当前位置:首页 » 美术学科 » 数学学科能力

数学学科能力

发布时间: 2020-11-23 10:08:19

『壹』 初中数学学科的学科素养是什么

中学数学是重要的基础学科,在推进素质教育的过程中肩负着历史重任,对培养和发展中学生素质意义重大。在数学教学中,如何培养和提高中学生数学素质,适应社会主义现代化建设的需要,是广大数学教育工作者面临的重大课题。
张奠宙教授《数学素质教育设计》(草案)中的一个界定:即从数学知识观念、创造能力、思维品质、科学语言等四个层次进行分析研究;朱成杰教授《数学思想方法教学研究导论》指出数学素质包括:思想政治、科学文化、心理健康和劳动技能素质等四个方面。
我国传统提法:基本运算能力、逻辑思维能力、 空间想象能力、应用数学知识分析解决实际问题能力,有人建议应增加一项“建立数学模型能力”。
美国数学课程标准认为, 数学教育的目标应是具有以下五点数学素质:
①懂得数学价值;
②对自己的数学能力有信心;
③有解决数学问题的能力;
④学会数学交流;
⑤掌握数学思想方法。
更通俗地说,数学素养就是数学家的一种职业习惯,“三句话不离本行”,我们希望把我们的专业搞得更好,更精密更严格,有这种优秀的职业习惯当然是好事。
人的所有修养,有意识的修养比无意识地、仅凭自然增长地修养来得快得多。只要有这样强烈的要求、愿望和意识,坚持下去人人都可以形成较高的数学素养。

『贰』 初级中学数学学科知识与教学能力考什么

看你对中学教材知识掌握的程度,看你对学生学情得分析能力等。

『叁』 初中数学学科知识与教学能力过了 但是综合素质以及教育知识与能力没过

小学考综合素质、教育教学知识与能力中学考综合素质,教育知识与能力、学科知识与能力只有一个综合素质是一样的,你要考小学的话也需要重新考科目二

『肆』 数学学科知识与教学能力初中怎么学习

一、考试目标
1.数学学科知识的掌握和运用。掌握大学专科数学专业基础课程的知识、中学数学的知识。具有在初中数学教学实践中综合而有效地运用这些知识的能力。
2.初中数学课程知识的掌握和运用。理解初中数学课程的性质、基本理念和目标,熟悉《全日制义务教育数学课程标准(实验)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求
初中数学教师教学知识与能力考试内容主要有数学学科知识、数学课程知识、数学教学知识和数学教学技能。
具体考试内容和要求如下:
1.数学学科知识
数学学科知识包括大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。
大学专科数学专业基础课程知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学专科数学课程中与中学数学密切相关的内容。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。

『伍』 数学方面的能力该怎么培养 知乎

一、认清你的需要
为什么需要学习数学,这是你首先需要想清楚的问题。数学学科子分类多、每一本数学书中都有许多定理和结论,需要花大量时间研究。而人的时间是宝贵的、有限的,所以你需要大体有一个目标和计划,合理安排时间。
1.1 你的目标是精通数学、钻研数学,以数学谋生,你可能立志掌握代数几何,或者想精通前沿物理。那么你需要打下坚实的现代代数、几何以及分析基础,你需要准备大量时间和精力,拥有坚定不移的决心。(要求:精通全部三级高等数学)
1.2 你的目标是能够熟练运用高等数学,解决问题,掌握探索新应用领域的武器,你可能立志进入计算机视觉领域、经济学领域或数据挖掘领域。那么,你需要打下坚实的矩阵论、微积分以及概率统计基础。(要求:精通第一级高等数学)
1.3 你的目标是想了解数学的乐趣,把学数学作为人生一大业余爱好。那么,你需要打下坚实的线性代数、数学分析、拓扑学以及概率统计基础,对你来说,体会学数学的乐趣是一个更重要的目标。(精通第一级高等数学,在第二级高等数学中畅游,尝试接触第三级高等数学)

二、给自己足够的动力
学数学需要智力,更需要时间和精力。下面的几个事实相大家都深有体会:
1. 凡是没有用的东西,或者虽然有用,但是你用不到的东西,学得快忘得也快。不信你回忆一下你大一或者初一的基础课,你还记的清楚吗?
2. 凡是你不感兴趣(或者感觉不到乐趣)的东西,你很难坚持完成它。很多人都有这样的经历,一本书,前三章看的很仔细,后面就囫囵吞枣,越看越快,反正既没意思也没用。
3. 小学数学是中学数学的基础,中学数学是高中数学的基础,高中数学是大学数学的基础(你可以以此类推)。
因此,无论你的目标是什么,搞数学、用数学、还是体会数学的乐趣、满足自己从少年时就有的梦想。学有所乐、学有所用,永远是维持你动力不衰退的两个最主要的因素。

