當前位置:首頁 » 語數英語 » 初二下冊數學知識點

初二下冊數學知識點

發布時間: 2020-11-20 08:51:28

❶ 八年級下冊數學的知識點有哪些

第十六章 分式
1. 分式的定義:如果A、B表示兩個整式,並且B中含有字母,那麼式子 叫做分式。
分式有意義的條件是分母不為零,分式值為零的條件分子為零且分母不為零
2.分式的基本性質:分式的分子與分母同乘或除以一個不等於0的整式,分式的值不變。
3.分式的通分和約分:關鍵先是分解因式
4.分式的運算:
分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
分式乘方法則: 分式乘方要把分子、分母分別乘方。
分式的加減法則:同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變為同分母分式,然後再加減
混合運算:運算順序和以前一樣。能用運算率簡算的可用運算率簡算。
5. 任何一個不等於零的數的零次冪等於1, 即 ;當n為正整數時,
6.正整數指數冪運算性質也可以推廣到整數指數冪.(m,n是整數)
(1)同底數的冪的乘法: ;
(2)冪的乘方: ;
(3)積的乘方: ;
(4)同底數的冪的除法: ( a≠0);
(5)商的乘方: ();(b≠0)
7. 分式方程:含分式,並且分母中含未知數的方程——分式方程。
解分式方程的過程,實質上是將方程兩邊同乘以一個整式(最簡公分母),把分式方程轉化為整式方程。
解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。
解分式方程的步驟 :
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;(3)解整式方程;(4)驗根.
增根應滿足兩個條件:一是其值應使最簡公分母為0,二是其值應是去分母後所的整式方程的根。
分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
列方程應用題的步驟是什麼? (1)審;(2)設;(3)列;(4)解;(5)答.
應用題有幾種類型;基本公式是什麼?基本上有五種: (1)行程問題:基本公式:路程=速度×時間而行程問題中又分相遇問題、追及問題. (2)數字問題 在數字問題中要掌握十進制數的表示法. (3)工程問題 基本公式:工作量=工時×工效. (4)順水逆水問題 v順水=v靜水+v水. v逆水=v靜水-v水.
8.科學記數法:把一個數表示成 的形式(其中 ,n是整數)的記數方法叫做科學記數法.
用科學記數法表示絕對值大於10的n位整數時,其中10的指數是
用科學記數法表示絕對值小於1的正小數時,其中10的指數是第一個非0數字前面0的個數(包括小數點前面的一個0)


第十七章 反比例函數
1.定義:
2.圖像:反比例函數的圖像屬於雙曲線。反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點
3.性質:當k>0時雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。
5.反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。

1、反比例函數的概念
一般地,函數 (k是常數,k 0)叫做反比例函數。反比例函數的解析式也可以寫成 的形式。自變數x的取值范圍是x 0的一切實數,函數的取值范圍也是一切非零實數。
2、反比例函數的圖像
反比例函數的圖像是雙曲線,它有兩個分支,這兩個分支分別位於第一、三象限,或第二、四象限,它們關於原點對稱。由於反比例函數中自變數x 0,函數y 0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。
3、反比例函數的性質
反比例函數

k的符號 k>0 k<0
圖像
y

O x

y

O x

性質 ①x的取值范圍是x 0,
y的取值范圍是y 0;
②當k>0時,函數圖像的兩個分支分別
在第一、三象限。在每個象限內,y
隨x 的增大而減小。 ①x的取值范圍是x 0,
y的取值范圍是y 0;
②當k<0時,函數圖像的兩個分支分別
在第二、四象限。在每個象限內,y
隨x 的增大而增大。

4、反比例函數解析式的確定
確定及誒是的方法仍是待定系數法。由於在反比例函數 中,只有一個待定系數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。
5、反比例函數中反比例系數的幾何意義
如下圖,過反比例函數 圖像上任一點P作x軸、y軸的垂線PM,PN,則所得的矩形PMON的面積S=PM PN= 。


第十七章 反比例函數
1.定義:形如y= (k為常數,k≠0)的函數稱為反比例函數。其他形式xy=k

2.圖像:反比例函數的圖像屬於雙曲線。反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點
3.性質:當k>0時雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。

❷ 初二數學下冊人教版知識點總結

全等三角形(很簡單的,找到對應邊或角就行了)函數絕對會考的,放點重心。軸對稱這可以看一看,因為大多數出畫圖題和填空題。實數應該出在填空中,但要看清題目,通常出根號XXX,然後就說要求出什麼的,這里要看清楚,先化簡根號XXX再乘除加減。重點就在函數和整式的乘除與因式分解(要看熟公式,遇到因式分解時,先看,通常出得好BT的,一群不相乾的多項式,但要先提出公因式,再看看屬於哪個公式完全平方或平方差,因式分解就是這些公式反過來的說法。不知道誰發明的,一開始學時,我都吐血了。但看題時不要心浮氣躁。)有時去看看書本中的「閱讀與思考」(不知道看目錄)我覺得有點用。

