生物学科的特点
生物本专业的我简单讲解一下两者的区别
大家对生物肯定是不陌生,对生物专业也是耳熟能详,但是大家对生物科学和生物学有一种莫名的误解。

就毕业后就业方向来说。学习生物科学的毕业生,在毕业后对口的专业是各生物公司技术研发,而生物学的学生很多都是去了某某生物研究保护中心。
很多专业命名虽然只差一个字,但是方向和着重点却是完全不一样的。所以在我们选择考虑的同时,一定要想清楚,搞明白再进行下一步。
或许我的讲解,你们还是不甚清楚,但还是希望对大家有一点帮助。谢谢
② 生物科学技术的特征
生物不仅具有多样性,而且具有一些共同的特征和属性。
组成生物体的生物大分子的结构和功能,在原则上是相同的。比如各种生物的蛋白质的单体都是氨基酸,种类不过20种左右,它们的功能对所有的生物都是相同的;在不同生物体内基本代谢途径也是相同的等等。这就是生物化学的同一性。同一性深刻的揭示了生物的统一性。
生物具有多层次的结构模式。对于病毒以外的一切生物都是由细胞组成的,细胞是由大量原子和分子所组成的非均质的系统。
从结构上看,细胞是由蛋白质、核酸、脂类、多糖等组成的多分子动态体系;从信息论观点看,细胞是遗传信息和代谢信息的传递系统;从化学观点看,细胞是由小分子合成的复杂大分子;从热力学上看,细胞是远离平衡的开放系统……
除细胞外,生物还有其他结构单位。细胞之下有细胞器、分子、原子,细胞之上有组织、器官、器官系统、个体、生态系统、生物圈等等。生物的各种结构单位,按照复杂程度和逐级结合的关系而排列成一系列的等级,这就是结构层次。较高层次上会出现许多较低层次所没有的性质和规律。
其他的还有很多,比如生物的有序性和耗散结构、生物的稳定性,生命的连续性,个体发育,生物的进化,生态系统中的相互关系等等。
这些都说明,尽管生物世界存在惊人的多样性,但所有的生物都有共同的物质基础,遵循共同的规律。生物就是这样一个统一而有多样的物质世界。
和其他学科一样,生物学依据自己所研究的对象,也有一些基本的研究方法——观察描述的方法、比较的方法、实验的方法等等,也都具有自己的特点。对于生物学来说,既需要有精确的实验分析,又需要从整体和系统的角度来观察生命,生物学积累了大量关于各种层次生命系统及其组成部分的资料。今天对于生命系统的规律作出定量的理论研究已经提到日程上来,系统论方法将作为新的研究方法而受到人们的重视。
生物学的分支早期的生物学主要是对自然的观察和描述,是关于博物学和形态分类的研究。所以生物学最早是按类群划分学科的,如植物学、动物学、为生物学等。由于生物种类的多样性,也由于人们对生物学的了解越来越多,学科的划分也就越来越细,一门学科往往在划分为若干学科。
按生物类群划分学科,有利于从各个侧面认识某一个自然类群的生物特点和规律性。但无论研究对象是什么,都不外乎分类、形态、生理、生化、生态、遗传、进化等等。
生物在地球历史中有着很长的发展历史,大约有1500万种生物已经灭绝,它们的遗骸保存在地层中形成化石。古生物学专门通过化石研究历史上的生物;生物的类群是如此的繁多,需要一个专门的学科来研究类群的划分,就产生了分类学;形态学是生物学中研究动植物的形态结构的学科;随着显微镜的使用,形态学又深入到超微结构的领域,组织学和细胞学也就相应的建立起来了;生理学是研究生物机能的学科,生理学的研究方法是以实验为主;遗传学是研究生物性状的遗传和变异,阐明其规律的学科;胚胎学是研究生物个体发育的学科;生态学是研究生物与生物之间以及生物与环境之间的关系的学科。
