当前位置:首页 » 教学教育 » 二项式定理教学反思

二项式定理教学反思

发布时间: 2022-01-09 07:50:55

1. 数学学不好!!!!!!!!

学习数学应该要在宏观上对其有一个整体的把握,总的来说,数可以分为8大部分:函数、数列、立体几何、解析几何、排列组合、不等式、平面向量、二项式定理以及统计。其中,尤其以函数和几何较为难学,同时也是重点知识内容,要弄清楚它们各自的特点以及相互之间的联系,这些都是最基本的内容。而要做到这一点,首先就要对课本上的一些基本的概念、定理、公式了如指掌,用的时候才能从容不迫,信手拈来。但是,这些知识往往也是最容易被忽视的——大家都忙着做一道又一道的习题,买一本又一本厚厚的习题书,哪有时间去看课本?
有些同学可能会想,数学又不是政治、历史,书上的习题又大都极简单,何必看课本呢?殊不知,课本对于数学来说,也是很重要的。高考数学有20%的基础题目,只要花上一点点时间把课本好好看看,要拿下这些题易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题也不可能做得很好,毕竟这些都是基础啊。数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维一定要清晰明了,是不太可能出现做出题目却不知是如何做对的情况的,因而基础知识十分重要。
其次,相当多的习题自然是必不可少的。在理解了基本的概念以后,必须要做大量的练习,这样才能巩固所学到的知识,加深对概念的了解。所谓熟能生巧,数学最能体现这句话的哲理性。数学的思维、解题的技巧,只有在做题中摸索,印象才会深刻,运用起来才会得心应手。当然,这并不是提倡题海战术,适量就可,习题做得太多,很容易产生厌烦情绪。最重要的还是选题,一定要选好题、精题。在这一方面,老师的建议是很值得考虑的,最好买老师推荐的参考资料。同时做题还要根据自己的实际情况。一般而言,要先做基础题,把基础打牢固,然后再逐步加深难度,做一些提高性的题目。每一个知识点都要做一定量的上难度的题来巩固,这样才能将其牢牢掌握做完每个题之后,要回头看一遍(尤其是难题),想想做这一题有什么收获,这样,就不会做了很多题却没有什么效果。
运算也是很重要的一个环节,与方法的重要性不相上下。培养一种发散性思维,寻求解题的多种方法,当然非常重要。但是,有一些同学,他们具有很强的思维能力,能够从多种角度思考问题,可是计算能力却不强,平时也不训练,考试时往往是找对了方法却算错了答案,非常可惜。的确,繁琐的运算是令人望而生畏的,但是,在运算过程中你将发现许多新的问题,而运算能力也就在训练中渐渐提高了。因而,学习数学方法要与计算并重。一方面,要重视做题方法的训练,从多角度、多方面去思考问题;同时,也要注意锻炼计算能力,注重计算的精确性,而不能偏向一方。
总结试卷。把专题复习的卷子和综合复习的卷子分门别类,每一份试卷都进行认真细致的总结,挑出其中含金量最高的题,同时,“旁征博引”,把曾经遇到过的相关的题目总结到一起,一道也不放过。这样总结下来,一定能对各类题型都能够了如指掌,对出题者的出题角度也有了准确的把握。通过对上百份试卷的细致归纳总结,很多同学的数学都有了大幅度的提高。需要强调的是在总结试卷的过程中一定要深入下去,千万不能走形式,只有深入方能有所收获。在深入的过程中不要在乎时间,有时候,在总结一道大题时,会把相关的题型总结到一起,这项工作其实是相当繁杂的,绝不等同于弄懂一道题。而做这项工作的收益也将是巨大的。所以,即使用一个晚上来做这件事也非常值得。千万不要心情急躁,看见别人一道接一道的做题而不安。
平时的学习要注意以下几点:
1、按部就班。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解。概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练。学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4、重视平时考试出现的错误。订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。

加油喽~~

参考资料:<<求学>>
回答者:小萌0330 - 试用期 一级 3-3 12:39

静下心来学就可以了
回答者:小卧龙是也 - 助理 二级 3-3 12:39

高中数学对我们的逻辑思维能力要求较高。要想学好,没有基础也能行。

做到以下几点,就基本OK:

1.要树立学好数学的自信心。要有兴趣。凡是有兴趣的事情,你都不会感觉自己很累。

2.提高自己的运算和心算能力。

3.养成良好的学习习惯。解题要勤打草稿,通过作图,列表,列举已知条件,特殊值法,几何的方法。总有一个解题比较捷径。

4.不要买过多的参考和习题,多买一些带有解题指导的书籍,针对自己的薄弱环节进行补漏。学会独立分析书本的习题以及课外书的习题,多种角度去考虑同一种问题。

5.遇到不懂得题目,可以做个标记,自己分析是哪个环节卡了壳,看看这部分概念是否没弄懂。

6.书本题目做到,一拿到手就知道怎么做,要考虑那些方面就可以了。书本的内容就基本掌握扎实了。

7.要深化自己的知识,掌握书本及习题集的分析的思路和题型,在针对性做些题目就基本熟练了。
回答者:everyonexu1 - 经理 四级 3-10 18:03

我高一数学也不好,只能考100分左右,很多数学知识还不懂,但高二后我去买了一本参考资料《高才生》,成绩就有了很高提升,到高二下学期学的立体几何,我很喜欢它,然后做了很多题,脑子里面就形成数学思维(很重要)了,成绩就上去了。当你再去看高一的数学时,你就会发现它很简单了。我觉得数学要学好,最重要的是兴趣,再次就是练题。当你喜欢它你就会去作题,作出答案后你就会很兴奋,自然就更喜欢数学了,这样就形成一种良性循环,成绩当然就好了。参考书不宜多买,有一两本自己喜欢的行了,关键是吃透里面的知识。上面只是一个经验之谈,不知道和不和你的口味。但从你问的问题中能看出你是很有进取心的,所以,努力!你会成功的。如果你还想和我做深一部的交流,就加这个号245434863,这是一个专门帮助解决数学问题的号。你可以留言或发邮件,我很乐意给你交流。顺便把在网络的昵称名字发过来。

2. 怎样提高数学成绩。

制定计划的习惯

制定一个切实可行的计划,既有长期打算,又要有短期安排,在落实过程中严格要求自己,不断历练自己的意志。如落实每天的计划,要进行三省:我来干什么?我打算怎么干?我干得怎么样?要求要做到堂堂清,日日清,每周的计划要做到周周清,学期计划也是如此,假期要制定假期学习计划,除了完成老师布置的作业外,自己还要读哪些书,安排哪些学习活动等都要做好安排。对于自己的目标,要有不达目标不罢休的信心,成功一次自我赞赏一次,从而能不断增加学习时间和兴趣。
预习的习惯
预习就是为了对所学知识的初步感知,通过预习,查出障碍;它不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。认真听"讲"的习惯
新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。数学课的听讲要坚持做到“五到”即耳到、眼到、口到、心到、手到。
及时复习的习惯
复习是为了扫除障碍,巩固所学知识。每天睡觉前都要反思一下:“今天,我又学到了什么新知识?今天的事情都完成了吗?”。把当天的学习内容在头脑中简要地回顾一遍。回想今天学习的重点和难点是什么。有哪些已经懂了?哪些不懂?哪些还不太清楚?找出学习中的薄弱环节及时予以解决。
一周结束要利用星期天复习本周的学习内容,一月结束要利用星期天复习本月的内容等。要注意积累资料,对自己的作业本、试题、笔记本、纠错本等做好积累,并时常翻阅,随时复习,通过整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。使对所学的新知识由“懂”到“会”,由“活”到“悟”。
独立完成作业的习惯
作业就是把所学知识进行应用。好的作业习惯应该是当天作业当天完成,先复习课文,再进行作业,不依赖别人独立完成,书写整洁、美观,计算准确,叙述有条理、规范。做作业能专心,不边玩边写,不边吃边写,书写时先想好再下笔;做作业时要仔细审题,分析已知条件、求知条件,挖掘隐含条件,准确计算数据,用科学、规范的学科语言进行描述。对作业能自我检查,能检验答案并找出错误及错误的原因,及时纠正,当作业本、练习本、试题等发下之后,首先查看老师的批改,对老师指出的错误必须及时改正,不放过一个错字或错题。没完成作业主动向老师说明理由,并及时补上,不推托理由,谦虚诚实、不撒谎。
备好、用好自己的“纠错本”和“精华本”。错题、难题、好题及时做标记还不能万事大吉,因为,对于大部分同学来说,那些错题、难题、好题都需要反复做三四遍才能真正掌握的(不排除一遍就能真正掌握的可能性,但这种学生为数不多,但部分学生都是“一听就懂,一看就会,一做就错”的那种)。因此,大部分同学都要把这些题整理到自己的纠错本和精华本上,隔一定时间就要复习一遍(千万不要自以为是)。
良好的解题习惯
解题时,能使精力高度集中,大脑兴奋,思维敏捷,很快进入最佳状态是良好的解题习惯。熟悉掌握各种题型的解决思路,以便打开思路,提高自己的分析、解决问题的能力是解题的目的。
反思是解题之后的重要环节。习题做完之后,要从五个层次反思:⑴怎样做出来的?想解题采用的方法;⑵为什么这样做?想解题依据的原理;⑶为什么想到这种方法?想解题的思路;⑷有无其它方法?哪种方法更好?想多种途径,培养求异思维;⑸能否变通一下而变成另一习题?想一题多变,促使思维发散。当然,如果发生错解,更应进行反思:错解根源是什么?解答同类试题应注意哪些事项?如何克服常犯错误?“吃一堑,长一智”,不断完善自己。

