化学发光技术
一、 化学发光免疫分析简介
化学发光免疫测定是目前世界公认先进的标记免疫测定技术,化学发光 免疫分析技术具有高度的准确性和特异性,成为检验方法中最为重要的技术之一。 化学发光 免疫分析技术作为疾病诊断的主要手段已被广泛用于机体免疫功能、传染性疾病、内分泌功能、肿瘤标志物、 性激素、甲状腺功能 等方面的体外诊断实验中。
化学发光是一种特异的化学反应,有机分子吸收化学能后发生能级跃迁,产生一种高能级的电子激发态不稳定的中间体,当其返回到基态而发出光子,即为化学发光。将化学发光与抗原抗体相结合而形成的免疫分析技术,即为化学发光免疫分析。
化学发光的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。闪光型的样品必须立即测量,必须配以全自动化的加样及测量仪。测量辉光型的样品可以使用通用型仪器,也可以配全自动化仪器。 泰格科信的化学发光免疫分析诊断试剂 发光类型 为 辉光型 。
化学发光免疫分析(Chemiluminescence Immunoassay,CLIA)是近十年来在世界范围内发展非常迅速的非放射性免疫分析。它具有高灵敏度、检测范围宽、操作简便快速、标记物稳定性好、无污染、仪器简单经济等优点。它是放射性免疫分析与普通酶免疫分析的取代者,是免疫分析重要的发展方向。CLIA发展迅猛,已占各种免疫分析的首位 ,是目前放射免疫分析和酶联免疫分析最佳的取代者。
二、 化学发光免疫分析的 优势 :
1、 灵敏度高
灵敏度高 是 化学发光免疫分析 关键的优越性,其灵敏度可达 10 -16 mol/L ( RIA 为 10 -12 mol/L )。 化学发光免疫分析能够检出放射免疫分析和酶联免疫分析等方法无法检出的物质,对疾病的早期诊断具有十分重要的意义。
2、 宽的线性动力学范围
发光强度在 4 ~ 6 个量级之间与测定物质浓度间呈线性关系。这与显色的酶免疫分析吸光度( OD 值)为 2.0 的范围相比,优势明显。虽然 RIA 也有较宽的线性动力学范围,但放射性限制了其应用。
3、 光信号持续时间长
辉光型的 CLIA 产生的光信号持续时间可达数小时甚至一天。简化了实验操作及测量。
4、 分析方法简便快速
绝大多数分析测定均为仅需加入一种试剂 ( 或复合试剂)的一步模式。
5、 结果稳定、误差小
样品系直接自己发光,不需要任何光源照射,免除了各种可能因素(光源稳定性、光散射、光波选择器等)给分析带来的影响,使分析结果灵敏稳定可靠。
6、 安全性好及使用期长
免除了使用放射性物质。到目前为止,还未发现其危害性;试剂稳定,保存期可达一年。
三、市场前景
化学发光免疫分析法作为非放射性的免疫分析法,具有灵敏度 高、所需时间短、无污染、检测范围宽等特点,随着各种自动发光分析仪器面市,以及不同类型的化学发光免疫分析试剂盒的不断推出,使得检测项目更多,检测速度提高,这些势必推动化学发光免疫分析的迅速发展, 成为时间分辨、放射免疫和酶联免疫分析的取代者,将成为检验的主流。 使实验室更好、更快地为临床服务
⑵ 什么叫化学发光
化学发光的原理
化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。
间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。
一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光; 第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态; 第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。
化学发光分析测定的物质可以分为三类:第一类物质是化学发光反应中的反应物;第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定其他物质,进一步扩大化学发光分析的应用范围。
化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。
⑶ 化学发光是什么技术
化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接内发光和间接发光。直接发光是最容简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。
间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。
⑷ 化验单上什么叫做化学发光
化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。
如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。
间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。
(4)化学发光技术扩展阅读
依据供能反应的特点,可将化学发光分析法分为:
1)普通化学发光分析法(供能反应为一般化学反应);
2)生物化学发光分析法(供能反应为生物化学反应;简称BCL);
3)电致化学发光分析法(供能反应为电化学反应,简称ECL)等。
根据测定方法该法又可分为:
1)直接测定CL分析法;
2)偶合反应CL分析法(通过反应的偶合,测定体系中某一组份);