研究范围包括个体、种群、群落、生态系统以及生物圈等层次。揭示生态系统中食物链、生产力、能量流动和物质循环的有关规律;生物化学是研究生命物质的化学组成和生物体各种化学过程的学科,是进入20世纪以后迅速发展起来的一门学科。
生物化学的成就提高了人们对生命本质的认识。生物化学侧重于生命的化学过程、参与这一过程的物质、产品以及酶的作用机制的研究。分子生物学是从研究生物大分子的结构发展起来的,现在更多的仍是研究生物大分子的结构与功能的关系、以及基因的表达、调控等方面的机制;生物物理学是用物理薛的概念和方法研究生物的结构、生命活动的物理和物理化学过程的学科。早期生物物理学的研究是从生物发光、生物电等问题开始的。随着生物学、物理学的发展,新概念的产生和介入,生物物理的研究范围和水平不断加深加宽。产生了量子生物学、生物大分子晶体结构以及生物控制论等小分支;生物数学是数学和生物学结合的产物,它的任务是研究生命过程中的数学规律。
生物界是一个多层次的复杂系统,为了揭示某一层次的规律以及和其他层次的关系,出现了按层次划分的学科并且越来越受人们的重视。比如:分子生物学、细胞生物学、个体生物学、种群生物学等等。
总之,生物学中一些新的学科在不断的分化出来,另一些学科又在走向融合。生物学分可的这种局面,反映了生物学极其丰富的内容,也反映了生物学蓬勃发展的景象。

③ 生物学的研究与其他学科的研究有何不同
他们主要研究的是人体科学,相对来说是比较难的,也比较复杂。
④ 生物学是怎么样的学科
生物学(Biology),简称生物,是自然科学六大基础学科之一。研究生物的结构、功能、发生和发展的规律。以及生物与周围环境的关系等的科学。生物学源自博物学,经历实验生物学、分子生物学而进入了系统生物学时期。
生物学的学科分支有:
1.动物学领域
动物学-动物生理学-解剖学-胚胎学-神经生物学-发育生物学-昆虫学-行为学-组织学
2.植物学领域
植物学-植物病理学-藻类学-植物生理学
3.微生物学/免疫学领域
微生物学-免疫学-病毒学
4.生物化学领域
生物化学-蛋白质力学-糖类生化学-脂质生化学-代谢生化学
5.演化及生态学领域
生态学-生物分布学-系统分类学-古生物学-演化论-分类学-演化生物学
6.现代生物技术学领域
生物技术学-基因工程-酵素工程学-生物工程-代谢工程学-基因体学
7.细胞及分子生物学领域
分子生物学- 细胞学-遗传学
8.生物物理领域
生物物理学-结构生物学-生医光电学-医学工程
9.生物医学领域
感染性疾病-毒理学-放射生物学-癌生物学
10.生物信息领域
生物数学-仿生学-系统生物学
11.环境生物学领域
大气生物学-生物地理学-海洋生物学-淡水生物学
生物学作为一门基础科学,传统上一直是农学和医学的基础,涉及种植业、畜牧业、渔业、医疗、制药、卫生等等方面。随着生物学理论与方法的不断发展,它的应用领域不断扩大。生物学的影响已突破上述传统的领域,而扩展到食品、化工、环境保护、能源和冶金工业等等方面。如果考虑到仿生学,它还影响到电子技术和信息技术。人口、食物、环境、能源问题是当前举世瞩目的全球性问题。世界人口每年的增长率约20%,大约每过35年,人口就会增加一倍。地球上的人口正以前所未有的速度激增着。人口问题是一个社会问题,也是一个生态学问题。人们必须对人类及环境的错综复杂的关系进行周密的定量的研究,才能对地球、对人类的命运有一个清醒的认识,从而学会自己控制自己,使人口数量维持在一个合理的数字上。