3. 高中数学成绩提高

http://e.sina.com.cn/zhongkao/index.shtml
新浪中考主题页 里面有很多和初三、中考相关的东西

http://e.sina.com.cn/exam/zhongkao/st.html
很多近些年的中考题、初三毕业试题 可以在线做题、评分
http://e.sina.com.cn/shiti/zhongkao/index.html
还有这个,全国各地的中考题,著名学校的月考、周测、期末考试、平时小测验试题也有哦!

http://e.sina.com.cn/shiti/index.html
新浪教育试题库,想要什么考试题,直接搜索,一搜一准!非常好用

http://www.zhongkao.cn/
中考网 主要针对北京地区
很多很有用的信息 和各类预测试题 主要针对初三毕业生

我想有了这些就应该足够了吧?

最后:
既然你专门说了是数学题
那就看这个
http://shiti.e.sina.com.cn/shiti/index.php?&action=search&style=1&genre=5&study=2&type=&year=&keyword=请输入关键词&Submit1=搜

全部是数学中考试题!非常全,非常真实,非常优秀!

希望我的回答对您有所帮助!
初三数学考点、题型练习二

主讲教师 北大附属实验学校 宋建华

一.填空题1.(01中考)在函数 中,自变量 的取值范围是___________

2.(01海淀)已知函数 的图象经过点(2,-6),则函数 的解析式可确定为______

3.(99海淀)点P(4,3)关于原点的对称点P'的坐标是____________

4.(99海淀)对于正比例函数y=mx,当x增大时,y随x增大而增大,则m的取值范围是()
A. m<0 B. m≤0 C. m>0 D. m≥0

二、选择题

5.如果反比例函数 的图象经过点P( ),那么 的值是

A. B. C. D. 6

三、解答题

6.(2001海淀)已知一次函数 的图象与反比例函数 的图象相交,其中一个交点的纵坐标为6,求一次函数的图象与x轴、y轴的交点坐标。

7.已知一次函数y=2x-k的图象与反比例函数 的图象相交,其中有一个交点

的纵坐标为-4,求这两个函数的解析式。

已知抛物线 经过点以点A(x1,0)B(x2,0),D(0,y1),其中 ,△ABD的面积等于12。

(1)求这条抛物线的解析式及它的顶点坐标;

(2)如果点以C(2,y2)在这条抛物线上,点P在y轴的正半轴上,且△BCP为等腰三角形,求直线PB的解析式。

8.(2003北京) 已知:抛物线 与x轴的一个交点为A(-1,0)

(1)求抛物线与x轴的另一个交点B的坐标;

(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;

参考资料:http://..com/question/31044026.html

4. 如何提高高中生的运算能力

在高中数学学习中随着学习内容的加深,运算的层次也不断提高,高中生在运算中暴露的问题也越来越多。学生对提高运算能力缺乏足够的重视,这样不仅影响了学生思维能力的发展,也必然影响教学质量的提高。 在教学中,通过案例分析发现,运算失误的成因至少有三个方面的因素:一是书写失误。比如数与式运算的符号和系数、字迹潦草马虎,、神情“恍惚”时看错抄错等;二是公式、定理、定义、法则记忆不准确、理解不深入、运用不灵活。比如函数的性质、对数运算法则、三角的和差倍半公式、向量的乘积及几何意义、圆锥曲线的性质、二项式定理、概率的几种类别判断、导数的运算法则等。三是解题的思维训练不到位与过程控制不严格。 一、合理开发数学校本教材 为了使所有学生都能学好数学,提高数学运算能力,现行初中数学教材删除了一些知识从而大大地降低了一些内容的难度。初中数学内容对运算要求的降低,训练不到位,导致学生的运算比较差,严重影响高中数学成绩。 如在数与式的运算中,许多学生出问题总是体现在式子的变形和化简上。校本教材应增补多项式的运算教学内容。如乘法公式中的立方和、立方差、两数和的立方、两数差的立方以及三数和的平方公式。 再如在高中的解析几何中,直线与圆锥曲线的位置关系中有很高的要求,而这部分内容又是高考的重点。一元二次方程的有关内容应增加:一元二次方程的判别式、韦达定理,含有参变量一元二次方程、二元二次方程。 对于这些问题,我们必需开发适合实际情况的校本教材,解决初高中数学知识的衔接问题,为高中数学教学打下坚实的基础。 二、注重学习过程,提高运算能力1、准确理解和牢固掌握各种运算所需的概念、性质、公式、法则和一些常用数据;对于概念、性质、公式、法则的理解深刻的程度直接影响方法的选择与运算速度的快慢。概念模糊,公式、法则含混,必定影响运算的准确性。为了提高运算的速度,熟记一些常用的数据仍是必要的。如20以内的自然数的平方数,简单的勾股数,特殊三角函数值等。2、掌握运算的通法、通则,灵活运用概念、性质、公式和法则进行运算。我们教师可以结合教材内容,编制和收集一些灵活性较大的练习题,培养学生运算的灵活性,并引导学生收集、归纳、积累经验,形成熟练技巧,以提高运算的简捷性和迅速性。3、加强运算练习。为了有效的提高学生的运算能力就必须加强练习,练习要有目的性、系统性、典型性。通过一题多变、一题多改、一题多解、一法多用,培养运算的熟练性、准确性、灵活性、组织性。以题组训练形式培养学生运算过程中思维的深刻性,提高运算能力。4、提高运算中的推理能力数学运算的实质是根据运算定义及性质,从已知数据及算式推导出结果的过程,也是一种推理的过程。运算的正确性与否取决于推理是否正确,如果推理不正确,则运算就出错。在运算推理中要特别注意等价变换。5、养成验算的习惯,掌握验算方法 在进行题目求解的运算的过程中或结束时还须对运算的过程和结果进行检验,以便及时纠正运算过程或结果中出现的错误,并掌握验算方法。检验的方法通常有:还原法、代值法、估值法、逆运算等养成检验、检查的习惯,提高运算过程的思维监控能力,这是形成和发展运算能力的具体要求之一,在学习中不容忽略。 三、学会反思,提高运算的准确性 善于反思的学生,能不断地矫正错误,科学地设计运算的过程,并提高运算的准确度,逐步养成良好的运算习惯。1、反思错误的成因 学生计算错误有很多原因,特别是在学生新旧知识之间的符号、表象或概念、命题之间的联系出现编码错误或是产生负迁移。学生计算错误是常有的事,教师应充分利用这种教学资源,引导学生客观地研究出错的原因,研究它与正确解法之间的联系,正确利用学生错解中的合理成份,真正发挥错解在教学的正向作用。2、反思运算的过程 数学教学中,教师不仅要关注学生能否根据法则、公式等正确地进行计算,更要帮助学生理解运算的算理,能够根据题目的条件寻找合理的、快捷的运算途径。所选用的运算性质与计算目标各有不同,可以通过对照计算过程所体现出的不同的运算方法,引导学生体会每一种运算方法所采取的不同策略对结果的获得所带来的影响。3、反思运算的结果 对计算的结果进行反思,不仅是检验结果正确与否,更重要的是考察结果是否合理,是否符合实际。 在教学中,我们还要以“计算能力”培养,提出一套解决方案:“独立”、“准确”、“迅速”、“合理”、“规范” 。 例如在解决直线与圆锥曲线这个专题时,很多学生都非常害怕那一眼望不到头的运算,有了算法思想,就有了一个解题的框架,学生对前途充满了信心,对每一个子环节也心知肚明,相信只要坚持到底就是胜利。 随着新课程的实施与推进,运算能力已经成为影响学生能力发展的一个相当重要的的一个方面。中学数学教学应该认真倾听学生的思考过程,从中发现出现运算错误的原因,有针对性地加强学生对运算意义的理解,掌握根据问题的需要选择适当的算法和运算工具的方法,培养验证结果的准确性和估算结果的合理性等方面的意识和能力,有效发展学生的运算能力。