三、高等数学学什么?
好了,来看看标准大学数学的科技树:
一级:
线性代数(矩阵论),数学分析,近世代数(群环域),分别囊括了了几何、分析和代数的基础理论。别忘了还有概率论(建立在分析之上的一门基础学科)。
二级:
有了这些基础,接着是基础的基础、抽象和推广:测度论(积分的基础,当然也是概率论的基础),拓扑学(有关集合、空间、几何的一门极度重要的基础学科),泛函分析(线性代数的推广),复变函数(分析的推广),常微分方程与偏微分方程(分析的推广),数理统计和随机过程(概率论的推广),微分几何(分析和几何的结合)。
然后是一些小清新和应用学科:数值分析(算法),密码学,图形学,信息论,时间序列,图论等等。
三级:
再往上是研究生课题,往往是代数、几何和分析要一起上:微分流形、代数几何、随机动力学等等。
这个科技树的三级,和小学、初中、高中数学很相似,一层学不精通,下一层看天书。

四、如何学习
4.1 适量做题
千万千万千万不要狂做题。玩过战略对抗游戏的同学都知道,低级兵造几个就行了,要攒钱出高级兵才能在后期取胜,低级兵不仅攻击力低,还没有好玩的魔法,它们存在的意义在于让你有能力熬到后期。上面列举了那么多课程,你先花5年做完吉米诺维奇六本数学分析习题集,你就30岁了,后面的二级课程还没开始学呢。因此,做一些课后习题,帮助你复习、思考、维持大脑运转就行,要不断地向后学。如果完全学不懂了,返回来做习题帮自己理清头绪。
4.2 了解思想
数学的精髓不是做题的数量,而是掌握思想。每一个数学分支都有自己的主线思想和方法论,不同分支也有相互可供对比和借鉴的思维方式。留意它,模仿它,琐碎的知识就串成了一条项链,你也就掌握了一门课。思想并不是读一本教材就能轻易了解的,你要读好几本书,了解一些应用才能体会。举两个例子:
微积分的主线有这么几条:认识到微观和宏观是有联系的,微分用来刻画事物如何变化,它把细节放大给你看,而积分用来刻画事物的整体性质;微分和积分有时是描述一个现象的不同方式,这一点你在数学分析书中可能不容易发现,但是如果学点物理,就会发现麦克斯韦方程组同时有等价的微分形式和积分形式;积分变换能够建立不同空间之间的的联系,建立空间和空间边界的联系,这就是Stokes定理:,这个公式最迟要在微分流形中你才能一窥全貌。
矩阵是空间中线性变换的抽象,线性代数这门课的全部意义在于研究如何表达、化简、分类空间线性变换算子;SVD分解不仅在应用学科用有极为广泛的亮相,也是你理解矩阵的有力工具;矩阵是有限维空间上的线性算子,对"空间"的理解不仅能让你重新认识矩阵,更为泛函分析的学习开了个好头。
4.3 渐进式迂回式学习,对比学习
很多时候,只读一本书,可能由于作者在某处思维跳跃了一下,以后你就再也跟不上了。学习数学的一个诀窍,就是你同时拿到好几本国际知名教材,相互对比着看,或者看完一本然后再看同一主题的另一本书,已经熟悉的内容跳过去,如果看不懂了,停下来思考或者做做习题,还是不懂则往后退一退,从能看懂的部分向前推进,当你看的多了,就会发现一个东西出现在很多地方,对它的理解就加深了。举两个例子:
外微分这个东西,国内有的数学分析书里可能不介绍,我第一次遇到是在彭家贵的《微分几何》里,觉得这是个方便巧妙的工具;后来读卓里奇的《数学分析》和Rudin的《数学分析原理》,都讲了这个东西,可见在西方外微分是一个基础知识。你要读懂它,可能要首先理解矩阵,明白行列式恰好是空间体积在矩阵的变换下拉伸的倍数,它是一种线性形式。最后,当你读微分流形后,将发现外微分是获得流形上的Stokes定理的工具。
点集拓扑学这个东西,搞应用用不到。但是但凡你想往深处学,这一门学科就必须要掌握,因为它提供对诸如开集、紧集、连续、完备等数学基本概念的精准刻画。往后学泛函分析、微分流形,没有这些概念你将寸步难行。首先你要读芒克里斯的旷世名著《拓扑学》,接着在读其他外国人写的书时,或多或少都会接触一些相关概念,你的理解就加深了,比如读Rudin的《泛函分析》,开始就是介绍线性拓扑空间,前面的知识你就能用上了。
4.4 建立不同学科的联系
看到一个东西在很多地方用,你对它的理解就加深了,慢慢也就能体会到这个东西的精妙,最后你会发现所有的基础学科相互交织,又在后续应用中相互帮助,切实体会到它们真的很基础,很有用。这是一种体会数学乐趣的途径。
4.5 关注应用学科
没有什么比应用更能激发你对新知识、新工具的渴望。找一些感兴趣的应用学科教材,读一读,开阔眼界,为自己的未来积累资源。以下结合自己的专业(计算机视觉)和爱好说说一些优秀的专业书籍:

