當前位置:首頁 » 語數英語 » 數學排列組合公式

數學排列組合公式

發布時間: 2020-11-19 15:02:00

數學排列組合公式Amn Pmn Cmn三者的關系,各自的公式,是什麼

Amn與Pmn都是排列公式,Cmn是組合公式,Amn=m!/(m-n)!,Cmn=m!/[n!*(m-n)!] n!代表n的階乘。回

❷ 關於數學排列組合,A什麼的C什麼的到底怎麼算舉個例子。。

A開頭的叫排列,C開頭的叫組合。

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)

組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。

註:當且僅當兩個排列的元素完全相同,且元素的排列順序也相同,則兩個排列相同。例如,abc與abd的元素不完全相同,它們是不同的排列;又如abc與acb,雖然元素完全相同,但元素的排列順序不同,它們也是不同的排列。

❸ 數學中,排列組合A C P分別代表什麼求詳細。

排列組合中P是舊版教材的寫法,後來新版教材將P改成A,所以A和P是一樣的,都是排列數。而C是排列組合中的組合數。

1、排列的定義:從n個不同元素中,任取m(m≤n,m與n均為自然數,下同)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示,舊版教材中用P(n,m)表示。

計算公式:

C(n,m)=C(n,n-m)。(n≥m)

(3)數學排列組合公式擴展閱讀:

排列組合中的基本計數原理

1、加法原理和分類計數法

(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。

(2)第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2,……,第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合A1UA2U…UAn。

(3)分類的要求 :每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏)。

2、乘法原理和分步計數法

(1)乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有N=m1×m2×m3×…×mn種不同的方法。

(2)合理分步的要求

任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務;各步計數相互獨立;只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。

❹ 數學里的排列組合是怎麼回事 它的公式是怎麼計算的

排列與組合來的概念與計算公式
1.排列源及計算公式

從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號
p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=
n!/(n-m)!(規定0!=1).
2.組合及計算公式

從n個不同元素中,任取m(m≤n)個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號
c(n,m)
表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個元素中取出r個元素的循環排列數=p(n,r)/r=n!/r(n-r)!.
n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為
n!/(n1!*n2!*...*nk!).
k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m).

❺ 排列組合的公式

排列組合計算公式如下:

1、從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示。

排列就是指從給定個數的元素中取出指定個數的元素進行排序。組合則是指從給定個數的元素中僅僅取出指定個數的元素,不考慮排序。

排列組合的中心問題是研究給定要求的排列和組合可能出現的情況總數。 排列組合與古典概率論關系密切。

(5)數學排列組合公式擴展閱讀

排列組合的發展歷程:

根據組合學研究與發展的現狀,它可以分為如下五個分支:經典組合學、組合設計、組合序、圖與超圖和組合多面形與最優化。

由於組合學所涉及的范圍觸及到幾乎所有數學分支,也許和數學本身一樣不大可能建立一種統一的理論。

然而,如何在上述的五個分支的基礎上建立一些統一的理論,或者從組合學中獨立出來形成數學的一些新分支將是對21世紀數學家們提出的一個新的挑戰。

❻ 高中數學排列組合公式Cnm(n為下標,m為上標)=n!/m!(n-m)!是怎麼來的

解:Cnm=Anm/Amm.

式中,排列數(又叫選排列數)Anm、全排列數Ann的表示法:

連乘表示: Anm=n(n-1)(n-2)...(n-m+1).

階乘表示: Anm=n!/(n-m)! .

Ann=n(n-1)(n-2)...3*2*1=n!

例如:A85=8*7*6*5*4. ----連乘法;

A85=8*7*6*5*4*3*2*1/3*2*1=8!/(8-5)!

組合數Cnm=Anm/Amm=n(n-1)(n-2)...(n-m+1)/m(m-1)(m-2)...*3*2*1 【Amm---全排列數】

=n!/m!(n-m)!.*2*

例如:C85=8*7*6*5*4/1*2*3*4*5=[8*7*6*5*4*3*2*1/1*2*3]/1*2*3*4*5.

=8*7*6*5*4/1*2*3*4*5

=56.

注意:組合數公式是由於排列數的表示方法推導出來的。

(6)數學排列組合公式擴展閱讀:

公式P是排列公式,從N個元素取M個進行排列(即排序)。(P是舊用法,現在教材上多用A,即Arrangement)

公式

排列及計算公式 從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。

從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 p(n,m)表示。 p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(規定0!=1)

符號

1、C-組合數

A-排列數(在舊教材為P)N-元素的總個數

R-參與選擇的元素個數

!-階乘,如5!=5×4×3×2×1=120C-Combination 組合

P-Permutation排列 (現在教材為A-Arrangement)

2、排列組合常見公式

kCn/k=nCn-1/k-1(a/b,a在下,b在上)Cn/rCr/m=Cn/mCn-m/r-m

熱點內容
教師資格證考試真題庫 發布:2025-05-14 03:21:37 瀏覽:461
小學語文拍手歌 發布:2025-05-14 02:17:21 瀏覽:531
魔獸有哪些 發布:2025-05-14 01:45:05 瀏覽:911
微生物標本採集原則 發布:2025-05-14 01:41:26 瀏覽:769
泰益欣生物科技 發布:2025-05-13 23:45:47 瀏覽:206
好未來語文 發布:2025-05-13 23:30:47 瀏覽:798
胃有哪些 發布:2025-05-13 21:28:01 瀏覽:31
教學用琴 發布:2025-05-12 15:51:55 瀏覽:241
嘉美通教育 發布:2025-05-12 12:47:44 瀏覽:677
生物國家集訓隊 發布:2025-05-12 11:14:08 瀏覽:444