5. 初中数学小总结,感受,方法等(500以上)

如何学好数学

首先聪明和敏捷对于数学学习来说固然重要,但良好的学习方法可以把学习效果提高几倍,这是先天因素不可比拟的。学好数学首先要过的是心理关。任何事情都有一个由量变到质变的循序渐进的积累过程。
一.预习。不等于浏览。要深入了解知识内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于听课抓住重点,还可以培养自学能力,有时间还可以超前学习。
二.听讲。核心在课堂。1。以听为主,兼顾记录。2。注重过程,轻结论。
3.有重点。4。提高听课效率。
三.复习。像演电影一样把课堂复习,整理笔记
四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于老师课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,大脑建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,
五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。
六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离高考只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,
另外,听老师的话,勤学苦练不可少,成功没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。
以其缜密的逻辑向人们展示着它的美,培根就说过,数学是思维的体操。然而,不少学生却忽略了它的美丽,在题海中疲惫地挣扎,完全不顾对基本要领理解,这种只顾埋头拉车,而不抬头看路的做法,往往导致事倍功半,极大地挫伤人的自信心。幸好我遇到了几位优秀的老师,他们都提醒我要注重理论修养。于是,我开始在这方面钻研,进步果然较快。
实践告诉我,可以从三个方面去加强理论修养,即理解基本概念,总结实践经验,形成知识网络。
一、理解基本概念
数学大厦是由一个个公理、定义、定理作基础砌成的,加强对这些概念的理解,有助于我们解题。且不谈对集合、极限、三垂线这些内涵丰富的概念的理解,单是从“a大于b”的定义上就可挖掘出很多东西。书上如此定义:“如果a-b>0,则称a>b”,从定义我们可以直接得到判定两个数大小的一种方法------作差比较法,深入思考可得a=b+△x(△x>0)(增量代换法),a>a+b/2>b(放缩法)等。越是这样深入想,就越觉得数学有无穷魅力。
二、总结实践经验
高三时,题目得很多,这就得从题目中理出一个头绪来,掌握通性法。例如,做了不少不等式的证明题后,可总结也证不等式的基本方法为:比较法(作差、作商)、公式法、判别式法、数学归纳法等,特殊方法有放缩法,常用技巧有“图像法”、“换元法”、
“裂项法”等。总结之后,对运用这些方法解出的典型题目做一个回忆,加深印象,达到“见过的题目类型会做,棘手的题目可用这些方法分别去做”的境界,解题能力大为提高。
做题目难免出错,要对常出错的地方进行总结,写出错因,并用一个本子记下来(不必记题目)。例如:等比数列求和要考虑公比是否为1,偶次根号下的数要大于0(实数),除数不能为0等等。
应该说,每次考试后,总有自己的一些对解题的体会,不妨定在一个本子上。如:考试时应注重时间的分配,解题速度如何,是计算出错还是方法不对,书写要整洁有条理等。
通过这些总结,对自己有了更深地了解,哪些地方娴熟,哪些地方薄弱,然后对症下药,使自己的知识完善,技能得到提高。
三、形成知识网络
在做好一、二点的基础上,要形成自己的知识网络,“由厚变薄”。高中数学知识包括代数、立体几何、解析几何,其中代数分支较多,包括集合、函数、不等式、数列与极限、复数、排列组合、二项式定理。各章又可细分,于是形成了一个大的网络。不过,要构建这个大网络,首先得构建好一个个小网络,即对每一个章节进行构建,内容包括概念、重点、基本解法与数学思想、易出错点与其他知识联接点等,待第一轮复习后,花大概两天的功夫将这些小网络并成大网络,在以后的复习中不断对这个网络补充,加深印象。
我想,经过了这样的三步曲,我们的数学理论知识就会得到大大的提高,加上不断地解题实践,我们的思维就会活跃,自信心就会增强,每次考试前回想一下网络,我们就会胸有成足地去面对考试,走向胜利!
数学知识像海洋那样辽阔,像大山那样宏伟。一个人无论天资多么高,精力多么充沛,毅力多么顽强,学习条件多么优越,也不可能把所有数学知识学到手。有的同学总想学到一切,他们希望一串串熟了的葡萄旁边又开放着朵朵鲜花,可是,事实告诉我们:这是不可能的呀!我们必须从第一步起,一步一个脚印,脚塌实地的走下去,才有可能度过那个辽阔的大海、攀上那座宏伟的大山。
数学知识的学习,单靠认真听讲、死记硬背是不行的。相传有一个人巧遇一位仙翁,仙翁点石成金送给他,但他不要金子,而要仙翁点石成金的指头。这个人为什么要指头呢?因为他懂得,不管送自己多少金子,金子总是有限的,但如果有了点石成金的指头,那就可以随心所欲了。我常常给学生讲这个故事,但我却启发学生:仙翁的指头固然好,但那毕竟是别人的。如果我们拿来使用是否灵呢?可见,我们更应该学到仙翁的点金之术。古人说:“受之以鱼,只供一饭之需,教人已渔,则终身受用无穷”,也就是这个道理。
数学学习方法是数学学习时采用的手段、方式和途径。学法是在学习过程中产生和运用的。掌握良好的方法是很重要的事,但又不是一件容易的事情,这需要付出艰苦的努力,需要持之以恒的精神。只有每天坚持不懈,日久天长,数学学习才可能成为自觉的行为,从而掌握数学学习的主动权。所以,数学学习方法并没有什么捷径,它只是踏踏实实、刻苦学习的程序以及在这个学习过程中的各项具体措施。
古人说:“凡事预则立,不预则废。”智力相同的两个学生有无学习计划,直接影响到学习效果。科学的利用时间,在有限的时间内有计划的学习,这是科学学习方法的一条重要原则。所以数学学习缺乏计划性是一些学生天长日久感到吃力的重要原因之一。
要提高数学学习效率,变被动学习为主动学习,做学习的主任,应把握几个步骤:
第一步:抓好课前预习。
在预习过程中,边看,边想,边写,在书上适当勾画和写点批注。特别是,要运用数学学习阅读法,即不能像语文阅读一样,从头看到尾。对于有些例题,则是仔细审题,然后合起书来,试着在练习本上做一做。之后再翻开书对一对,修改和完善自己的所做,及时检查预习的效果,强化记忆。同时,可以初步理解教材的基本内容和思路,找出重点和不理解的问题,尝试做笔记,把预习笔记作为课堂笔记的基础。
我国古代军事家孙子有一句名言:“知己知彼,百战不殆。”这是指对自己和自己的对手有了充分的了解之后,才可能有充分的准备,也才可能克敌制胜。预习就是“知己知彼”的准备工作,就好像赛跑的枪声。虽然赛跑的规则中不允许抢跑,但是在学习中却没有这一规定,不但允许抢跑,而且鼓励抢跑。作好数学预习,就是要抢在时间的前面,使数学学习由被动变为主动。
简言之,数学预习就是上课前的自习,也就是在老师讲课前,自己先独立的学习新课内容,使自己对新课有初步的理解和掌握的过程。预习抓的扎实,可以大大提高效率。
第二步:掌握听讲的正确方法。
处理好听讲与做笔记的关系,重视课堂思考及回答问题,不断提高课堂学习效果。
学生必须上好课、听好课,首先作好课前准备、知识上的准备、物质上的准备、身体上的准备等;其次要专心听讲,尽快进入学习状态,参与课堂内的全部学习活动,始终集中注意力;第三要学会科学的思考问题,注重理解,不要只背结论,要及时弄清教材思路和教师讲解的条理性,要大胆设疑,敢于发表自己的见解,善于多角度验证答案;第四,学生要及时做好各种标记、批语,有选择的记好笔记。第五,数学课堂练习是一个非常重要的环节,课堂练习本要随时准备,并要保存完好,以便复习使用。每节课都要针对所学内容,认真练习,并巩固所学知识。
上课是学生在学校学习数学的基本形式,学生在校的大部分时间是在课堂上度过的。根据数学教学大纲的规定一个学生在中学上数学课的总数大约有五千多节。把每节课四十五分钟积累起来,这将是多么惊人的数字啊!学习成绩的优劣,固然取决于多种因素,但如何对待每一堂课则是关键。要取得较好的成绩,首先必须利用课堂上的四十五分钟,提高听课效率。
听课时应做到以下四点:1、带着问题听课;2、把握住老师讲课的思路;3、养成边听讲、边思考、边记忆的习惯,力争当堂消化、巩固知识;4、踊跃回答老师提问。这样就基本上掌握了听课的要求。
第三步:课后复习应及时。
针对数学学科的特点,采取多种方式进行复习,真正达到排疑解难、巩固提高的目的。
