当前位置:首页 » 美术学科 » 几何学科实践

几何学科实践

发布时间: 2020-11-26 17:14:49

A. 什么是几何学

几何”这个词在汉语里是“多少?”的意思,但在数学里“几何”的涵义就完全不同了。“几何”这个词的词义来源于希腊文,原意是土地测量,或叫测地术。

几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、款、窄、厚、薄等概念,并且逐步认识了这些概念之间、它们以及它们之间位置关系跟数量关系之间的关系,这些后来就成了几何学的基本概念。

正是生产实践的需要,原始的几何概念便逐步形成了比较粗浅的几何知识。虽然这些知识是零散的,而且大多数是经验性的,但是几何学就是建立在这些零散、经验性的、粗浅的几何知识之上的。

几何学是数学中最古老的分支之一,也是在数学这个领域里最基础的分支之一。古代中国、古巴比伦、古埃及、古印度、古希腊都是几何学的重要发源地。

大量出土文物证明,在我国的史前时期,人们已经掌握了许多几何的基本知识,看一看远古时期人们使用过的物品中那许许多多精巧的、对称的图案的绘制,一些简单设计但是讲究体积和容积比例的器皿,都足以说明当时人们掌握的几何知识是多么丰富了。

几何之所以能成为一门系统的学科,希腊学者的工作曾起了十分关键的作用。两千多年前的古希腊商业繁荣,生产比较发达,一批学者热心追求科学知识,研究几何就是最感兴趣的内容,在这里应当提及的是哲学家、几何学家柏拉图和哲学家亚里士多德对发展几何学的贡献。

柏拉图把逻辑学的思想方法引入了几何,使原始的几何知识受逻辑学的指导逐步趋向于系统和严密的方向发展。柏拉图在雅典给他的学生讲授几何学,已经运用逻辑推理的方法对几何中的一些命题作了论证。亚里士多德被公认是逻辑学的创始人,他所提出的“三段论”的演绎推理的方法,对于几何学的发展,影响更是巨大的。到今天,在初等几何学中,仍是运用三段论的形式来进行推理。

但是,尽管那时候已经有了十分丰富的几何知识,这些知识仍然是零散的、孤立的、不系统的。真正把几何总结成一门具有比较严密理论的学科的,是希腊杰出的数学家欧几里得。

欧几里得在公元前300年左右,曾经到亚历山大城教学,是一位受人尊敬的、温良敦厚的教育家。他酷爱数学,深知柏拉图的一些几何原理。他非常详尽的搜集了当时所能知道的一切几何事实,按照柏拉图和亚里士多德提出的关于逻辑推理的方法,整理成一门有着严密系统的理论,写成了数学史上早期的巨著——《几何原本》。

《几何原本》的伟大历史意义在于,它是用公理法建立起演绎的数学体系的最早典范。在这部著作里,全部几何知识都是从最初的几个假设除法、运用逻辑推理的方法展开和叙述的。也就是说,从《几何原本》发表开始,几何才真正成为了一个有着比较严密的理论系统和科学方法的学科。

欧几里得的《几何原本》

欧几里得的《几何原本》共有十三卷,其中第一卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件;第二卷讲如何把三角形变成等积的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术得里论;最后讲述立体几何的内容。

从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧式几何。

《几何原本》最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容,定义、公理、公设、命题(包括作图和定理)。《几何原本》第一卷列有23个定义,5条公理,5条公设。(其中最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。)

这些定义、公理、公设就是《几何原本》全书的基础。全书以这些定义、公理、公设为依据逻辑地展开他的各个部分的。比如后面出现的每一个定理都写明什么是已知、什么是求证。都要根据前面的定义、公理、定理进行逻辑推理给予仔细证明。

关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。

欧几里得《几何原本》的诞生在几何学发展的历史中具有重要意义。它标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。

从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,但是欧几里得几何学仍旧是中学生学习数学基础知识的好教材。

由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青、少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。

少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。

近代物理学的科学巨星爱因斯坦也是精通几何学,并且应用几何学的思想方法,开创自己研究工作的一位科学家。爱因斯坦在回忆自己曾走过的道路时,特别提到在十二岁的时候“几何学的这种明晰性和可靠性给我留下了一种难以形容的印象”。后来,几何学的思想方法对他的研究工作确实有很大的启示。他多次提出在物理学研究工作中也应当在逻辑上从少数几个所谓公理的基本假定开始。在狭义相对论中,爱因斯坦就是运用这种思想方法,把整个理论建立在两条公理上:相对原理和光速不变原理。

