當前位置:首頁 » 語數英語 » 2013河南高考數學

2013河南高考數學

發布時間: 2020-11-20 06:01:18

❶ 2012河南高考數學考試大綱

給我個郵箱 發給你
二、考試范圍與要求
本部分包括必考內容和選考內容兩部分.必考內容為《課程標准》的必修內容和選修系列2的內容;選考內容為《課程標准》的選修系列4的「幾何證明選講」、「坐標系與參數方程」、「不等式選講」等3個專題.
(一)必考內容與要求
1.集合
(1)集合的含義與表示
① 了解集合的含義、元素與集合的屬於關系.
② 能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題.
(2)集合間的基本關系
① 理解集合之間包含與相等的含義,能識別給定集合的子集.
② 在具體情境中,了解全集與空集的含義.
(3)集合的基本運算
① 理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集.
② 理解在給定集合中一個子集的補集的含義,會求給定子集的補集.
③ 能使用韋恩(Venn)圖表達集合的關系及運算.
2.函數概念與基本初等函數Ⅰ(指數函數、對數函數、冪函數)
(1)函數
① 了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念.
② 在實際情境中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函數.
③ 了解簡單的分段函數,並能簡單應用.
④ 理解函數的單調性、最大值、最小值及其幾何意義;結合具體函數,了解函數奇偶性的含義.
⑤ 會運用函數圖像理解和研究函數的性質.
(2)指數函數
① 了解指數函數模型的實際背景.
② 理解有理指數冪的含義,了解實數指數冪的意義,掌握冪的運算.
③ 理解指數函數的概念,理解指數函數的單調性,掌握指數函數圖像通過的特殊點.
④ 知道指數函數是一類重要的函數模型.
(3)對數函數
① 理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;了解對數在簡化運算中的作用.
② 理解對數函數的概念;理解對數函數的單調性,掌握函數圖像通過的特殊點.
③ 知道對數函數是一類重要的函數模型;
④ 了解指數函數 與對數函數 互為反函數( ).
(4)冪函數
① 了解冪函數的概念.
② 結合函數 的圖像,了解它們的變化情況.
(5)函數與方程
① 結合二次函數的圖像,了解函數的零點與方程根的聯系,判斷一元二次方程根的存在性及根的個數.
② 根據具體函數的圖像,能夠用二分法求相應方程的近似解.
(6)函數模型及其應用
① 了解指數函數、對數函數以及冪函數的增長特徵.知道直線上升、指數增長、對數增長等不同函數類型增長的含義.
② 了解函數模型(如指數函數、對數函數、冪函數、分段函數等在社會生活中普遍使用的函數模型)的廣泛應用.
3.立體幾何初步
(1)空間幾何體
① 認識柱、錐、台、球及其簡單組合體的結構特徵,並能運用這些特徵描述現實生活中簡單物體的結構.
② 能畫出簡單空間圖形(長方體、球、圓柱、圓錐、稜柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會用斜二側法畫出它們的直觀圖.
③ 會用平行投影與中心投影兩種方法,畫出簡單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式.
④ 會畫某些建築物的視圖與直觀圖(在不影響圖形特徵的基礎上,尺寸、線條等不作嚴格要求).
⑤ 了解球、稜柱、棱錐、台的表面積和體積的計算公式(不要求記憶公式).
(2)點、直線、平面之間的位置關系
① 理解空間直線、平面位置關系的定義,並了解如下可以作為推理依據的公理和定理.
◆公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上所有的點在此平面內.
◆公理2:過不在同一條直線上的三點,有且只有一個平面.
