、血小板或某些淋巴细胞上,形成较大的聚合物,可能有助于被吞噬清除。
4、中和及溶解病毒作用
在病毒与相应抗体形成的复合物中加入补体,则明显增强抗体对病毒的中和作用,阻止病毒对宿主细胞的吸附和穿入。
近年来发现,不依赖特异性抗体,只有补体即可溶解病毒的现象。例如RNA肿瘤病毒及C型RNA病毒均可被灵长类动物的补体所溶解。据认为这是由于此类病毒包膜上的Cl受体结合Clq之后所造成的。
5、炎症介质作用
炎症也是免疫防御反应的一种表现。感染局部发生炎症时,补体裂解产物可使毛细血管通透性增强,吸引白细胞到炎症局部。
(6)补体的生物学活性扩展阅读:
补体系统各成分通常多以非活性状态存在于血浆之中,当其被激活物质活化之后, 才表现出各种生物学活性。补体系统的激活可以从C1开始;也可以越过C1、C2、C4,从C3开始。前一种激活途径称为经典途径(classical pathway),或传统途径。
“经典”,“传统”只是意味着人们早年从抗原体复合物激活补体的过程来研究补体激活的机制时,发现补体系统是从C1开始激活的连锁反应。从种系发生角度而言,旁路途径是更为古老的、原始的激活途径。
从同一个体而言,在尚未形成获得性免疫,即未产生抗体之前,经旁路途径激活补体,即可直接作用于入侵的微生物等异物,作为非特异性免疫而发挥效应。由于对旁路途径的认识,远远晚在经典之后,加上人们先入为主观念,造成了命名的不合理。
⑺ 补体系统的生物学活性不包括
正确答案:C
解析:补体系统的生物学活性有溶细胞作用,清除免疫复合物、炎症介质作用,中和与溶解病毒作用
。
⑻ . 补体的生物学功能是什么
补体的生物学功能
1.溶菌和细胞溶解作用
补体激活形成的膜攻击复合物可使细菌和细胞溶解破坏,这在抗感染免疫和免疫病理过程中具有重要意义。
2.调理吞噬作用
补体裂解产物C3b/C4b通过N端非稳定结合部位与细菌等颗粒性抗原或免疫复合物结合后,再通过C端稳定结合部位与表面具有相应补体受体的吞噬细胞结合,由此而产生的促进吞噬的作用称为补体的调理吞噬作用。
3.免疫粘附作用
C3b/C4b与细菌等颗粒性抗原或免疫复合物结合后,再与表面具有相应补体受体的血红细胞或血小板结合,则可形成大分子复合物,此即补体的免疫粘附作用。免疫粘附形成的大分子聚合物易被吞噬清除,在抗感染免疫和清除免疫复合物过程中具有重要意义。
4.炎症介质作用
(1)C2a具有激肽样作用,能使血管扩张,通透性增加,引起炎性渗出和水肿。
(2)C3a、C4a和C5a具有过敏毒素作用,能使肥大细胞和嗜碱性粒细胞脱颗粒,释放组胺等血管活性物质,引起血管扩张,通透性增强,平滑肌收缩和支气管痉挛等症状。
(3)C3a和C5a有趋化作用,能吸引中性粒细胞和单核-吞噬细胞向炎症病灶部位聚集,发挥吞噬作用,释放炎性介质引起或增强炎症反应。
⑼ 简述补体系统具有哪些生物学作用
MHC具有重要的生物学功能,主要包括参与胸腺对胸腺细胞的选择作用,对机体免疫应答的遗传控制,参与免疫细胞相互识别,对免疫细胞相互作用的遗传限制等。有关Ⅲ类抗原C2、C4和B因子的功能请参见有关补体系统的内容。
一、MHC与胸腺对胸腺细胞的选择作用
成熟的、有功能的T细胞必须经过在胸腺中阳性选择和阴性选择,MHC在这两种选择中起关键作用。
(一)阳性选择过程(positive
selection)
早期的胸腺细胞前体(prothymocyte)不足3%,为CD4-CD8-双阴性细胞(double
negative
cells),随后发CD4+CD8+双阳性细胞(double
positive
cells),并受一以严格的选择。假如一个双阳性细胞表面能与胸腺皮质上皮细胞表面MHc
I类或Ⅱ类分子发生有效结合,就可被选择而继续发育,否则会发生程序性的细胞死亡(programmed
cell
death)。MHC
I类分子选择CD8复合受体(coreceptor),而使双阳性细胞表面CD4复合受体减少;MHCⅡ类分子选择CD4复合受体,而使CD8复合受体减少。这种选择过程赋于成熟CD8+CD4-T细胞具有识别抗原与自身MHc
I类分子复合
物的能力,CD4+CD8-T细胞具有识别抗原与自身MHCⅡ类分子复合物的能力,成为T细胞MHC限制现象的基础。
(二)阴性选择过程(negative
selection)
经过阳性选择后的T细胞还必须经过一个阴性选择过程,才能成为成熟的、具有识别外来抗原能力的T细胞。位于皮质与髓质交界外的树突状细胞(DC)和巨噬细胞(Mφ)表达高水平的MHc
I类抗原和Ⅱ类抗原,在胚胎发育过程中,机体自身抗原成分与DC或Mφ表面MHc
I类、Ⅱ类抗原形成复合物。经过阳性选择后的胸腺细胞如能识别DC或Mφ细胞表面自身抗原与MHC抗原复合物,即发生自身耐受(self
tolerance)而停止发育,而不发生结合的胸腺细胞才能继续发育为识别外来抗原CD4+CD8-或CD4-CD8+单阳性细胞,迁移到外周血液中去(图6-13)。
⑽ 简述补体生物活性 谢谢
补体最主要的生物学功能有:
1.形成攻膜复合物MAC,促使细胞溶解;
2.某些补体成分是炎症分子,介导炎症反应;
3.补体成分C3d与B细胞上的供受体成分CD21(CR2)结合,强化信号传导;
4.免疫复合物粘附的补体成分C3b与红细胞或者血小板表面的CR1结合,运行到在肝脏清除;
5.某些补体成分介导调理作用。