在这方面生物学应该而且可能做出自己的贡献。内分泌学和生殖生物学的成就导致口服避孕药的发明,已促进了计划生育在世界范围内的推广。在人口问题中,除了数量激增以外,遗传病也严重威胁人口质量。一些资料表明,新生儿中各种遗传病患者所占的比例在3%~10.5%之间。在中国的部分山区,智力不全者占2%~3%,个别地区达10%以上。揭示产生遗传病的原因,找到控制和征服遗传病的途径无疑是生物学又一重要任务。进行家系分析以确定患者是否患有遗传病,对患者提出有益的遗传指导和劝告;通过对胎儿的脱屑细胞进行染色体分析和各种酶的生化分析,以诊断未来的婴儿是否有先天性遗传性疾病。这些方法都能避免或减少患有遗传病婴儿的出生,以减轻家庭和社会的沉重负担。将基因工程应用于遗传病的治疗称为基因治疗,在实验动物上对几种遗传病的基因治疗已取得一些进展。随着基因工程技术的发展,基因治疗将为控制和治疗人类遗传病开辟广阔的前景。
⑤ 初中生物学科具有哪些特点
1.生物学是系统性很强的学科
2.生物学具有丰富的哲学内涵
3.从进化论的角度看问题
4.生物学是与实践紧密联系的
5.生物是理科,应当注意理解性记忆
6.生物与化学是有联系的
7.生物重在理解
⑥ 生物学科怎么学
你认为生物学的学科思想或学科特点是什么?
生命意识
环保意识
绿色生活
积极人生
在上一年的高考中,生物占理科综合300分的24%,即为72分,不及语数外各科的一半,比长期的难兄难弟地理也少近28%。而且2007年还将进一步削减比分,降低权重。资料还表明,英国、法国、德国、澳大利亚、韩国等国政府近年来投入最多的领域是生物科技。中新社7月13日报道该调查的结论是:中国学生总体优势令人印象深刻,尤其是高中生更为突出。数学、英语都是突出强项,理科强于物理、化学,但生物和信息科学表现不佳。恰巧是高考末位的生物与不高考的信息科学表现不佳,而恰巧又是这两科与知识经济的BT和IT关系最大,但并未引起主管部门的关注和表态。
⑦ 生物学的学科地位为什么如此重要
因为生物学的发展和人类的未来息息相关。
生物与人类生活的许多方面都有着非常密切的关系。生物学作为一门基础科学,传统上一直是农学和医学的基础,涉及种植业、畜牧业、渔业、医疗、制药、卫生等等方面。
生物学太重要了,它是农学、医学、林学、环境科学等学科的基础;社会的发展,人类文明的进步,个人生活质量的提高,都要靠生物学的发展和应用。

(7)生物学科的特点扩展阅读
学科分类:
生物分类学是研究生物分类的方法和原理的生物学分支。分类就是遵循分类学原理和方法,对生物的各种类群进行命名和等级划分。
瑞典生物学家林奈将生物命名后,而后的生物学家才用域(Domain)、界(Kingdom)、门( Phylum)、纲(Class)、目(Order)、科(Family)、属(Genus)、种(Species)加以分类。
最上层的界,由怀塔克所提出的五界,比较多人接受;分别为原核生物界、原生生物界、菌物界、植物界以及动物界。 从最上层的“界”开始到“种”,愈往下层则被归属的生物之间特征愈相近。共有七大类,分别是:界门纲目科属种。
⑧ 求:初一生物学科特点
理科中的文科,简单,多看书就好
⑨ 生物是一种什么样的学科(性质) 该怎样学习生物
理科。一些学科术语、规律、规则、结构特征等会让人觉得很难记住。比如我就总记不住阑尾在左边还是右边。(其实如果经常看看解剖图、玩玩拼图、模型等,有个几次就会记牢了)。学习生物也有一些方法。比如