◆公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線.
◆公理4:平行於同一條直線的兩條直線互相平行.
◆定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那麼這兩個角相等或互補.
② 以立體幾何的上述定義、公理和定理為出發點,認識和理解空間中線面平行、垂直的有關性質與判定.
理解以下判定定理.
◆如果平面外一條直線與此平面內的一條直線平行,那麼該直線與此平面平行.
◆如果一個平面內的兩條相交直線與另一個平面都平行,那麼這兩個平面平行.
◆如果一條直線與一個平面內的兩條相交直線都垂直,那麼該直線與此平面垂直.
◆如果一個平面經過另一個平面的垂線,那麼這兩個平面互相垂直.
理解以下性質定理,並能夠證明.
◆如果一條直線與一個平面平行,那麼經過該直線的任一個平面與此平面的交線和該直線平行.
◆如果兩個平行平面同時和第三個平面相交,那麼它們的交線相互平行.
◆垂直於同一個平面的兩條直線平行.
◆如果兩個平面垂直,那麼一個平面內垂直於它們交線的直線與另一個平面垂直.
③ 能運用公理、定理和已獲得的結論證明一些空間圖形的位置關系的簡單命題.
4.平面解析幾何初步
(1)直線與方程
① 在平面直角坐標系中,結合具體圖形,確定直線位置的幾何要素.
② 理解直線的傾斜角和斜率的概念,掌握過兩點的直線斜率的計算公式.
③ 能根據兩條直線的斜率判定這兩條直線平行或垂直.
④ 掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點斜式、兩點式及一般式),了解斜截式與一次函數的關系.
⑤ 能用解方程組的方法求兩條相交直線的交點坐標.
⑥ 掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離.
(2)圓與方程① 掌握確定圓的幾何要素,掌握圓的標准方程與一般方程.
② 能根據給定直線、圓的方程判斷直線與圓的位置關系;能根據給定兩個圓的方程判斷兩圓的位置關系.
③ 能用直線和圓的方程解決一些簡單的問題.
④ 初步了解用代數方法處理幾何問題的思想.
(3)空間直角坐標系
① 了解空間直角坐標系,會用空間直角坐標表示點的位置.
② 會推導空間兩點間的距離公式.
5.演算法初步
(1)演算法的含義、程序框圖
① 了解演算法的含義,了解演算法的思想.
② 理解程序框圖的三種基本邏輯結構:順序、條件分支、循環.
(2)基本演算法語句
理解幾種基本演算法語句――輸入語句、輸出語句、賦值語句、條件語句、循環語句的含義.
6.統計
(1)隨機抽樣
① 理解隨機抽樣的必要性和重要性.
② 會用簡單隨機抽樣方法從總體中抽取樣本;了解分層抽樣和系統抽樣方法.
(2)用樣本估計總體
① 了解分布的意義和作用,會列頻率分布表,會畫頻率分布直方圖、頻率折線圖、莖葉圖,理解它們各自的特點.
② 理解樣本數據標准差的意義和作用,會計算數據標准差.
③ 能從樣本數據中提取基本的數字特徵(如平均數、標准差),並給出合理的解釋.
④ 會用樣本的頻率分布估計總體分布,會用樣本的基本數字特徵估計總體的基本數字特徵,理解用樣本估計總體的思想.
⑤ 會用隨機抽樣的基本方法和樣本估計總體的思想解決一些簡單的實際問題.
(3)變數的相關性
① 會作兩個有關聯變數的數據的散點圖,會利用散點圖認識變數間的相關關系.
② 了解最小二乘法的思想,能根據給出的線性回歸方程系數公式建立線性回歸方程.
7.概率
(1)事件與概率
① 了解隨機事件發生的不確定性和頻率的穩定性,了解概率的意義,了解頻率與概率的區別.
② 了解兩個互斥事件的概率加法公式.
(2)古典概型
①理解古典概型及其概率計算公式.
②會計算一些隨機事件所含的基本事件數及事件發生的概率.
(3)隨機數與幾何概型
①了解隨機數的意義,能運用模擬方法估計概率.
②了解幾何概型的意義.
8.基本初等函數Ⅱ(三角函數)
(1)任意角的概念、弧度制
① 了解任意角的概念.
② 了解弧度制概念,能進行弧度與角度的互化.
(2)三角函數
① 理解任意角三角函數(正弦、餘弦、正切)的定義.