课后要复习教科书,抓住复习的基本内容;尝试回忆,独立的把教师上课内容回想一遍,养成勤思考的好习惯;同时整理笔记,进行知识的加工和补充;另外,针对每天所学内容,多练题,勤巩固。课后还要看参考书,使知识的掌握向深度和广度发展,形成学习上的良性循环。
复习是预习和上课的继续,它将完成预习和上课所没有完成任务,这就是在复习过程中达到对知识的深刻理解和掌握,在理解和掌握的过程中提高运用知识的技能技巧,进而在运用知识的过程中,使知识融会贯通,举一反三,并且通过归纳、整理达到系统化,把知识真正消化吸收,成为自己的知识链条中的一个有机组成部分。在复习过程中既调动了大脑的活动,又提高了分析问题和解决问题的能力,知识也在理解问题的基础上得到巩固记忆。从某种意义上讲,知识掌握的如何,由复习效果决定。
第四步:正确对待作业。
独立思考、认真完成、理解提高是学生对待作业的正确态度。
首先要做好作业的准备工作,把预习、上课、课后复习衔接起来;其次要审好作业题、善于分析和理解题目;第三要理清解题的思路,准确表达,独立完成作业;第四要学会检查,掌握对数学作业进行自我订正的方法。
托尔斯泰说过:“知识只有当它靠积极思维得来时候,才是真正的知识。”无论学那一节功课,课堂上老师讲的,笔记本上记的,课外阅读的… …等等,都是书本上的知识,要把他们转化成自己的知识,使自己能够自如的运用,就必须通过作业实践来转化。
究竟为什么要做作业呢?作业的作用主要有:1、检查学习效果;2、加深对知识的理解和记忆;3、提高思维能力;4、为复习积累资料。
在做作业时,审题是非常重要的。怎样审题呢?1、要看得(理解)准确。失之毫厘,差之千里;2、要善于解刨,深刻领会其中含义;3、要把握联系,运用相关知识解之。
第五:课外涉猎要广博。
要逐步掌握科学的学习规律,包括打好基础,循序渐进,温故知新;搞好课外学习,包括主动进行课外阅读,参加课外实践活动;要掌握正确的课外学习方法,如泛读法、精读法、深思法;要掌握读书要求,如博专结合、读思结合、学用结合、逐渐积累、持之以恒等等。
课外学习能有效地使课内所学知识与社会生产实践、生活实践密切地联系起来,帮助同学们加深对课内所学知识的理解,扩大数学知识的眼界,拓宽思路,激发求知欲望和学习兴趣,培养自学能力与习惯,增长数学才干。这也就是常说的:“课内打基础,课外出人才”。
总之,课前要抓好预习,课中听讲要领悟学法,课后完成作业要巩固学法,课外学习要运用学法,要不断总结优化学法,努力探索适合自己个性的数学学习方法。把数学学习看作是一种乐趣,而不是单纯的为学好数学而学习。这样你就会学得轻松,“吃力”自然就会离你远去。
学习数学就是学习解题
我们知道,学习数学需要通过复习来循序渐进地提高自己的数学能力。有的同学简单地把复习理解为做大量的题目,也有的同学认为复习就是记忆、背诵课本中的有关概念、定理、公式等。可见,许多同学对复习的认识还存在误区:没有真正认识到数学学科的特点,在复习方法上没有和其他学科区别开来。
数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。
——首先是精选题目,做到少而精。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
——其次是分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
——最后,题目总结。解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。
数学复习方法
所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序.同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法.数学方法是以数学的工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法。
数学方法具有以下三个基本特征:一是高度的抽象性和概括性,二是逻辑的严密性及结论的确定性,三是应用的普遍性和可操作性. 数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁确定的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具.现代科学技术特别是电子计算机的发展,与数学方法的地位和作用的强化正好是相辅相成.
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:
( 1 )逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵重逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色.
( 2 )数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在学生今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)等.这些方法极为重要,应用也很广泛.
( 3 )数学中的特殊方法.例如配方法、待定系数法、加减法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,对于某一类问题也都是一种通法。
三、高考复习中数学思想方法教学的途径。
1、用数学思想指导基础复习,在基础复习中培养思想方法。
基础知识的复习中要充分展现知识形成发展过程,揭示其中蕴涵的丰富的数学思想方法。 如几何体体积公式的推导体系,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。只有通过展现体积问题解决的思路分析,并同时形成系统的条理的体积公式的推导线索,才能把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,这对激发学生的创造思维,形成数学思想,掌握数学方法的作用是不可低估的。
注重知识在教学整体结构中的内在联系,揭示思想方法在知识互相联系、互相沟通中的纽带作用。如函数、方程、不等式的关系,当函数值等于、大于或小于一常数时,分别可得方程,不等式,联想函数图象可提供方程,不等式的解的几何意义。运用转化、数形结合的思想,这三块知识可相互为用。注意总结建构数学知识体系中的教学思想方法,揭示思想方法对形成科学的系统的知识结构,把握知识的运用,深化对知识的理解等数学活动中指导作用。如函数图象变换的复习中,我把散见于二次函数、反函数、正弦型函数等知识中的平移、伸缩、对称变换,引导学生运用化曲线间的关系为对应动点之间的关系的转化思想及求相关动点轨迹的方法统一处理,得出图象变换的一般结论。深化学生图象变换的认识,提高了学生解决问题的能力及观点。
2、用数学思想方法指导解题练习,在问题解决中运用思想方法,提高学生自觉运用数学思想方法的意识。
注意分析探求解题思路时数学思想方法的运用。解题的过程就是在数学思想的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与题断间的差异的过程。也可以说是运用化归思想的过程,解题思想的寻求就自然是运用思想方法分析解决问题的过程。
注意数学思想方法在解决典型问题中的运用。如解题中求二面角大小最常用的方法之一就是:根据已知条件,在二面角内寻找或作出过一个面内一点到另一个面上的垂线,过这点再作二面角的棱的垂线,然后连结二垂足。这样平面角即为所得的直角三角形的一锐角。这个通法就是在化立体问题为平面问题的转化思想的指导下求得的。其中三垂线定理在构图中的运用,也是分析,联想等数学思维方法运用之所得。
调整思路,克服思维障碍时,注意数学思想方法的运用。通过认真观察,以产生新的联想;分类讨论,使条件确切,结论易求;化一般为特殊,化抽象为具体,使问题简化等都值得我们一试。分析、归纳、类比等数学思维方法,数形结合、分类讨论、转化等数学思想是走出思维困境的武器与指南。
用数学思想指导知识、方法的灵活运用,进行一题多解的练习,培养思维的发散性,灵活性,敏捷性;对习题灵活变通,引伸推广,培养思维的深刻性,抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性,批判性。对同一数学问题的多角度的审视引发的不同联想,是一题多解的思维本源。丰富的合理的联想,是对知识的深刻理解,及类比、转化、数形结合、函数与方程等数学思想运用的必然。数学方法、数学思想的自觉运用往往使我们运算简捷、推理机敏,是提高数学能力的必由之路。
"授之以鱼,不如授之以渔",方法的掌握,思想的形成,才能使学生受益终生。