学了微积分,就可以无压力阅读《费恩曼物理学讲义第一卷》,了解力、热、光、时空的奥秘;学了偏微分方程,就可以无压力阅读《费恩曼物理学讲义第二卷》,了解电的奥秘;学了矩阵论,可以买一本《计算机视觉中的多视图几何》,了解成像的奥秘,编程进行图像序列的三维重建;学了概率论的同学应该会听说过贝叶斯学派和频率学派,这两个学派的人把战场拉到了机器学习领域,成就了两本经典著作《Pattern Recognition And Machine Learning》和《The Elements of Statistical Learning》,读了它们,我被基础数学为机器学习领域提供的丰硕成果和深刻见解深深折服;读了《Ray Tracing from the Ground Up》,自己写了一个光线追踪器渲染真实场景,它的基础就是一点点微积分和矩阵......
高等数学的应用实在是太多了,如果你喜欢编程,自动化、机器人、计算机视觉、模式识别、数据挖掘、图形图像、信息论和密码学......到处都有大量模型供你玩耍,而且只需要一点点高等数学。在这些领域,你可能能发现比数学书更有趣,也更容易找到工作的目标。
4.6 找有趣的书看
数学家写的书有时是比较死板的,但是总有一些教材,它们的作者有强烈的欲望想向你展示"这个东西其实很有趣","这个东西完全不是你想的那个样子"等等,他们成功了;还有些作者,他们喜欢把一个东西在不同领域的应用,和不同东西在某一领域的应用集中展示给你看。这样的书会提供给你充足的乐趣读下去。典型代表就是国内出版的一套《图灵数学统计学丛书》,这一套书实在是太棒了,比如《线性代数应该这样学》《复分析:可视化方法》《微分方程、动力系统与混沌导论》,个人认为都是学数学必读的经典教材,非常非常有趣。

五、多读书,读好书
如果只有一句话概括如何培养数学能力,那么就是这一句:多读书,读好书。因此这一步我想单独拿出来多说两句。
想必大家都十分精通并能熟练应用小学数学。想读懂代数几何,或者退一步,想读懂信息论基础,你就要挑几本好的基础教材,最好是外国人写的,像掌握小学数学那样掌握它。不要只看一本,找三本不同作者的书,对比着看,逐行逐字看。有的地方肯定看不懂,记下来,说不定在另一本书的某个地方就从另一个角度说到了这个东西。
如果你以后还要往后学,现在看到的每一个基础定理,以后还会用到。
每一本基础书,你今天放弃,明天还要乖乖重头再来。
要像读经文一样,交叉阅读对比不同教材内容的异同。

5.1. 推荐教材(其实就是我读过的觉得好的书):
第一级:
《线性代数应该这样学》
卓里奇《数学分析(两册)》(读英文版吧,不难。有知友说这个还是不太简单,那你可以先看个国内教材,然后回过头来再看这个)
复旦大学《概率论》

第二级:
芒克里斯《拓扑学》
图灵丛书的一些分册
柯斯特利金《代数学引论》
Vapnik《统计学习理论的本质》
Rudin《数学分析原理》
Rudin《泛函分析》
Gamelin《复分析》
彭家贵《微分几何》
Cover《信息论基础》
第三级:
《微分流行与黎曼几何》
《现代几何学,方法与应用》三卷

5.2. 阅读一些科普教材
《数学是什么》
《高观点下的初等数学》
《巴赫、埃舍尔、哥德尔》
《e的故事》

5.3. 阅读各个领域最有趣、最活泼、最让你长知识、最重视应用、文笔最易懂的教材和书籍
《费恩曼物理学讲义》三册
《混沌与分形:科学的新疆界》
《微分方程、动力系统与混沌导论》
《复分析:可视化方法》

最后想说,数学是一个无底洞,会消耗掉你宝贵的青春。一无所知的你可能励志搞懂现代数学,但是多会半途却步,同时剩下的时间又不够精通另一门科学。而且即使你精通纯数学,没有几篇好文章也并不容易找工作。
我的建议是在阅读数学的过程中开拓眼界,纯数学和应用数学学科都看看,找到感兴趣、应用广泛、工作好找(来钱)的方向再一猛扎下去成为你的事业。比如数学扎实,编程能力也强的人就很有前途。

作者:王小龙
链接:http://www.hu.com/question/19556658/answer/26950430
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

『陆』 小学数学学科核心能力指的是什么

  1. 数感

  2. 符号意识

  3. 空间观念

  4. 运算能力

  5. 推理能力

『柒』 初中数学学科知识与能力怎么复习

班级里边总是有很多的聪明人,但是他们的数学却是他们的黑洞,而那些学习好的学生我也没见的他们比谁聪明多少了,那为什么会有学习好和差呢?为什么别人总是学习好的呢?那是因为他们用对了学习数学的方式方法了,所以提高分数会很快.那么怎么样学初中数学就能超过那些比自己学习好的人了呢?