② 能利用單位圓中的三角函數線推導出 α ,π± α 的正弦、餘弦、正切的誘導公式,能畫出 的圖像,了解三角函數的周期性.
③ 理解正弦函數、餘弦函數在區間[0,2π]的性質(如單調性、最大值和最小值以及與 x 軸交點等).理解正切函數在區間( )內的單調性.
④ 理解同角三角函數的基本關系式:
⑤ 了解函數 的物理意義;能畫出 的圖像,了解參數 對函數圖像變化的影響.
⑥ 了解三角函數是描述周期變化現象的重要函數模型,會用三角函數解決一些簡單實際問題.
9.平面向量
(1)平面向量的實際背景及基本概念
①了解向量的實際背景.
②理解平面向量的概念,理解兩個向量相等的含義.
③理解向量的幾何表示.
(2)向量的線性運算
① 掌握向量加法、減法的運算,並理解其幾何意義.
② 掌握向量數乘的運算及其幾何意義,理解兩個向量共線的含義.
③ 了解向量線性運算的性質及其幾何意義.
(3)平面向量的基本定理及坐標表示
① 了解平面向量的基本定理及其意義.
② 掌握平面向量的正交分解及其坐標表示.
③ 會用坐標表示平面向量的加法、減法與數乘運算.
④ 理解用坐標表示的平面向量共線的條件.
(4)平面向量的數量積
① 理解平面向量數量積的含義及其物理意義.
② 了解平面向量的數量積與向量投影的關系.
③ 掌握數量積的坐標表達式,會進行平面向量數量積的運算.
④ 能運用數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系.
(5)向量的應用
①會用向量方法解決某些簡單的平面幾何問題.
②會用向量方法解決簡單的力學問題與其他一些實際問題.
10.三角恆等變換
(1)和與差的三角函數公式
① 會用向量的數量積推導出兩角差的餘弦公式.
② 能利用兩角差的餘弦公式導出兩角差的正弦、正切公式.
③ 能利用兩角差的餘弦公式導出兩角和的正弦、餘弦、正切公式,導出二倍角的正弦、餘弦、正切公式,了解它們的內在聯系.
(2)簡單的三角恆等變換
能運用上述公式進行簡單的恆等變換(包括導出積化和差、和差化積、半形公式,但對這三組公式不要求記憶).
11.解三角形
(1)正弦定理和餘弦定理
掌握正弦定理、餘弦定理,並能解決一些簡單的三角形度量問題.
(2)應用
能夠運用正弦定理、餘弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題.
12.數列
(1)數列的概念和簡單表示法
①了解數列的概念和幾種簡單的表示方法(列表、圖像、通項公式).
②了解數列是自變數為正整數的一類函數.
(2)等差數列、等比數列
① 理解等差數列、等比數列的概念.
② 掌握等差數列、等比數列的通項公式與前n項和公式.
③ 能在具體的問題情境中識別數列的等差關系或等比關系,並能用有關知識解決相應的問題.
④ 了解等差數列與一次函數、等比數列與指數函數的關系.
13.不等式
(1)不等關系
了解現實世界和日常生活中的不等關系,了解不等式(組)的實際背景.
(2)一元二次不等式
① 會從實際情境中抽象出一元二次不等式模型.
② 通過函數圖像了解一元二次不等式與相應的二次函數、一元二次方程的聯系.
③ 會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.
(3)二元一次不等式組與簡單線性規劃問題
① 會從實際情境中抽象出二元一次不等式組.
② 了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組.
③ 會從實際情境中抽象出一些簡單的二元線性規劃問題,並能加以解決.
(4)基本不等式:
① 了解基本不等式的證明過程.
② 會用基本不等式解決簡單的最大(小)值問題.
14.常用邏輯用語
(1)命題及其關系
① 理解命題的概念.
②了解「若p,則q」形式的命題及其逆命題、否命題與逆否命題,會分析四種命題的相互關系.
③ 理解必要條件、充分條件與充要條件的意義.
(2)簡單的邏輯聯結詞
了解邏輯聯結詞「或」、「且」、「非」的含義.
(3)全稱量詞與存在量詞
① 理解全稱量詞與存在量詞的意義.
② 能正確地對含有一個量詞的命題進行否定.
15.圓錐曲線與方程
(1)圓錐曲線