6. 如何提高数学课堂效率课题研究开题报告

教学实践告诉我们,学生学习效果如何,教学成功与否,在很大程度上取决于全体同学的主动参与程度。学生主动参与的面广,课堂效率就高,教学效果就好,学习成绩就会提高。
那么,如何引导学生主动参与提高课堂效率呢?结合本人教学谈几点体会:
一、激发学习兴趣,提高课堂效率
学生学习数学是一种有目的、有意识的行为,需要有一种内部动力来达到学习目的。这种目的就是学生学习数学的强烈愿望。只有当学生有了这种学习欲望时,才能积极地参与整个学习过程。因此,在教学过程中,我们教师要采用多种形式激发学生的学习兴趣,调动学生主动参与的积极性,从而提高课堂教学效率。
1、创设情境,激发兴趣
教学中,有趣的学习材料能调动学生学习数学的积极性。如:在教学完“列方程解应用题”后,我设计了一个“救救小羊”的情境练习,就在狼想吃小羊的时候,山大王老虎来了,老虎为了显示自己的“公正”,规定:“小羊如果做错了一题,狼可以前进一步,如果做对了,狼就后退一步,远离小羊。”在如此有趣的童话情境中,学生本能的一种“正义感”马上被激发出来,他们学习热情高涨,做题异常认真。随着学生一次一次正确的练习,狼被迫步步后退,当狼退至“河边”,逼进河里时,学生心底“惩恶扬善”的愿望终于得到了满足,全班禁不住高声欢呼起来,课堂气氛达到了高潮的极致,也极大地提高了课堂效率。
2、动手操作,激发兴趣
由于数学知识本身具有抽象性,又相对枯燥无味,与学生以具体形象为主的思维和生动活泼的特点构成矛盾。为了体现学生好奇、好动的特点,强化学生对每个知识点的认知和理解,使学生思维与能力有机结合起来,更重要的是让学生参与实践,激发兴趣,使他们跃跃欲试。如:在教学“平行四边形面积公式”的推导过程中,学生通过剪一剪、移一移、拼一拼等方法进行操作,主动探索、观察、讨论、发现、交流、大胆推导概括出平行四边形的面积计算公式。当学生通过割补法把平行四边形转化成长方形后,问:大家认真观察,割补后的长方形与原来的平行四边形有哪些联系?根据上面的发现,你能推导出平行四边形的面积计算公式吗?学生通过操作后,已经明确了两个图形间的内在联系,建立了长方形和平行四边形的空间形式,这样他们要说的话就很多,就有参与的兴趣,完全有可能进行加工、整理、进而推导出公式,课堂教学也更加有效。
二、精选课堂练习,提高课堂效率。
实践证明,盲目的过多的练习是不科学的,它不仅不能引起学生积极的思维活动,反而,由于大量机械性的练习题目,学生的思维会变得呆滞,加上那么多的作业,挤掉了他们的自由活动时间和休息时间,阻碍了他们思维的正常发展,使他们在学习上处于被动状态。因此,在教学中,教师要依据教学目的和教学要求以及学生的实际情况,精心选编练习题,并有计划地让学生练习,力求精而少,练在点子上,这样才能有利于学生主动学习,从而提高课堂效率。
一堂课只有40分钟,一眨眼就过去了,所以,课堂上的每一分每一秒都不能浪费,应尽可能把它都用在教学内容上,且必须要把这40分钟用在刀口上。

1、坚持课前5分钟小测
坚持课前5分钟小测,对提高数学课堂效率具有促进作用,其具体做法是每节数学课上,进行上节内容的简单测验。这个环节不但可以复习旧知识,而且可以促进学生认真听课,提高课堂效率。因为我们可以利用这5分钟来让学生从课间休息时的兴奋中冷静下来,调整状态,为接受新课作好精神准备。另外,学生为了做好小测题,就必须要认真听课,认真做好笔记。
2、课后巩固要有强化意识:
到了知识巩固阶段,学生对所学知识建立了初步的表象,如何深化这一表象,以达到对知识的理解、掌握及应用,实现学习上的举一反三、触类旁通,是这节课成败的决定因素。
(1)、做好巩固性练习。对知识加深理解并转化为技能技巧。例如在有理数混合运算中,可对基础知识重点练,强化运算法则(尤其是法则中关于符号的确定)及运算顺序;关键步骤专项练,转化为技能技巧;简便运算完整练,强化对运算定律的运用。
(2)、加强比较性练习。通过寻同辨异,加深理解。例如学习解决问题时,一道题可能有几种解法,等学生列出算式后,可以通过寻找它们的共同点及分析它们的不同之处,在对比中加深理解,达到对知识的巩固。
(3)、尝试变通式练习。摆脱学生一味机械地模仿,克服思维定势,一题多变。例如在学生学完解决分数问题后,可加强变式练习,可出现补充条件、补充问题、单位“1”已知或单位“1”未知等题目类型,拓宽思维,加强对基本数量关系的理解。
(4)、探索开拓性练习。通过练习,发展思维,培养能力。在教学“圆柱的表面积和体积”时,可让学生做已知圆的半径、直径、周长求表面积和体积的练习,把新知、旧知有机结合起来,融会贯通。
3、要充分利用好配套练习册和数学基础训练,抓住重点精讲多练,反复练直到掌握为止。
三、关爱每一位学生,培养学生良好的学习习惯。
在课堂教学中,学生的个体差异是绝对的,主要表现为认知方式和思维策的不同,以及认知水平和学习能力的差异。作为教师要全面了解学生,尊重学生的个体差异,为满足多样化的学习需要而制定多层次的教学内容。首先对不同的学生确立与之相符的学习要求和学习目标,并在问题情景的设计、教学过程的展开、练习的安排等尽可能地让所有学生都能主动参与。另外在探究学习过程中,对学习有困难的学生,教师要善于给予关心和帮助,鼓励他们参与学习活动,尝试着用自己的方式分析问题、解决问题,并及时肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,鼓励他们自己去改正,从而增强他们的学习兴趣和信心,对他们的作业要面批,帮他们指出错因。对学有余力的学生,教师要为他们提供足够的材料,指导他们深入学习,让他们有一种吃得“饱”的感觉。总之,精心设计不同层次的教学内容,让每一个学生在课堂中获得必须的知识;因材施教,让不同的学生在课堂中得到不同的发展,真正地提高课堂教学效率。
有时,在课堂教学中要求相同小组互帮互助,相互配合,明确分工,各负其责,并即时转换角色,以促使小组内同学的相互合作,促使他们共同解决实验中所面临的问题,也以此达到学生“人人有事干,人人都动手,个个有收获”的目的。允许每个学生按自己的思路方法去研究,但要求学生学会总结经验体会,总结自己设想、做法的优缺点,最终达到相互交流的经验体会,共同归结得出有效解决问题的最佳方法。这种方法,不仅激发了学生的学习兴趣和创造热情,而且还增强了学生在学习中的合作性,更提高了解决问题的效率。
最后教师应该优化评价方式,以“学生发展为本”,重视多元化评价,多运用激励机制,培养学生的自信心,促进学生的全面发展。我们应多鼓励和表扬学生在学习上的点滴成功,使之得到积极的情绪体验,有效地培养学生的自信心,激发他们学习的热情,培养学习兴趣,形成良好的学习习惯。这也是提高课堂教学效率的关键所在。
有了教师的努力,有了学生的努力,在加上师生之间的情感作用,课堂的效率才会大大的提高。爱是学习的动力!学生喜欢一个教师,也就喜欢这个教师所教的课程。教师在课堂上充分尊重学生个性,发挥学生的主体性,引导学生探索、创新、总结归纳、反思,教师的主导作用与学生的主动性相结合,营造一个良好的学习氛围,才能取得最佳的学习效率。课堂外及时反馈信息,及时给予评价,及时给与指导和鼓励,与学生关系溶恰,促使学生充满信心,富于探索,敢于创新,这对于学生保持良好的学习状态非常必要,也是促使学生坚持自主性学习的重原因。
总之把握新课程的精髓,提高课堂效率,让课堂真正成为学生施展手脚、启发思维、展现智慧和能力的舞台,为学生的全面发展和终身发展奠定基础,建构平台,创设空间。只有师生的共同努力,才能提高课堂的效率,提高课堂的有效性。

shaorunjia2001真心为您解答~~

~亲,如果你认可我的回答,请点击【采纳为满意回答】按钮~
~手机提问者在客户端右上角评价点【满意】即可。
~你的采纳是我前进的动力~~【如果我做错了欢迎大家指出我的错误,毕竟我不是万能的】
~如还有新的问题,请好评和采纳后重新另外起一题向我求助,答题不易,敬请谅解~~
O(∩_∩)O,记得好评和采纳,互相帮助
祝共同进步!

7. 道格尔9岁时受数学启蒙,11岁在乡村任教,14岁的时候在肯德尔学校中任教师!