1.把握知识的内在的逻辑性:有些术语的名称可能是由特定含义的,可以问问为什么这么称呼?就会理解更全面。把握结构与功能相适应的基本观点,就能更好的学会知识。再比如,人教版高中生物课程标准实验教科书《分子与细胞》将“细胞是基本的生命系统”作为统摄全书的基本命题,也作为全书知识内容的逻辑起点,各章节分别从其组成、结构、功能、发展变化规律等方面分别论证这一基本命题(为什么是系统?为什么是生命系统?为什么是基本的生命系统?),构成了较为完整的逻辑体系。
2生物是实验的学科。多实验、多动手、多观察,就会加深学习中的感性认识,让学习的内容直观、生动、有趣,印象深刻、便于记忆。
比如,细胞的结构(初中显微结构、高中亚显微结构))很难记的准,我们可以自己做两个模型,送给朋友或家人,给他们讲一讲,印象就会深,自然就记住了。
3联系自身及生活实际。很多生物学知识与社会热点问题、生活联系紧密,能多联系多思考会很时学到的知识通汇贯通。如转基因、抗生素、激素等知识是我们学习的内容也是社会的热点话题。
根据你的问题,我猜测你应该是初中生,(高中学生应该已经在初中学习过生物了)。如果老师的课生动有趣,一般都会学的很好。如果老师照本宣科,可能就会觉得枯燥不好学了,那你可以多问几个为什么、教材上的实验能做的自己都做一做,还可以看几本科普读物(《青少年科苑》)看看cctv10频道的健康之路、人与自然、走近科学等栏目。兴趣是最好的老师,对吧!
⑩ 生物方面的学科分类
生物学的分支学科各有一定的研究内容而又相互依赖、互相交叉。此外,生命作为一种物质运动形态,有它自己的生物学规律,同时又包含并遵循物理和化学的规律。因此,生物学同物理学、化学有着密切的关系。生物分布于地球表面,是构成地球景观的重要因素。因此,生物学和地学也是互相渗透、互相交叉的。
早期的生物学主要是对自然的观察和描述,是关于博物学和形态分类的研究。所以生物学最早是按类群划分学科的,如植物学、动物学、微生物学等。由于生物种类的多样性,也由于人们对生物学的了解越来越多,学科的划分也就越来越细,一门学科往往要再划分为若干学科,例如植物学可划分为藻类学、苔藓植物学、蕨类植物学等;动物学划分为原生动物学、昆虫学、鱼类学、鸟类学等;微生物不是一个自然的生物类群,只是一个人为的划分,一切微小的生物如细菌以及单细胞真菌、藻类、原生动物都可称为微生物,不具细胞形态的病毒也可列入微生物之中。因而微生物学进一步分为细菌学、真菌学、病毒学等。
按生物类群划分学科,有利于从各个侧面认识某一个自然类群的生物特点和规律性。但无论具体对象是什么,研究课题都不外分类、形态、生理、生化、生态、遗传、进化等方面。为了强调按类型划分的学科已经不仅包括形态、分类等比较经典的内容,而且包括其他各个过程和各种层次的内容,人们倾向于把植物学称为植物生物学,把动物学称为动物生物学。
生物在地球历史中有着40亿年左右的发展进化历程。大约有1500万种生物已经绝灭,它们的一些遗骸保存在地层中形成化石。古生物学专门通过化石研究地质历史中的生物,早期古生物学多偏重于对化石的分类和描述,近年来生物学领域的各个分支学科被引入古生物学,相继产生古生态学、古生物地理学等分支学科。现在有人建议,以广义的古生物生物学代替原来限于对化石进行分类描述的古生物学。
生物的类群是如此的繁多,需要一个专门的学科来研究类群的划分,这个学科就是分类学。林奈时期的分类以物种不变论为指导思想,只是根据某几个鉴别特征来划分门类,习称人为分类。现代的分类是以进化论为指导思想,根据物种在进化上的亲疏远近进行分类,通称自然分类。现代分类学不仅进行形态结构的比较,而且吸收生物化学及分子生物学的成就,进行分子层次的比较,从而更深刻揭示生物在进化中的相互关系。现代分类学可定义为研究生物的系统分类和生物在进化上相互关系的科学。