① 了解圓錐曲線的實際背景,了解圓錐曲線在刻畫現實世界和解決實際問題中的作用.
② 掌握橢圓、拋物線的定義、幾何圖形、標准方程及簡單性質.
③ 了解雙曲線的定義、幾何圖形和標准方程,知道它的簡單幾何性質.
④ 了解圓錐曲線的簡單應用.
⑤ 理解數形結合的思想.
(2)曲線與方程
了解方程的曲線與曲線的方程的對應關系.
16.空間向量與立體幾何
(1)空間向量及其運算
① 了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標表示.
② 掌握空間向量的線性運算及其坐標表示.
③ 掌握空間向量的數量積及其坐標表示,能運用向量的數量積判斷向量的共線與垂直.
(2)空間向量的應用
① 理解直線的方向向量與平面的法向量.
② 能用向量語言表述直線與直線、直線與平面、平面與平面的垂直、平行關系.
③ 能用向量方法證明有關直線和平面位置關系的一些定理(包括三垂線定理).
④ 能用向量方法解決直線與直線、直線與平面、平面與平面的夾角的計算問題,了解向量方法在研究幾何問題中的應用.
17.導數及其應用
(1)導數概念及其幾何意義
① 了解導數概念的實際背景.
② 理解導數的幾何意義.
(2)導數的運算
① 能根據導數定義,求函數 (c為常數)的導數.
② 能利用下面給出的基本初等函數的導數公式和導數的四則運演算法則求簡單函數的導數,能求簡單的復合函數(僅限於形如f(ax+b)的復合函數)的導數.
•常見基本初等函數的導數公式和常用導數運算公式:
(C為常數); , n∈N+; ;
; ; (a>0,且a≠1); ; (a>0,且a≠1).
•常用的導數運演算法則:
法則1 .
法則2 .
法則3 .
(3)導數在研究函數中的應用
① 了解函數單調性和導數的關系;能利用導數研究函數的單調性,會求函數的單調區間(其中多項式函數一般不超過三次).
② 了解函數在某點取得極值的必要條件和充分條件;會用導數求函數的極大值、極小值(其中多項式函數一般不超過三次);會求閉區間上函數的最大值、最小值(其中多項式函數一般不超過三次).
(4)生活中的優化問題.會利用導數解決某些實際問題..
(5)定積分與微積分基本定理
① 了解定積分的實際背景,了解定積分的基本思想,了解定積分的概念.
② 了解微積分基本定理的含義.
18.推理與證明
(1)合情推理與演繹推理
① 了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數學發現中的作用.
② 了解演繹推理的重要性,掌握演繹推理的基本模式,並能運用它們進行一些簡單推理.
③ 了解合情推理和演繹推理之間的聯系和差異.
(2)直接證明與間接證明
① 了解直接證明的兩種基本方法——分析法和綜合法;了解分析法和綜合法的思考過程、特點.
② 了解間接證明的一種基本方法──反證法;了解反證法的思考過程、特點.
(3)數學歸納法
了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題.
19.數系的擴充與復數的引入
(1)復數的概念
①理解復數的基本概念.
②理解復數相等的充要條件.
③了解復數的代數表示法及其幾何意義.
(2)復數的四則運算
①會進行復數代數形式的四則運算.
②了解復數代數形式的加、減運算的幾何意義.
20.計數原理
(1)分類加法計數原理、分步乘法計數原理
①理解分類加法計數原理和分步乘法計數原理;
②會用分類加法計數原理或分步乘法計數原理分析和解決一些簡單的實際問題.
(2)排列與組合
①理解排列、組合的概念.
②能利用計數原理推導排列數公式、組合數公式.
③能解決簡單的實際問題.
(3)二項式定理
①能用計數原理證明二項式定理.
②會用二項式定理解決與二項展開式有關的簡單問題.
21.概率與統計
(1)概率
① 理解取有限個值的離散型隨機變數及其分布列的概念,了解分布列對於刻畫隨機現象的重要性.
② 理解超幾何分布及其導出過程,並能進行簡單的應用.
③ 了解條件概率和兩個事件相互獨立的概念,理解n次獨立重復試驗的模型及二項分布,並能解決一些簡單的實際問題.