你好:
中国古今26位著名数学家的故事
1.赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有数幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程x+ax=A(其中a>0,A>0)的求根公式。
在《日高图注》中利用几何图形面积关系,给出了'重差术'的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
2.朱世杰(公元1300年前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。
《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。
《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法)。
3.祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
4.祖冲之(429-500),中国南北朝时代南朝数学家、天文学家、物理学家。祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。
宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。
我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。
公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。
祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。
5.杨辉,字谦光,钱塘(今杭州)人,中国古代数学家和数学教育家,生平履历不详。由现存文献可推知,杨辉担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带,他署名的数学书共五种二十一卷。
(一)主要著述
杨辉一生留下了大量的著述,它们是:《详解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通变本末》3卷(1274年,第3卷与他人合编),《田亩比类乘除捷法》2卷(1275年),《续古摘奇算法》2卷(1275年,与他人合编),其中后三种为杨辉后期所著,一般称之为《杨辉算法》。
《详解九章算法》现传本已非全帙,编排也有错乱。从其序言可知,该书乃取魏刘微注、唐李淳风等注释、北宋贾宪细草的《九章算术》中的80问进行详解。在《九章算术》9卷的基础上,又增加了3卷,一卷是图,一卷是讲乘除算法的,居九章之前;一卷是纂类,居书末今卷首图、卷l乘除,卷2方田、卷3粟米、卷4衰分的衰分、反衰诸题、卷6商功的诸同功问题已佚。卷4衰分下半卷、卷5少广存《永乐大典》残卷中,其余存《宜稼堂丛书》中。从残本的体例看,该书对《九章算术》的详解可分为:一、解题。内容为解释名词术语、题目含义、文字校勘以及对题目的评论等方面。二、明法、草。在编排上,杨辉采用大字将贾宪的法、草与自己的详解明确区分出来。三、比类。选取与《九章算术》中题目算法相同或类似的问题作对照分析。四、续释注。在前人基础上,对《九章算术》中的80问进一步作注释。杨辉的“纂类”,突破《九章算术》的分类格局,按照解法的性质,重新分为乘除、分率、合率、互换、衰分、叠积、盈不足、方程、勾股九类。
杨辉在《详解九章算法》一书中还画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”。
吴学谋是中国数学家,生于广西柳州。从l940年起,他相继在桂林、百色、柳州,武汉求学。1956年毕业于武汉大学数学系。现任武汉数字工程研究所研究员。中学时代,他就超前自学。后来就广泛地进行学术研究,涉及理工医文社哲多种专题。主要是在哲学、数学、系统科学三领域苦筹自成体系的一家之言。他先后发表了200篇论文,出版了6本专著、编辑过20多本论文集,创办了跨学科的《科学探索学报》,入委过l5个出版物。入理过l5个学会、入学过20个组织(单位、国际会议)的在职或兼职研究员与教授等高职(特邀科技委、总部学委、主编、副主编、副理事长、顾问、国际会议副主席与学委),入册过30多种名人录(辞典、网络全书、年鉴等),另外得到国际上30多种荣誉候选提名。美国数学评论等国际刊物对其论著有过40多次评介。许多网络全书、手册、辞典、年鉴、教材与专著都引入了泛系哲学的条目或章节,国际上著名的对话式信息服务系统dis入库了他开创的泛系哲学与应用文献131篇(截自1990年止),一些国际会议也把泛系理论作为特定征文专题之一,国际名人录还专门为他精印了\'泛系缔造者\'的金宁封面。吴学谋参加过多种工农劳动和学术与社会活动,成为跨越哲学、数学、系统科学与自我科学的多栖创业人,他在理工医文社哲六合一的哲学专著《从泛系观看世界》的书后自白中说:
我是个枸喜己悲,狂放不羁,误失彷徨、大忧超脱等兼而有之的人。惨忙挣扎,灾险迭生,也幸缘不断,欢乐奋争;引人争议,也令人欣羡。\'
少年时的吴学谋爱钓鱼、养蚕、爬山;骑无鞍的劣马,读书时留过级,学过\'武侠\',打过穷架,冒险游泳多次出事侥幸生还,后来也多次跳级,中学与大学时都代老师为同班同学上课或作辅导。他早年就幻想成为对人类有所贡献的一代哲人,幻想小我与大我、有我与无我、自我与超我的协同显生。他研究的范围较广,先后喜欢过文学、医学、工程技术、化学、理论物理、数学、控制论、哲学等。
吴学谋的物质生活一向清贫艰苦,也多次遇险生还。许多研究工作是在坎坷的经历中完成的。例如他的逼近转化论虽研究起自他大学时代(1955年),但主要是在大学毕业后的劳动中完成的,他往往挑着担子在构思他的数学定理;在无灯的月下用意念盲写下有关的论述;在田头小休时,他就把结果画在手掌上;他还在梦中追捕灵感性的思想。
吴学谋长年每天平均干一般人两三天的工作,常常几天几夜连续作战。例如他与人联名的《磁流体力学的等价理论》就是在5天5夜写出采的,从收集材料、博览群书、到一批前沿性的结果的获得都是在随时准备为单位扫地出门氛围里于惨忙挣扎中完成的。他的专著《泛系理论与数学方法》是在春节假日里把自己关在办公室里一周时间完成的,为了谢绝客访,他在家门口写了个闹趣的英文条子:\'吴学谋宇宙飞行去了,一周后返回地球,谢谢来访,请留名以便回拜!\'
吴学谋能够在噪杂混乱不安定的情况下工作。但也间或无忧忘年地玩游,平时喜欢游泳、唱歌、跳舞、气功和幻想,除了研读各门学科的理论性著作外,也爱读神怪、魔幻、侦破、权谋与武侠小说和童话。他在研究中的许多灵感、构思与素材不是来自书本与文献,而是来自生活观察与社会接触,来自讲授、讨论与实践,来自迎接挑战后的反思。
50年代从学生时代起,吴学谋主要是按泛系观或按广义的系统、关系或及它们的种种复合与五互(互联互转互导互生互克)这种相对普适的观点开拓数学内跨专题的逼近转化论,后来又从泛系五互观开拓电磁介质动力学等价论,得到几百个具有前沿性特点的定理与理法(哲理、数理与技理的具体形式),70年代个期吴学谋才正式结合理工医文社哲的具体应用研究筹创泛系方法论与泛系哲学,经过15年的创业历程,拥有70多人的作者队伍,发表了400多篇文章,有4本专著、7册专辑和20次专栏,出版了《泛系学刊》,发展了自己的哲学七论(本体论、认识论、方法论、哲学逻辑、哲学范畴论、哲学真善美禅统一论、哲学人类论)与系统科学三论(系统论、控制论、信息论)以及一系列网络理法的数理枝理研究。得到几百个有哲理技理背景的具体理法和几百个数学结果,为上百个哲学,与科学范畴提供了现代化泛系化的形式,为沿承牛顿《自然哲学的数学原理》与希尔伯特第六问题的意向--哲理的数理技理化以及具体科学技术的哲理公理化进行-些新的具体探索,为网络理法提供了一种宏微兼顾新的多层联网。开拓了一种新的网络型的跨学科研究。
l978年以来,吴学谋讲过数理逻辑、离散数学、泛代数、模糊数学、应用数学、控制论、系统科学、心理学、教育学、医学等20多种课程,更多地是作了约二千小时近百次的泛系哲学与应用的讲学:大连、长沙、昆明、广州、北京、上海、湘潭、镇江、重庆、秦皇岛、贵阳、南京、兰州、武汉。并且先后为武汉数字工程研究所,华中理工大学、武汉海军工程学院、兰州大学、中国科学院昆明生态研究所等单位带过多批研究生,先后用泛系哲学辅导过200多篇论文的写作,涉及理工医文社哲几十种专题。这一些教学相长的活动对泛系哲学的创生起到重要的作用。
在国际上,吴学谋是世界一般系统与控制论组织理事(1983-),国际名人传记中心荣誉顾问(1990-),国际控制论学报编委(1984-)。法国busefal通讯编委(1981-),国际非线性力学大会学委与分会主席和主题发言人(1985),中美模糊数学会议分会主席(1984),国际沿江城市发展战略会议副主席(1991),国际自动推理会议程序委员(1992)。在数学界他先后任湖北省数学会常务理事兼系统科学与生物数学部主任(1978-1984),武汉工业与应用数学会副理事长(1989-),《模糊数学》(1981-1987)《应用数学》(1987-)副主编,《应用数学和力学》学报(1980-)与丛书(1985-)以及《模糊系统与数学》(1987-1990)常务编委,《数学研究与评论》(198l-)、《数学方法论丛书》(1989-)编委,1979年主办了国内早期大型的模糊数学讲习班、1980年主编了国内最早公开发行的模糊数学论文集《乏晰数学专辑》。在系统科学与计算机科学界,他先后是中国系统工程学会模糊系统与数学常务理事(1985-1990),武汉系统工程学会副理事长(1987-);湖北省知识工程学会副理事长兼泛系哲学专业委员会主任(1991-),中国计算机学会多植逻辑组领导小组成员与泛系逻辑组组长(1987-1990),中国现代设计法研究会总会学委(1987-),湖北省计算机学会安全专业委员会特约学术顾问(1990-)武汉时代科学院泛系工程研究所顾问兼研究员(1988-),《水平科学丛书》编委,《泛系学刊》编委(1991-),等。在其它具体科学技术与文化界,吴学谋先后任中国核学会计算物理学会常务理事(1982-1990),《计算物理》编委(1982-),武汉数字工程研究所研究员(1980-),华中理工大学、武汉工业大学(1981-)、兰州大学(1986-)、湖北函授大学(1987-)、湖北国防科技工业职工大学(1991-)等单位兼职教授,中国力学会理性力学与力学中的数学方法专业委员(1979-),湖北省力学会理事(1985-),中国舰船研究院科学技术委员会特邀科技委(1985-)、湖北省气功科学研究会常务理事(1987-)、《大众气功》编委(1988-),北京教授讲学团法治系统工程研究所研究员(1989-)、华光中医现代化研究所研究员(1988-)、《中医现代化》编委(1989-),《绿色文化丛书》副主编(1990-),等等。在哲学与自然辩证法界,吴学谋先后任《中国自然辩证法网络全书》编委(1983-),自然观研究会(1986-)与自然辩证法学会自然哲学专业委员会(1990-)顾问,兰州大学计算机科学系泛系哲学逻辑教授(1991.10.22--),系统哲学专业委员会熵与序学科组负责人之一,并多次入册哲学年鉴,等等。
由于种种历史条件,吴学谋在生活与政治上均有所波折,在学术上有许多误解,遇到许多阻难。他的逼近转化论从成稿到出版就经历将近四分之一个世纪,中间稿件还遭失落。吴学谋在他发表的哲理诗《事业与知音》中认为:\'追求一旦变成一种事业,它就成为一种痛苦的爱。人生就是奉献,是对事业的献身,也是一个寻觅事业知音惴惴不安而又欢乐战斗的历程。\'多年来吴学谋就是在生机与危机互伏的风风雨雨之中而上下求索的。他努力争取得到人们的帮助和理解,追求事半功倍以致事一功万,但也随时准备理解别人对他的不理解,甘于寂寞与孤独,甘于做蠢人--事万功一,即使事万功负,不业不成,出师未捷身先死而成为惨败者,他也庆幸自己有一个美好的心愿:竞业不息,意守胜利!
人贵自我奋斗而又主动服务于社会,人贱无所作为而又怨天尤人地等待社会的恩赐。
吴学谋认为,对历史、人生与事业的紧迫感与危机感,苦难的折磨、惨忙挣扎而又欢乐奋争的生活可以催塑一个衔领风骚的灵魂。作为一个现代型的开拓者,他很欣赏革命家黄兴屡败屡战的精神,有我中要有无我,无我中要有我,把有我与无我、小我与大我、自我与超我辩证地统一起来。吴学谋曾强调说:
要用旷古的境界去开拓伟大的事业。不要强化生活中悲剧性的成分,要从世界历史的高度来看待既有风险而又幸运的人生。在生活中会遇到一万件不如意的事,但要拼命创造;一万零一件有意义的事去压倒它们。自强助人,善与人同,克己应展,献身成趣,雄观寰宇,珍惜常乐……。
10.汪莱(1768一1813),是中国古代数学家,字孝婴,号衡斋,徽款县人。
知道了