生物学中有很多分支学科是按照生命运动所具有的属性、特征或者生命过程来划分的。
形态学是生物学中研究动、植物形态结构的学科。在显微镜发明之前,形态学只限于对动、植物的宏观的观察,如大体解剖学、脊椎动物比较解剖学等。比较解剖学是用比较的和历史的方法研究脊椎动物各门类在结构上的相似与差异,从而找出这些门类的亲缘关系和历史发展。显微镜发明之后,组织学和细胞学也就相应地建立起来,电子显微镜的使用,使形态学又深入到超微结构的领域。但是形态结构的研究不能完全脱离机能的研究,现在的形态学早已跳出单纯描述的圈子,而使用各种先进的实验手段了。
生理学是研究生物机能的学科,生理学的研究方法是以实验为主。按研究对象又分为植物生理学、动物生理学和细菌生理学。植物生理学是在农业生产发展过程中建立起来的。生理学也可按生物的结构层次分为细胞生理学、器官生理学、个体生理学等。在早期,植物生理学多以种子植物为研究对象;动物生理学也大多联系医学而以人、狗、兔、蛙等为研究对象;以后才逐渐扩展到低等生物的生理学研究,这样就发展了比较生理学。
遗传学是研究生物性状的遗传和变异,阐明其规律的学科。遗传学是在育种实践的推动下发展起来的。1900年孟德尔的遗传定律被重新发现,遗传学开始建立起来。以后,由于T.H.摩尔根等人的工作,建成了完整的细胞遗传学体系。1953年,遗传物质DNA分子的结构被揭示,遗传学深入到分子水平。现在,遗传信息的传递、基因的调控机制已逐渐被了解,遗传学理论和技术在农业、工业和临床医学实践中都在发挥作用,同时在生物学的各分支学科中占有重要的位置。生物学的许多问题,如生物的个体发育和生物进化的机制,物种的形成以及种群概念等都必须应用遗传学的成就来求得更深入的理解。
胚胎学是研究生物个体发育的学科,原属形态学范围。1859年达尔文进化论的发表大大推动了胚胎学的研究。19世纪下半叶,胚胎发育以及受精过程的形态学都有了详细精确的描述。此后,动物胚胎学从观察描述发展到用实验方法研究发育的机制,从而建立了实验胚胎学。现在,个体发育的研究采用生物化学方法,吸收分子生物学成就,进一步从分子水平分析发育和性状分化的机制,并把关于发育的研究从胚胎扩展到生物的整个生活史,形成发育生物学。
生态学是研究生物与生物之间以及生物与环境之间的关系的学科。研究范围包括个体、种群、群落、生态系统以及生物圈等层次。揭示生态系统中食物链、生产力、能量流动和物质循环的有关规律,不但具有重要的理论意义,而且同人类生活密切相关。生物圈是人类的家园。人类的生产活动不断地消耗天然资源,破坏自然环境。特别是进入20世纪以后,由于人口急剧增长,工业飞速发展,自然环境遭到空前未有的破坏性冲击。保护资源、保持生态平衡是人类当前刻不容缓的任务。生态学是环境科学的一个重要组成成分,所以也可称环境生物学。人类生态学涉及人类社会,它已超越了生物学范围,而同社会科学相关联。
生命活动不外物质转化和传递、能的转化和传递以及信息的传递三个方面。因此,用物理的、化学的以及数学的手段研究生命是必要的,也是十分有效的。交叉学科如生物化学、生物物理学、生物数学就是这样产生的。