④ 理解取有限個值的離散型隨機變數均值、方差的概念,能計算簡單離散型隨機變數的均值、方差,並能解決一些實際問題.
⑤ 利用實際問題的直方圖,了解正態分布曲線的特點及曲線所表示的意義.
(2)統計案例
了解下列一些常見的統計方法,並能應用這些方法解決一些實際問題.
(1)獨立性檢驗
了解獨立性檢驗(只要求2×2列聯表)的基本思想、方法及其簡單應用.
(2)回歸分析
了解回歸的基本思想、方法及其簡單應用.
(二)選考內容與要求
1.幾何證明選講
(1)了解平行線截割定理,會證明並應用直角三角形射影定理.
(2)會證明並應用圓周角定理、圓的切線的判定定理及性質定理.
(3)會證明並應用相交弦定理、圓內接四邊形的性質定理與判定定理、切割線定理.
(4)了解平行投影的含義,通過圓柱與平面的位置關系了解平行投影;會證平面與圓柱面的截線是橢圓(特殊情形是圓).
(5)了解下面定理:
定理在空間中,取直線 為軸,直線 與 相交於點 O ,其夾角為α, 圍繞 旋轉得到以 O 為頂點, 為母線的圓錐面,任取平面π,若它與軸 交角為 β (π與 平行,記 β=0),則:
① β > α,平面π與圓錐的交線為橢圓;
② β= α ,平面π與圓錐的交線為拋物線;
③ β < α,平面π與圓錐的交線為雙曲線.
(6)會利用丹迪林(Dandelin)雙球(如圖所示,這兩個球位於圓錐的內部,一個位於平面π的上方,一個位於平面π的下方,並且與平面π及圓錐面均相切,其切點分別為F、E)證明上述定理①情形:當β>α時,平面π與圓錐的交線為橢圓.(圖中上、下兩球與圓錐面相切的切點分別為點B和點C,線段BC與平面π相交於點A.)
(7)會證明以下結果:
① 在(6)中,一個丹迪林球與圓錐面的交線為一個圓,並與圓錐的底面平行,記這個圓所在平面為π';
②如果平面π與平面π'的交線為m,在(5)①中橢圓上任取一點A,該丹迪林球與平面π的切點為F,則點A到點F的距離與點A到直線m的距離比是小於1的常數e.(稱點F為這個橢圓的焦點,直線m為橢圓的准線,常數e為離心率.)
(8)了解定理(5)③中的證明,了解當β無限接近α時,平面π的極限結果.
2.坐標系與參數方程
(1)坐標系
① 理解坐標系的作用.
② 了解在平面直角坐標系伸縮變換作用下平面圖形的變化情況.
③ 能在極坐標系中用極坐標表示點的位置,理解在極坐標系和平面直角坐標系中表示點的位置的區別,能進行極坐標和直角坐標的互化.
④ 能在極坐標系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程.通過比較這些圖形在極坐標系和平面直角坐標系中的方程,理解用方程表示平面圖形時選擇適當坐標系的意義.
⑤ 了解柱坐標系、球坐標系中表示空間中點的位置的方法,並與空間直角坐標系中表示點的位置的方法相比較,了解它們的區別.
(2)參數方程
① 了解參數方程,了解參數的意義.
② 能選擇適當的參數寫出直線、圓和圓錐曲線的參數方程.
③ 了解平擺線、漸開線的生成過程,並能推導出它們的參數方程.
④ 了解其他擺線的生成過程,了解擺線在實際中的應用,了解擺線在表示行星運動軌道中的作用.
3.不等式選講
(1)理解絕對值的幾何意義,並能利用含絕對值不等式的幾何意義證明以下不等式:
①∣a+b∣≤∣a∣+∣b∣;
②∣a-b∣≤∣a-c∣+∣c-b∣;
③會利用絕對值的幾何意義求解以下類型的不等式:
∣ax+b∣≤c;
∣ax+b∣≥c;
∣x-a∣+∣x-b∣≥c.
(2)了解下列柯西不等式的幾種不同形式,理解它們的幾何意義,並會證明.
①柯西不等式向量形式:|α|•|β|≥|α•β|.
② ≥ .
③ + ≥
(通常稱為平面三角不等式).
(3)會用參數配方法討論柯西不等式的一般情況: ≥ .
(4)會用向量遞歸方法討論排序不等式.
(5)了解數學歸納法的原理及其使用范圍,會用數學歸納法證明一些簡單問題.
(6)會用數學歸納法證明貝努利不等式:
為大於1的正整數),了解當n為大於1的實數時貝努利不等式也成立.
(7)會用上述不等式證明一些簡單問題.能夠利用平均值不等式、柯西不等式求一些特定函數的極值.
(8)了解證明不等式的基本方法:比較法、綜合法、分析法、反證法、放縮法.