在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。

但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。

现代几何公理体系

人们对《几何原本》中在逻辑结果方面存在的一些漏洞、破绽的发现,正是推动几何学不断向前发展的契机。最后德国数学家希尔伯特在总结前人工作的基础上,在他1899年发表的《几何基础》一书中提出了一个比较完善的几何学的公理体系。这个公理体系就被叫做希尔伯特公理体。

希尔伯特不仅提出了—个完善的几何体系,并且还提出了建立一个公理系统的原则。就是在一个几何公理系统中,采取哪些公理,应该包含多少条公理,应当考虑如下三个方面的问题:

第一,共存性(和谐性),就是在一个公理系统中,各条公理应该是不矛盾的,它们和谐而共存在同一系统中。

第二,独立性,公理体系中的每条公理应该是各自独立而互不依附的,没有一条公理是可以从其它公理引伸出来的。

第三,完备性,公理体系中所包含的公理应该是足够能证明本学科的任何新命题。

这种用公理系统来定义几何学中的基本对象和它的关系的研究方法,成了数学中所谓的“公理化方法”,而把欧几里得在《几何原本》提出的体系叫做古典公理法。

公理化的方法给几何学的研究带来了一个新颖的观点,在公理法理论中,由于基本对象不予定义,因此就不必探究对象的直观形象是什么,只专门研究抽象的对象之间的关系、性质。从公理法的角度看,我们可以任意地用点、线、面代表具体的事物,只要这些具体事物之间满足公理中的结合关系、顺序关系、合同关系等,使这些关系满足公理系统中所规定的要求,这就构成了几何学。

因此,凡是符合公理系统的元素都能构成几何学,每一个几何学的直观形象不止只有—个,而是可能有无穷多个,每一种直观形象我们把它叫做几何学的解释,或者叫做某种几何学的模型。平常我们所熟悉的几何图形,在研究几何学的时候,并不是必须的,它不过是一种直观形象而已。

就此,几何学研究的对象更加广泛了,几何学的含义比欧几里得时代更为抽象。这些,都对近代几何学的发展带来了深远的影响。

B. 第五大题几何小实践怎么

这不是等边三角形吧,这种情况下,一个三角形的有9个,还有一个有四个三角形组成的,最大的有九个小三角形组成的。如果是等边三角形的话,就是他们说的三个,三个不同大小各一个,不过我看图形中间画的线不是直线

C. 求一道几何实践题。

先画个长方体的图,通过画图可以知道不管什么样的长方体,共有12条边,其中有三组边是相同长度的,每一组相同长度的边有四条。所以长7厘米的边有四条,6厘米的边有四条,5厘米的边有四条。又已知钢丝正好做成这个长方体,所以钢丝长(7+6+5)x4=72cm。然后做成正方体时,每条边都是一样长的,有12条边,所以72除以12等于6,所以每条边长6cm。所以正方体的体积是6x6x6=216立方厘米。ok啦!希望来得及帮上你

D. 通过你的教学实践,谈谈图形与几何中三条研究线索的关系

原来课程标准实验稿的几何框架是按照图形的认识、图形与变换、图形与坐标和图形与证明四条主线来划分的,新的课程标准修订稿把四条主线变成三条主线,这三条主线分别是图形的性质、图形的变化、图形与坐标。四条主线变成三条主线,首先是图形的性质这条主线基本上涵盖了原来图形的认识和图形与证明的内容,除了对一些基本图形的认识之外,还包含着对图形一些命题的证明,同时还发展了学生的空间观念和推理能力。 第二条主线是图形的变化,它的内容比较丰富,这里面包含了合同变换——图形的轴对称、图形的平移、图形的旋转,以及图形的相似(包括位似),由于和相似关系密切,因此直角三角形的边角关系也包含其中,还有一类变换是仿射变换,在标准中呈现的就是投影。这部分主要研究图形之间的关系,特别是从运动的观点和变化的角度来研究图形,这个方法本身也是十分重要的。 第三条主线叫做图形与坐标,它包含坐标与图形的位置,还有坐标与图形的运动,用坐标的方法刻画在图形的变换中所熟知的轴对称,图形的平移,图形的位似等等。 框架里有一条主线叫图形与变化,原来叫图形与变换或图形的运动,不过新课改中用的是变化,这是因为在这部分内容里,不光是数学上变换的东西,后面还有一些投影与视图的内容,另外解直角三角形也囊括在这里面,所以在这个里面叫变换显得不那么纯粹,叫运动,像解直角三角形这样的内容也有点牵强,用变化这个词可能能够比较好地把刚才那些问题给规避掉。
从具体的内容增减变化上,我们一线教师看了图形与几何这块的变化。首先会发现增加了打星号的内容,如关于相似三角形判定的演绎证明,圆中的垂径定理、切线长定理等。作为选取部分,反映了课程标准理念中的“不同的人在数学上得到不同的发展”,相当于给学生提供一个弹性的空间,对那些有余力、有兴趣的学生,给他进一步多学一点数学的机会,学生有选择性的学或者教师有选择性的教。