❸ 八年級下冊數學考試有那些重要的知識點

一次函數比較重要,一般會結合初三所學的拋物線或是幾何一起考;代版數方程部分要求一般,但權要打好基礎,保證拿分,以後求函數解析式等等會融入考察;四邊形部分是重點,中考會有一道證明題,雖然基本考相似,但是以四邊形為背景的;另外向量和概率是基礎,中考一般一道填空題

❹ 初二數學知識點歸納 謝謝!

初二數學知識點
第一章 一次函數
1 函數的定義,函數的定義域、值域、表達式,函數的圖像
2 一次函數和正比例函數,包括他們的表達式、增減性、圖像
3 從函數的觀點看方程、方程組和不等式
第二章 數據的描述
1 了解幾種常見的統計圖表:條形圖、扇形圖、折線圖、復合條形圖、直方圖,了解各種圖表的特點
條形圖特點:
(1)能夠顯示出每組中的具體數據;
(2)易於比較數據間的差別
扇形圖的特點:
(1)用扇形的面積來表示部分在總體中所佔的百分比;
(2)易於顯示每組數據相對與總數的大小
折線圖的特點;
易於顯示數據的變化趨勢
直方圖的特點:
(1)能夠顯示各組頻數分布的情況;
(2)易於顯示各組之間頻數的差別
2 會用各種統計圖表示出一些實際的問題
第三章 全等三角形
1 全等三角形的性質:
全等三角形的對應邊、對應角相等
2 全等三角形的判定
邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理
3 角平分線的性質
角平分線上的點到角的兩邊的距離相等;
到角的兩邊距離相等的點在角的平分線上。
第四章 軸對稱
1 軸對稱圖形和關於直線對稱的兩個圖形
2 軸對稱的性質
軸對稱圖形的對稱軸是任何一對對應點所連線段的垂直平分線;
如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連的線段的垂直平分線;
線段垂直平分線上的點到線段兩個端點的距離相等;
到線段兩個端點距離相等的點在這條線段的垂直平分線上
3 用坐標表示軸對稱
點(x,y)關於x軸對稱的點的坐標是(x,-y),關於y軸對稱的點的坐標是(-x,y),關於原點對稱的點的坐標是(-x,-y).
4 等腰三角形
等腰三角形的兩個底角相等;(等邊對等角)
等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)
一個三角形的兩個相等的角所對的邊也相等。(等角對等邊)
5 等邊三角形的性質和判定
等邊三角形的三個內角都相等,都等於60度;
三個角都相等的三角形是等邊三角形;
有一個角是60度的等腰三角形是等邊三角形;
推論:
直角三角形中,如果有一個銳角是30度,那麼他所對的直角邊等於斜邊的一半。
在三角形中,大角對大邊,大邊對大角。

第五章 整式
1 整式定義、同類項及其合並
2 整式的加減
3 整式的乘法
(1)同底數冪的乘法:
(2)冪的乘方
(3)積的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底數冪的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下冊知識點
第一章 分式
1 分式及其基本性質
分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2 分式的運算
(1)分式的乘除
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母
除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2) 分式的加減
加減法法則:同分母分式相加減,分母不變,把分子相加減;
異分母分式相加減,先通分,變為同分母的分式,再加減
3 整數指數冪的加減乘除法
4 分式方程及其解法
第二章 反比例函數
1 反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2 反比例函數在實際問題中的應用
第三章 勾股定理
1 勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2 勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。
第四章 四邊形
1 平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2 特殊的平行四邊形:矩形、菱形、正方形
(1) 矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定: 有一個角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論: 直角三角形斜邊的中線等於斜邊的一半。
(2) 菱形
性質:菱形的四條邊都相等;
菱形的對角線互相垂直,並且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等;
同一個底上的兩個角相等的梯形是等腰梯形。
第五章 數據的分析
加權平均數、中位數、眾數、極差、方差

❺ 八年級下冊數學學習重點是什麼

我也是八年級的學生,現在正在預習當中,覺得函數是最難的,接下來是勾股版定理,二次根式相對簡單些,平權行四邊形我還沒預習到,感覺比二次根式難,最簡單的永遠是最後一章啦。
如果你要預習的話,建議都預習一下,因為如果只專注於一個知識點,到時候就算好開始比別人學得好,接下來就會被別人反超的,抓緊時間,加油!