生物化学是研究生命物质的化学组成和生物体各种化学过程的学科,是进入20世纪以后迅速发展起来的一门学科。生物化学的成就提高了人们对生命本质的认识。生物化学和分子生物学的内容有区别,但也有相同之处。一般说来,生物化学侧重于生命的化学过程、参与这一过程的作用物、产品以及酶的作用机制的研究。例如在细胞呼吸、光合作用等过程中物质和能的转换、传递和反馈机制都是生物化学的研究内容。分子生物学是从研究生物大分子的结构发展起来的,现在更多的仍是研究生物大分子的结构与功能的关系、以及基因表达、调控等方面的机制问题。
生物物理学是用物理学的概念和方法研究生物的结构和功能、研究生命活动的物理和物理化学过程的学科。早期生物物理学的研究是从生物发光、生物电等问题开始的,此后随着生物学的发展,物理学新概念,如量子物理、信息论等的介入和新技术如 X衍射、光谱、波谱等的使用,生物物理的研究范围和水平不断加宽加深。一些重要的生命现象如光合作用的原初瞬间捕捉光能的反应,生物膜的结构及作用机制等都是生物物理学的研究课题。生物大分子晶体结构、量子生物学以及生物控制论等也都属于生物物理学的范围。
生物数学是数学和生物学结合的产物。它的任务是用数学的方法研究生物学问题,研究生命过程的数学规律。早期,人们只是利用统计学、几何学和一些初等的解析方法对生物现象做静止的、定量的分析。20世纪20年代以后,人们开始建立数学模型,模拟各种生命过程。现在生物数学在生物学各领域如生理学、遗传学、生态学、分类学等领域中都起着重要的作用,使这些领域的研究水平迅速提高,另一方面,生物数学本身也在解决生物学问题中发展成一独立的学科。
有少数生物学科是按方法来划分的,如描述胚胎学、比较解剖学、实验形态学等。按方法划分的学科,往往作为更低一级的分支学科,被包括在上述按属性和类型划分的学科中。
生物界是一个多层次的复杂系统。为了揭示某一层次的规律以及和其他层次的关系,出现了按层次划分的学科并且愈来愈受人们的重视。
分子生物学是研究分子层次的生命过程的学科。它的任务在于从分子的结构与功能以及分子之间的相互作用去揭示各种生命过程的物质基础。现代分子生物学的一个主要分科是分子遗传学,它研究遗传物质的复制、遗传信息的传递、表达及其调节控制问题等。
细胞生物学是研究细胞层次生命过程的学科,早期称细胞学是以形态描述为主的。以后,细胞学吸收了分子生物学的成就,深入到超微结构的水平,主要研究细胞的生长、代谢和遗传等生物学过程,细胞学也就发展成细胞生物学了。
个体生物学是研究个体层次生命过程的学科。在复式显微镜发明之前,生物学大都是以个体和器官系统为研究对象的。研究个体的过程有必要分析组成这一过程的器官系统过程、细胞过程和分子过程。但是个体的过程又不同于器官系统过程、细胞过程或分子过程的简单相加。个体的过程存在着自我调节控制的机制,通过这一机制,高度复杂的有机体整合为高度协调的统一体,以协调一致的行为反应于外界因素的刺激。个体生物学建立得很早,直到现在,仍是十分重要的。
种群生物学是研究生物种群的结构、种群中个体间的相互关系、种群与环境的关系以及种群的自我调节和遗传机制等。种群生物学和生态学是有很大重叠的,实际上种群生物学可以说是生态学的一个基本部分。
以上所述,还仅仅是当前生物学分科的主要格局,实际的学科比上述的还要多。例如,随着人类的进入太空,宇宙生物学已在发展之中。又如随着实验精确度的不断提高,对实验动物的要求也越来越严,研究无菌生物和悉生态的悉生生物学也由于需要而建立起来。总之,一些新的学科不断地分化出来,一些学科又在走向融合。生物学分科的这种局面,反映了生物学极其丰富的内容,也反映了生物学蓬勃发展的景象。