❷ 03年河南省高考數學題

03文:http://e.qq.com/a/20050508/000138.htm
03理:http://e.qq.com/a/20050508/000137.htm
04文:http://e.qq.com/a/20040610/000040.htm
04理:http://e.qq.com/a/20040615/000098.htm
05文:http://www.eol.cn/article/20050609/3140258.shtml
05理:http://www.eol.cn/article/20050609/3140257.shtml
不知道這個答案您是否滿意?

❸ 2012河南高考數學為什麼這么難!!!欲哭無淚!

別,去考啊,難,你難大家都難,沒事的啊,總體水平在那,你的預期不會變的,這個丟開考靜心下一門,相信自己,沒你說的那麼糟,祝你好運!!!!

❹ 2013河南高考各科平均分

考個平均分只能去垃圾學校 參考你們學校的就行 多少名考1本2本 每年都差不多

❺ 往年河南高考數學題型都是什麼

樓上說的不錯,但有些不對
河南省自始至終都用全國一卷,從04年到09年(也包回括10年)都是答 選擇題12個 每題5分 共60分
填空題4個 每題5分 共20分
解答題6個 各題的分值按照順序(一般是但不一定是難度)分別為10,12,12,12,12,12分 共70分
08年和09年的試題較往年難一些,更注重思維,能力,這是趨勢!
你要是想問知識建議找本考綱通讀,也可讓老師幫你分析

補充一點,全國一絕不是最難的,只能算中等最多偏上,湖北江蘇浙江難的多了去了

❻ 2012河南高考數學誰出的題

數學帝 葛軍

❼ 河南高考總分多少

河南高考總分是750分。

河南自2015年起,高考採用的是全國卷新課標Ⅰ卷,語文150分、數學(文/理)300分、文綜/理綜150分、外語150分,加起來就是750分的總分。

2015年河南高考新政策:「統考」變「選考」,學生自選3科計入高招總成績

根據《關於普通高中學業水平考試的實施意見》,實行高考綜合改革的省份,高考成績將包括語文、數學、外語等全國統考科目成績和思想政治、歷史地理、物理、化學生物等科目當中任選3科的考試成績。上海、浙江已於今年啟動高考綜合改革,將於2017年整體實施。

❽ 2013年河南高考數學難嗎

。。。怎麼說呢。我是理科生,我覺得挺難的,及格率挺低的反正,我平時數學110左右,高考才考90多

❾ 河南省高中理科數學教材用選修的哪幾本

河南省高中理科數學教材選修:選修2-1 ;2-2;4-1 ;4-5。

這幾本選修教材分為幾大展內容:

1、選修2-1:第一章《常用邏輯用語》;第二章《圓錐曲線與方程》;第三章《空間向量與立體幾何》。

2、選修2-2:第一章《導數及其應用》;第二章《推理與證明》;第三章《數系的擴充與復數的引入》。

3、選修4-1:第一講《相似三角形的判定及有關性質》;第二講《直線與圓的位置關系》;第三講《圓錐曲線性質的探討》。

4、選修4-5:第一講《不等式和絕對值不等式》;第二講《講明不等式的基本方法》;第三講《柯西不等式與排序不等式》;第四講《數學歸納法證明不等式》。

(9)2013河南高考數學擴展閱讀:

對比2018年高考試題,2019年河南高考數學卷的客觀題中對集合、復數等常規知識考查變化不大,突出了數學文化的考查。

理科數學試題主觀題中,第1題繼續考查解三角形,較基礎。第2題與去年相同,考查了立體幾何知識,難度相當。第3題與去年相同,考查了圓錐曲線中拋物線的常規題型。第4題與去年不同,以證明的形式考查導數中的極值點與零點問題,難度有所增加。第5題與去年不同,考查概率統計與數列綜合問題,難度明顯增加,且綜合性強。

❿ 2013年河南高考各科平均分是多少

2013年河南省普通高校招生錄取控制分數線

錄取批次
文化分數線(分)
專業
分數線(分)
文科
理科
普通類
專項計劃本科批
519
505
--
本科一批
519
505
--
本科二批
465
443
--
本科三批
408
359
--
專項計劃專科批
200
200
--
高職高專批
200
200
--
體育類
本 科
340
276
68
專 科
310
251
60
藝術類
專業考試類別
本科
專科
本科
專科
招生學校單獨組織 的 專 業 考 試 類
302
180
達到省統考專業合格線 並且校考成績合格
全省統一組織的專業考試類
美術
302
180
185
150
音樂類
280
180
85
80
體育舞蹈類
260
180
120
105
播音與主持類
350
180
300
265
服裝模特類
280
180
290
255
空乘類
302
180
285
255
影視表演類
302
180
130
95
編導製作類
340
180
130
105
書法類
302
180
220
200
藝術類文、理科分數線相同

熱點內容
教師幫扶學生記錄 發布:2025-07-18 20:01:06 瀏覽:677
運動鞋哪些好 發布:2025-07-18 18:41:48 瀏覽:456
師生迷情八 發布:2025-07-18 11:58:43 瀏覽:478
三字經教學視頻 發布:2025-07-18 11:46:47 瀏覽:45
希臘的歷史 發布:2025-07-18 10:33:00 瀏覽:654
人體中的數學 發布:2025-07-18 07:53:58 瀏覽:951
一級建造師機電教學視頻 發布:2025-07-18 07:50:21 瀏覽:528
班主任工作計劃小學四年級 發布:2025-07-18 05:17:52 瀏覽:912
淺談師德的心得體會 發布:2025-07-18 03:09:46 瀏覽:807
怎麼瀏覽谷歌 發布:2025-07-18 02:29:49 瀏覽:51