辅导数学作业

第四点:数学所学习的公式都是必须要记住的,因为会在题目中用到,而且很关键,所以每天都要背一遍,在睡前在背一遍,第二天早上醒来在背一遍,以此类推,永久就不会忘记了.

最后,要仔细的对待数学这门科目,这可是能决定你以后上哪所大学的关键呢!怎么样学初中数学的方式方法到这里就结束了,希望同学们可以按照上边的方法做一遍,是会收获到很打的惊喜哦!

『捌』 数学学科能力包括哪些

1.阅读理解能力:数学,首先的第一步就是能够理解问题的意思根要,不能理解怎么解决问题。

2.逻辑思考分析因果能力:有了问题,可以从中找到有用的条件,能够分析出已知条件和待求问题的相互关系,能够找到二者的相关性所在,从此剥丝抽茧

3.运算能力:有了已知参量与未知变量的关系了,简单的心算;复杂的笔算,更复杂的运用软件或者硬件工具运算。

4.语言表达称述能力:你懂了,一般情况下,要是别人不懂,讲解很重要,表达不清楚,别人不能理解,依旧是茶壶里的汤圆,道不出来,你道了耶白道

5.书面表达称述能力:任何前言的数学知识要经历不少的坎坷之后,要登上历史的舞台,仅仅口头的,也会消散;所以,书面的称述讲解很重要,也就是我们通常说的论文。

『玖』 2016年初中数学教师资格证考试学科知识与教学能力

2016年初中数学教师资格证考试学科知识与教学能力考试内容如下:

1、学科知识

数学学科知识包括大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。

大学专科数学专业基础课程知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学专科数学课程中与中学数学密切相关的内容。

其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。

高中数学课程中的必修内容和部分选修内容以及初中数学课程知识是指高中数学课程中的必修内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)以及初中课程中的全部数学知识。

其内容要求是:理解中学数学中的重要概念,掌握中学数学中的重要公式、定理、法则等知识,掌握中学常见的数学思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。

2、课程知识

了解初中数学课程的性质、基本理念和目标;熟悉《课标》所规定的教学内容的知识体系,掌握《课标》对教学内容的要求;能运用《课标》指导自己的数学教学实践。

3、教学知识

掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法;掌握概念教学、命题教学等数学教学知识的基本内容;了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。

掌握合作学习、探究学习、自主学习等中学数学学习方式;掌握数学教学评价的基本知识和方法。

4、教学技能

(1)教学设计

能够根据学生已有的知识水平和数学学习经验,准确把握所教内容与学生已学知识的联系;能够根据《课标》的要求和学生的认知特征确定教学目标、教学重点和难点;能正确把握数学教学内容,揭示数学概念、法则、结论的发展过程和本质,渗透数学思想方法,体现应用与创新意识。

能选择适当的教学方法和手段,合理安排教学过程和教学内容,在规定的时间内完成所选教学内容的教案设计。

(2)教学实施

能创设合理的数学教学情境,激发学生的数学学习兴趣,引导学生自主探索、猜想和合作交流;能依据数学学科特点和学生的认知特征,恰当地运用教学方法和手段,有效地进行数学课堂教学;能结合具体数学教学情境,正确处理数学教学中的各种问题。

(3)教学评价

能采用不同的方式和方法,对学生知识技能、数学思考、问题解决和情感态度等方面进行恰当地评价;能对教师数学教学过程进行评价;能够通过教学评价改进教学和促进学生的发展。

参考资料来源:中小学教师资格考试—《数学学科知识与教学能力》(初级中学)

热点内容
新开的英语 发布:2025-07-09 01:27:47 浏览:276
物理实验教师 发布:2025-07-09 00:46:01 浏览:21
怎么删除朋友圈 发布:2025-07-09 00:19:21 浏览:154
包钢股份历史 发布:2025-07-08 22:01:23 浏览:878
囚禁教师电影 发布:2025-07-08 20:48:26 浏览:962
化学键复习 发布:2025-07-08 20:42:29 浏览:831
北京教学视频 发布:2025-07-08 19:38:24 浏览:58
我印象最深的一个老师 发布:2025-07-08 19:00:24 浏览:284
七年级上册英语期末 发布:2025-07-08 18:59:48 浏览:141
阳西教育 发布:2025-07-08 18:31:56 浏览:479