8. 浅谈如何培养高中学生的数学思维品质

一、数学概括能力的培养 数学教学中,应当强调数学的“过程”与“结果”的平衡,要让学生经历数学结论的获得过程,而不是只注意数学活动的结果.这里,“经历数学结论的获得过程”的含义是什么呢?我们认为,其实质是要让学生有机会通过自己的概括活动,去探究和发现数学的规律. 概括是思维的基础.学习和研究数学,能否获得正确的抽象结论,完全取决于概括的过程和概括的水平.数学的概括是一个从具体向抽象、初级向高级发展的过程,概括是有层次的、逐步深入的.随着概括水平的提高,学生的思维从具体形象思维向抽象逻辑思维发展.数学教学中,教师应根据学生思维发展水平和概念的发展过程,及时向学生提出高一级的概括任务,以逐步发展学生的概括能力. 在数学概念、原理的教学中,教师应创设教学情境,为学生提供具有典型性的、数量适当的具体材料,并要给学生的概括活动提供适当的台阶,做好恰当的铺垫,以引导学生猜想、发现并归纳出抽象结论.这里,教师铺设的台阶是否适当,主要看它是否能让学生处于一种“似懂非懂”、“似会非会”、“半生不熟”的状态.猜想实际上是在新旧知识相互作用的过程中,学生对新知识的尝试性掌握.教师设计教学情境时,首先,应当在分析新旧知识间的本质联系与区别的基础上,紧密围绕揭示知识间本质联系这个目的,安排猜想过程,促使学生发现内在规律;其次,应当分析学生已有数学认知结构与新知识之间的关系,并确定同化(顺应)模式,从而确定猜想的主要内容;再次,要尽量设计多种启发路线,在关键步骤上放手让学生猜想,使学生的思维真正经历概括过程. 概括的过程具有螺旋上升、逐步抽象的特点.在学生通过概括获得初步结论后,教师应当引导学生把概括的结论具体化.这是一个应用新获得的知识去解决问题的过程,是对新知识进行正面强化的过程.在这个过程中,学生的认知结构与新结论之间的适应与不适应之间的矛盾最容易暴露,也最容易引起学生形成适应的刺激. 在概括过程中,要重视变式训练的作用,通过变式,使学生达到对新知识认识的全面性;还要重视反思、系统化的作用,通过反思,引导学生回顾数学结论概括的整个思维过程,检查得失,从而加深对数学原理、通性通法的认识;通过系统化,使新知识与已有认知结构中的相关知识建立横向联系,并概括出带有普遍性的规律,从而推动同化、顺应的深入. 数学的表现方式是形式化的逻辑体系,数学理论的最后确立依赖于根据假定进行抽象概括的能力.因此,教师应当引导学生学会形式抽象,实际上这是一个高层次的概括过程,在这个过程中,学生的逻辑推理能力可以得到很好的培养. 二、重点放在培养学生的思维品质上 心理学家认为,培养学生的数学思维品质是发展数学能力的突破口.思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维的不同方面的特征,因此在教学过程中应该有不同的培养手段. 数学的性质决定了数学教学既要以学生思维的深刻性为基础,又要培养学生的思维深刻性.数学思维的深刻性品质的差异集中体现了学生数学能力的差异,教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力.数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯.对于那些容易混淆的概念,如正数与非负数、空集F和集合{0}、锐角和第一象限的角、充分条件和必要条件、映射与一一映射、sin(arcsinx)与arcsin(sinx)等等,可以引导学生通过辨别对比,认清概念之间的联系与区别,在同化概念的同时,使新旧概念分化,从而深刻理解数学概念.通过变式教学揭示并使学生理解数学概念、方法的本质与核心.在解题教学中,引导学生认真审题,发现隐蔽关系,优化解题过程,寻找最佳解法等等. 数学思维的敏捷性,主要反映了正确前提下的速度问题.因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度.因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快.另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异.因此,数学教学中,应当时刻向学生提出速度方面的要求,另外还要使学生掌握速算的要领.例如,每次上课时都可以选择一些数学习题,让学生计时演算;结合教学内容教给学生一定的速算要领和方法;常用的数字,如20以内自然数的平方数、10以内自然数的立方数、特殊角的三角函数值、无理数 、 、π、е、lg2、lg3的近似值都要做到“一口清”;常用的数学公式如平方和、平方差、立方和、立方差、一元二次方程的有关公式、对数和指数的有关公式、三角函数的有关公式、各种面积、体积公式、基本不等式、排列数和组合数公式、二项式定理、复数的有关公式、斜率公式、直线、二次曲线的标准方程等等,都要做到应用自如.实际上,速算要领的掌握和熟记一些数据、公

9. 如何学好数学

如何学好数学1

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何学好数学2

高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。
至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。
l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。
3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。
4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。