E. 数学五年级几何小实践,急急急~

1、表面积=4*4*6+4*4*2=128 平方分米
2、原长方体表面积=2(10*8+10*6+8*6)=376 cm²
截面有三种情况,即10*8,10*6,6*8,其中:80为最大,48为最小
所以最大为:376+80*2=536 cm²
最小为:376+48*2=472 cm²

F. 通过你的教学实践,谈谈你对图形与几何课程教育目标的认识

图形是个工具,用来认识几何很好。

G. 实例,说说怎样在几何教学中培养学生的空间观念,几

《数学课程标准》中指出,“空间观念”指能由实物的形状想象出几何图形;由几何图形想象实物形状,进行几何体与其三视图、展开图之间的转化;能从较复杂的图形中分解出基本的图形,能描述实物或几何图形的运动变化;能采用适当的方式描述物体间的相互关系;能运用图形形象地描述问题,利用直观进行思考。 发展学生的空间观念,除了七年级上册第一章丰富的图形世界和九年级上册视图投影外,还有位置的确定,图形的变换,如轴对称,中心对称,平移,旋转,位似图形等变换的教学内容,都可以发展学生的空间观念,在处理这些内容的时候,我们应该:
一、利用已有平台,让学生从实际生活中积累空间观念
利用学生已有的生活经验,借助于学生生活密切相关的现实事例,设计恰当的教学情境,激发学生的学习几何的兴趣。通过学生动眼看,动手做,动口说,动耳听,动脑想,发展学生的合情推理能力。例如收集超市出售一种圆筒状包装的保鲜膜的相关数据,其规格为“20 cm × 60 cm”,经测量这筒保鲜膜的内径、外径的长分别为3。2 cm,4。0 cm,则该种保鲜膜的厚度约为多少?(π取3。14,结果保留两位有效数字)解题时利用圆筒状包装的保鲜膜的体积不变列方程求解,圆筒状包装的保鲜膜的体积=保鲜膜展开后的体积,设保鲜膜的厚度为x cm,由题意得方程
,解得 .
二、积极发挥学生的主观能动性,注重培养学生的空间观念
空间观念是空间想象力的基础,是重要的数学素养。在几何知识教学过程中,要培养学生按照一定目的,有顺序、有重点地去观察,在反复细致观察的基础上,让学生展开丰富的空间想象。要充分体现学生的主体性,发挥学生的主观能动性,鼓励学生大胆操作。让学生借助视觉、触觉等活动认识理解几何图形,并且动手制作相应的几何图形。这样让学生通过自己的亲身体验获得对几何图形知识的深刻理解,从而形成稳固、清晰的空间观念。例如在丰富多彩的图形学习时,要求学生总结出正方体的展开图有几种情形时,我在教学时要求学生带剪刀自己操作,小组探究合作完成任务。完成任务后进一步探究哪些图形不可能是正方体的展开图。
又如求截正方体截面形状时,要求学生自己做模型,找结论。有的学生截用纸盒做的正方体只能得出简单的截面形状结论,有的学生截用橡皮泥或萝卜做的正方体得出丰富的截面形状结论,还有的学 生更绝,把水装入用玻璃做的正方体中,晃动水面得出截面形状结论。
三、加强学生合作交流和研究性学习,和几何建模以及探究过程,以培养学生的交流能力和研究意识。
四、加强应用方面的要求,使学生能够有意识地将学到的几何知识用应到实践中去。象求蚂蚁沿四棱柱表面爬,求它爬行的最短路径的长是多少?实际上,这是棱柱侧面展开问题,学生都能熟练解决。