3)时间分辨CL分析法(即利用多组份对同一化学发光反应影响的时间差实现多组份测定);
4)固相、气相、液相CL分析法;
5)酵联免疫CL分析法等。
参考资料来源:网络-化学发光法
参考资料来源:网络-化学发光
⑸ 化学发光分析法的简介
化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。
化学发光Western 杂交检测,是同位素检测的一种高度灵敏的替代方法。酶标记抗体取代了放射性标记抗体, 当它作用于底物时,可产生光信号。多数特异抗原检测方法以辣根过氧化物酶(HRP)或碱性磷酸酶(AP) 二级抗体 耦联物为基础。信号可通过感光胶片或专用的成像设备来采集。化学发光底物用于免疫印迹技术已有十几年的历史,大部分实验室做转印时都会采用化学发光技术进行检测。随着冷CCD化学发光检测技术的发展,越来越多的实验室都开始采用冷CCD的凝胶成像系统进行化学发光的检测,胶片成像虽然比自然发光法灵敏度更高,但也有很多缺点:耗时,需要暗房,显影剂和胶片,胶片较贵且为需持续购买的消耗品。同时由于胶片的线性范围较窄,因此用胶片上的条带(特别是表达量较低的条带)进行定量几乎不可能。冷CCD技术与X胶片相比具有瞬时影像处理、高灵敏度和高分辨率、动力范围广等优点,因此能对条带进行精确定量。当然这项技术要求底物能产生高强度长持续时间的信号,以保证信号能被冷CCD的凝胶成像系统捕获。在这方面多家公司都提供了相应的化学发光底物或试剂盒,特别是Bio-Rad Immun-Star™ AP 化学发光试剂盒 、bio-rad Western-C化学发光检测试剂盒等。Western-C化学发光检测试剂盒底物可产生高强度的持续光信号24小时,因此用户可以进行多次曝光,最低可检测至10-19mol,配合Bio-Rad屡获大奖的化学发光成像系统ChemiDoc XRS或VersaDoc系统能得到得到高质量的印记信号 。
⑹ 化学发光免疫分析原理是什么
化学发光免疫分析包含两个部分,即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化,形成一个激发态的中间体,当这种激发态中间体回到稳定的基态时,同时发射出光子(hM),利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体)直接标记在抗原(化学发光免疫分析)或抗体(免疫化学发光分析)上,或酶作用于发光底物。
化学发光免疫分析根据其所采用的标记物的不同可分为发光物标记、酶标记和元素标记化学发光免疫分析三大类。发光物标记的CLIA是以发光物质代替放射性核素或酶作为标记物(如吖啶酯),在反应体系中发光物质在碱性介质中氧化时释放大量自由能,产生激发态的中问体,该激发态的中间体由最低振动能级回到稳定的基态,各个振动能级产生辐射时,同时产生能量,多余的能量即为发射光子,从而产生发光现象。利用发光信号的测量仪器,分析接收的光量子产额,通过计算机系统转换成被测物质的浓度单位。在此系统中包含两个部分,化学发光反应系统和免疫反应系统,即在抗原一抗体特异性反应过程中,伴随有化学反应过程而产生光的发射现象。化学反应系统中以化学反应为基础,化学发光的首要条件是吸收了化学能而处于激发态的分子或原子必须能释放出光子或者能将能量转移到另一个物质的分子上并使这种分子激发,当这种分子回到基态时释放出光子。
化学发光与荧光的根本区别是形成激发态分子的激发能原理不同。荧光是发光物质吸收了激发光后使分子产生发射光;化学发光是化学反应过程中所产生的化学能使分子激发产生的发射光。因此,化学发光反应过程必须产生足够的激发能是产生发光效应的重要条件。化学发光反应可在气相、液相或固相反应体系中发生,以液相发光在免疫学检测中最常应用。
⑺ 化学发光免疫分析法有哪三类
1、直接化学发光,标记物为吖啶酯(雅培)或者ABEI(新产业)
2、酶促化学发光,标记物为碱性磷酸酶(厦门波生)或者辣根过氧化物酶(强生)
3、电化学发光,标记物为三联吡啶钌(罗氏)
注:括号内为代表厂家。
⑻ 化学发光免疫分析技术和免疫荧光技术的区别
化学发光是利来用化学反应自产生的能量促使产生能级跃迁,从而发光,典型的如鲁米诺检测血迹;荧光是一种光致发光现象,必须提供光源去激发分子产生能级跃迁,进而发光。
使用上述两种方法进行免疫分析时,其区别很明显,化学发光无需外加光源,背景干扰小;而荧光则需要外加光源,在垂直光源的方向上检测,生物样品中的蛋白质、氨基酸等分子也会产生背景荧光,背景稍高一些,需要选择合适的荧光试剂,以及样品处理方法以减少非特异性吸附蛋白的影响。
⑼ 化学发光是什么技术
化学发光是指能量来自于化学反应引起的发光。相对于化学发光的生物发光,是指能量来自于酶促催化下的生化反应引起的发光。化学发光作为一种分析工具的吸引之处就在于检测的简单性。化学发光的实质是自身发光,这意味着化学发光的分析测试仪器只需要提供一种可以检测光信号和纪录结果的方法就可以了。
简单的说,化学发光
(ChemiLuminescence
,简称为
CL)
分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。
发光技术的应用:
Ø
钙流检测
Ø
活性氧分析
Ø
发光免疫分析
Ø
基因调控(Luciferase
报告基因)
Ø
蛋白质相互作用(BRET,生物发光共振能量传递)
BRET是细胞内实时分析蛋白质-蛋白质相互作用的工具。