答一送一:
如何在学习上占第一

学习上占第一,每个同学都可以做到。之所以你占不了第一,主要有两个原因:第一、生活方式、学习方法不正确,第二、没有坚强的毅力。在这里面毅力是第一重要的,学习方法是第二重要的。在现实生活中,全中国仍有70%以上的占第一的学生虽然占了第一,但他们并不是毅力最强的,或者说学习方法生活方式不是最好的。他们也许今天是第一,明天就不是了。也就是说,你如果按占第一的方法去学习、去锻炼,一般都会超过现有的第一。
辉煌的第一是不是要经过艰苦的努力才能得到呢?说它艰苦是因为“培养坚强的毅力”是世上最艰苦的工作,只有你具有了坚强的毅力才可能成为第一,当然正确的生活方式和学习方法也是特别重要的。在这里什么是坚强的毅力呢,只要你能按下面几点要求去做,而且每天都做记录,持之以恒,每天都不间断地坚持一个学期、一年、三年,那么你的毅力就足以达到占第一的要求了。在这项锻炼中就怕你中间有间断,风雨、心情、疾病、家务等等都不是你中断锻炼的理由。你要记住,学好学业是你学生生活中最重要的,没有什么工作的重要性会超过它。除了坚强的毅力,正确的学习方法和生活方式也是很重要的。
第一人人可以占,原来占第一的同学也不一定就比你更聪明多少,脑细胞也不一定比你多。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?!所以你第一要过心理关,就是说:要坚信你一定能成功,一定会超过现有的第一,包括现在是第一的你自已。
第二、你要天天锻炼。没有一个健康的身体,你什么事也做不好,即使偶尔做好了,也不能长久。每天30分钟左右的锻炼一定要天天坚持。锻炼的形式多种多样,跑步、打乒乓球、打篮球、俯卧撑、立定跳远等等都可以。有些同学好面子,见到别人不跑步,怕自已跑别人看见了不好意思,那就错了,真正不好意思的是辛苦了几年考不上大学,是上了几年大学还要下岗。如果将来自已养活不了自已,那才是真正不好意思的。
第三、学习态度要端正。每次上课前,一定要把老师准备讲的内容预习好,把不好理解的、不会的内容做好标记,在老师讲到该处时认真听讲。如果老师讲了以后还不会,一定要再问老师,直到明白为止。当一个问题问了两遍三遍还不会时,一般的同学就不好意思问了,千万别这样,老师们最喜欢“不问明白誓不罢休”的性格了。上课时要认真听讲,认真思考,做好笔记。做笔记时一定要清楚,因为笔记的价值比课本还,将来的复习主要靠它。
课下首先要做的不是做作业,而是把笔记、课本上的知识点先学好,该记的内容一定把它背熟。这样会大大提高你做作业的速度,即平常说的“磨刀不误砍柴功”。做作业时应该独立思考,实在不能解决的问题,再和同学、老师商量。问同学时,不要问这道题结果是什么,而是要问“这道题究竟怎么做?”“这道题为什么这样做?”
第四、正确面对错误和失败。当有的知识你没有在课上学会、当你的练习做错时或者在考试中成绩太差时,你既不要报怨,也不要气馁,你应该正视这自已不愿得到的现实。没有学会不要紧,把该知识写到你的《备忘录》中,然后问同学问老师,再把正确的解释或结果,写到其它页上。错了题也是这样,考试失利不就是错的题多点吗,正确的方法是把原题抄到《备忘录》中,把正确的做法学会后,把做法和结果写到其它页上,如果能注上做该类题的注意事项,就会把你的学习效率又提高30%-60%。之所以把答案或解释写到其它页上,就是为了下次看知识点或错误的题目时,再动动脑筋,想想该知识点的理解和解释情况,再练练该题的做法和答案。错误和失败并不可怕,只要你能正视它,一切都会成为你成功的动力。
第五、记帐。你的学习一定要有一本帐,你什么时候做得好,记下来,什么时候错了题,记下来(注:帐本上只记“今天错题为《备忘录》××页×题)。课下几点几分学了英语,记录好;几点几分至几点几分学了物理记下来。把你生活中锻炼、学习的分分秒秒记录在你的帐本上,把你每次作业和考试中的正确题数、错误题数和错误题号(《备忘录》上的页号题号)一一记录在你的帐本上。把你每天学会的知识点都记录在帐本上,以备明天、后天再检查一下自已是否真正掌握了这些知识点。在帐本上过去了几天的知识点,你一定要学会并能熟练掌握。
帐本记录的是你学习、锻炼中每一个细节。这样记下来,在校生活中,每天约有一页32开纸的记录量,不在校时可能有两页32纸的记录量。在星期和假期里千万不能间断。把你的帐一天天积累起来,这就是你所走过的第一之路。
虽说在素质教育的今天学校不排名次,但学习出类拔萃是我们努力的目标,是我们考上高一级学校的必要条件,也是我们走向社会后,做好每一件工作的资本。同学们,去争取第一吧。如果你一年年按上面的要求做,你一定能占第一。
如果大家都这样去做,即使你占不了第一,一定是中国出类拔萃的学生,因为中国大多数的同学没有这样的毅力,没有这样好的学习方法和生活方式。同学们,为美好的明天奋斗吧!
===============================================
首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必 的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以 略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。

有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。

知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实№上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要著重学习各种转化方式,培养转化的能力。总而言之,在学习数学基础知识中,要注意把握知识的整体精髓, 悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。同时,还要注意知识形成过程无处不隐含著人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。

数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。

在数学学习中,要特别重视运用数学知识解决实№问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。培养数学应用能力,首先要养成将实№问题数学化的习惯;其次,要掌握将实№问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理、化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。

如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实№问题,那么,我们就走在了一条数学学习成功的大道上。

10. 高中数学。二项式定理应该怎样记忆呢帮帮忙,谢谢!

为了研究、比较两种教学过程的教学效果,在《二项式定理》的教学中,本人有意识地设计了两个不同的方案,并具体实施到所任教的两个班级中(两个班级的基础水平差不多)。事实证明:教学方法的不同,定理生成方式的不同,都会直接影响学生对知识的理解程度和熟练程度。教学设计一:感知——发现——概括、归纳——应用。 1创设情境,提前感知。课堂开始,让学生回顾并按照多项式相乘的法则展开(a+b)2 =a2+ab+ba+b2= a2+2 ab+ b2。并提出如下几个问题:(1) 展开式中的每一项是怎样得到的?(2) 该展开式合并前有四项,合并后得到三项,每一项有什么特点?(3) 以是否取字母b、取几个b为标准,你能解释系数的含义吗?(4) 你能否用组合数来表示展开式中系数? 2自主发现。(1)让学生用多项式相乘的法则展开(a+b)3,并用同样的方法去分析。 (2)引导学生直接猜测并展开(a+b)4。3概括、归纳。你能给出(a+b)n 的展开式吗?4应用、强化。教师感言:在该设计中,教师引导学生由特殊到一般,通过观察、归纳,学生自己发现并总结归纳出二项式定理,做到了知其然也知其所以然,因此,在后面的例与练中学生表现的已经很熟练、很灵活了。 教学设计二:感知---给出---理解---应用。 1给出如下三个展开式(a+b)2= a2+2 ab+ b2, ,,,(a+b)3=a3+3a2b+3ab2+b3 ,(a+b)4=a4+4a3b+6a2b2+4ab3+b4。让学生观察归纳并初步感受其特征。2直接给出一般的二项式定理,然后分析、强调。3理解、应用。教师感言:在该设计中,教师只是引导学生分析、了解其形式上的特点,学生对二项式定理的认识仅停留在表面——未知其所以然,所以在后面的例与练中,该班和前面的班级就形成了鲜明的对比:学生还要对照着定理生搬硬套,更别说灵活应用了。反思:同样一节课,同样基础的学生,为什么会有如此大的反差呢?比较两种设计,前者更侧重定理的形成过程,而在这个过程中学生不仅自己得出了定理的形式、理解了其本质——展开式中的项cnran-rbr是如何得到的,而且学生的主动性得到了极大限度的发挥;后者学生并未感受、参与定理的生成过程,只是被动地接受定理的结果,所以应用仅仅限于模仿、生搬硬套。为了今后的教学更有实效性,也为了了解学生对这两种教学过程的喜好,课后我又在这两个班级中做了一个简短的问卷调查。1、你喜欢下列哪一种课堂结构? (1)教师讲、学生听;(2)师(生)生合作、交流,自主探究;2、你希望老师在课堂上 (1)直接给出概念、结论、定理,然后做大量练习进行巩固; (2)创设情境,让学生感受、参与概念、结论、定理的形成,理解了问题的本质再加以练习巩固;3、你认为上面的做法哪一种会让你理解更深刻、记忆更长久? 从学生选择的答案来看,多数学生比较喜欢第一种模式,他们希望在课堂上活动起来,而不是被动地听老师讲解。和学生交流时,有的学生就反映,他们有时听老师讲是那么回事,但自己动起手来又无从下手,根本不知道应该怎样去思考。授人以鱼,不如授人以渔,所以我们不仅要教会学生做题,更要教会学生自己去分析问题、解决问题。

热点内容
末世化学家txt下载 发布:2025-10-20 05:02:05 浏览:397
教学常规学习心得 发布:2025-10-20 04:03:06 浏览:298
推拿手法教学 发布:2025-10-20 01:15:51 浏览:398
教师师德素养提升总结 发布:2025-10-19 23:57:12 浏览:68
舞狮鼓教学 发布:2025-10-19 16:17:31 浏览:669
杭州市教育局电话 发布:2025-10-19 09:21:50 浏览:285
中非历史关系 发布:2025-10-19 06:47:41 浏览:5
师德双八条 发布:2025-10-19 05:31:17 浏览:360
大学物理第十一章答案 发布:2025-10-19 04:36:23 浏览:750
如何让网吧 发布:2025-10-19 01:49:35 浏览:735