H. 谁能把一到五年级的数学书中,几何小实践里的知识整理给我

重点搞好以下七大块的分类复习。
1、数的认识(整数和小数、数的整除、分数百分数)
知识要点包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”“小数、分数、百分数的互化”“约分和通分”等知识点。 重点确定在数的意义概念的理解,数的读写,数的整除。
本部分重点加强数学基本概念和基本性质的理解和掌握。具体通过一系列的练习,如填空题、选择题、判断题为主,适当穿插进行整数和小数的简单计算、约分和通分练习。复习本部分知识教师应该根据学生的实际学习水平灵活处理,对于班级基础较差的学生可适当放慢,万事开头难,本部分知识必须做到教一点使学生会一点,切忌贪多图快。复习题可参考以前的专项复习题或专项复习试卷。
2、四则运算(四则运算的意义与法则、运算定律与简便计算、四则混合运算、简易方程)。
这节重点四则运算和简便运算上。 全面概括四则运算和计算方法,提高计算水平和计算能力,包括“四则运算的意义和法则”、“四则混合运算”。 利用运算定律,掌握简便运算,提高计算效率,包括“运算定律和简便运算”。 结合教材按照先复习(整数、小数、分数)四则运算意义和运算法则,要求教师结合教材必须搞好学生相关的口算训练和基本的四则运算练习,然后再复习(整数、小数、分数)的四则混合运算,教师要加强四则混合运算中运算顺序的教学,在此基础上教师要精心设计练习,提高学生综合计算能力。第三,要搞好运算定律与简便计算复习,三种运算定律要求学生熟练掌握。最后,在简易方程复习中,教师要重点规范学生的答题行为,解方程必须写解。本部分练习题可参考以前下发的专项复习题。
3、量的计量
本节重点放在名数的改写和实际观念上。
(1)、整理量的计量知识结构,包括“长度、面积、体积单位”、“重量与时间单位”。
(2)、巩固计量单位,强化实际观念,包括“名数的改写”。
(3)、综合训练与应用,练习题可刻印或参考试卷。
4、几何初步知识(线和角、平面图形、立体图形)
本节重点放在对特征的辨析和对公式的应用上。
(1)、强化概念理解和系统化,包括“平面图形的特征”、“立体图形的特征”。
(2)、准确把握图形特征,加强对比分析,揭示知识间的联系与区别,包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
(3)、加强对公式的应用,提高掌握计算方法。能让学生对周长、面积、体积进行的正确计算。
(4)、整体感知、实际应用。
练习题可刻印或参考试卷。
5、比和比例(比的意义和性质、比例的意义和性质、正比例和反比例)
本部分要求学生掌握比和比例意义和性质的同时,必须做到使学生正确辨析概念,加深理解,包括“比和比例”、“正比例和反比例”,会判断简单的正、反比例。重点要求学生掌握求比值、化简比,按比例分配,应用比例尺计算,解比例。在练习中很抓解题训练,提高解方程和解比例的能力,包括“简易方程”、“解比例”。
练习题可刻印或参考试卷。
6、简单的统计
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
(1)、求平均数的方法。
(2)、加深统计图表的特点和作用的认识,包括“统计表”、“统计图”。
(3)、进一步对图表分析和回答问题,包括填图和根据图表回答问题。(本部分是复习的重点)
练习题可参考教材或试卷。
7、应用题解(整数和小数应用题、分数和百分数应用题、列方程解应用题、比和比例应用题)
这部分重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
(1)、简单应用题的分析与整理。 (一步计算)
(2)、复合应用题的分析与整理。 (两步以上)
(3)、列方程解应用题的分析与整理。
(4)、分数应用题的分析与整理。(重点)
(5)、用比例知识解答应用题的分析与整理。
(6)、应用题的综合训练。
另外推荐一本书:小学(五年级)教材(一般书店多有)

热点内容
自私英语 发布:2025-06-22 20:07:57 浏览:882
明朝文言文 发布:2025-06-22 18:42:32 浏览:368
德清物理 发布:2025-06-22 14:38:22 浏览:10
三年级数学上册北师大版 发布:2025-06-22 14:09:27 浏览:418
现代生物材料 发布:2025-06-22 13:08:02 浏览:791
b开头的英语单词 发布:2025-06-22 10:37:34 浏览:861
怎么下载游 发布:2025-06-22 05:34:34 浏览:34
老师的喘气声 发布:2025-06-22 04:52:54 浏览:46
教学课程表 发布:2025-06-22 04:37:15 浏览:436
教学查房模板 发布:2025-06-22 03:57:26 浏览:119