❻ 初二數學下冊知識點

第一章 一次函數
1 函數的定義,函數的定義域、值域、表達式,函數的圖像
2 一次函數和正比例函數,包括他們的表達式、增減性、圖像
3 從函數的觀點看方程、方程組和不等式
第二章 數據的描述
1 了解幾種常見的統計圖表:條形圖、扇形圖、折線圖、復合條形圖、直方圖,了解各種圖表的特點
條形圖特點:
(1)能夠顯示出每組中的具體數據;
(2)易於比較數據間的差別
扇形圖的特點:
(1)用扇形的面積來表示部分在總體中所佔的百分比;
(2)易於顯示每組數據相對與總數的大小
折線圖的特點;
易於顯示數據的變化趨勢
直方圖的特點:
(1)能夠顯示各組頻數分布的情況;
(2)易於顯示各組之間頻數的差別
2 會用各種統計圖表示出一些實際的問題
第三章 全等三角形
1 全等三角形的性質:
全等三角形的對應邊、對應角相等
2 全等三角形的判定
邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理
3 角平分線的性質
角平分線上的點到角的兩邊的距離相等;
到角的兩邊距離相等的點在角的平分線上。
第四章 軸對稱
1 軸對稱圖形和關於直線對稱的兩個圖形
2 軸對稱的性質
軸對稱圖形的對稱軸是任何一對對應點所連線段的垂直平分線;
如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連的線段的垂直平分線;
線段垂直平分線上的點到線段兩個端點的距離相等;
到線段兩個端點距離相等的點在這條線段的垂直平分線上
3 用坐標表示軸對稱
點(x,y)關於x軸對稱的點的坐標是(x,-y),關於y軸對稱的點的坐標是(-x,y),關於原點對稱的點的坐標是(-x,-y).
4 等腰三角形
等腰三角形的兩個底角相等;(等邊對等角)
等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)
一個三角形的兩個相等的角所對的邊也相等。(等角對等邊)
5 等邊三角形的性質和判定
等邊三角形的三個內角都相等,都等於60度;
三個角都相等的三角形是等邊三角形;
有一個角是60度的等腰三角形是等邊三角形;
推論:
直角三角形中,如果有一個銳角是30度,那麼他所對的直角邊等於斜邊的一半。
在三角形中,大角對大邊,大邊對大角。

第五章 整式
1 整式定義、同類項及其合並
2 整式的加減
3 整式的乘法
(1)同底數冪的乘法:
(2)冪的乘方
(3)積的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底數冪的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下冊知識點
第一章 分式
1 分式及其基本性質
分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2 分式的運算
(1)分式的乘除
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母
除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2) 分式的加減
加減法法則:同分母分式相加減,分母不變,把分子相加減;
異分母分式相加減,先通分,變為同分母的分式,再加減
3 整數指數冪的加減乘除法
4 分式方程及其解法
第二章 反比例函數
1 反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2 反比例函數在實際問題中的應用
第三章 勾股定理
1 勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2 勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。
第四章 四邊形
1 平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2 特殊的平行四邊形:矩形、菱形、正方形
(1) 矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定: 有一個角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論: 直角三角形斜邊的中線等於斜邊的一半。
(2) 菱形
性質:菱形的四條邊都相等;
菱形的對角線互相垂直,並且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等;
同一個底上的兩個角相等的梯形是等腰梯形。
第五章 數據的分析
加權平均數、中位數、眾數、極差、方差

❼ 八年級下冊數學知識點歸納

第十六章 分式 1. 分式的定義:如果A、B表示兩個整式,並且B中含有字母,那麼式子BA叫做分式。 分式有意義的條件是分母不為零,分式值為零的條件分子為零且分母不為零 2.分式的基本性質:分式的分子與分母同乘或除以一個不等於0的整式,分式的值不變。 (0≠C) 3.分式的通分和約分:關鍵先是分解因式 4.分式的運算: 分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。 分式除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。 分式乘方法則: 分式乘方要把分子、分母分別乘方。,ababacadbcadbccccbdbdbdbd±±±=±=±= 分式的加減法則:同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變為同分母分式,然後再加減 混合運算:運算順序和以前一樣。能用運算率簡算的可用運算率簡算。 5. 任何一個不等於零的數的零次冪等於1, 即)0(10≠=aa;當n為正整數時,nnaa1=− ()0≠a 6.正整數指數冪運算性質正整數指數冪運算性質正整數指數冪運算性質正整數指數冪運算性質也可以推廣到整數指數冪.(m,n是整數) (1)同底數的冪的乘法:nmnmaaa+=⋅; (2)冪的乘方:mnnmaa=)(; (3)積的乘方:nnnbaab=)(; (4)同底數的冪的除法:nmnmaaa−=÷( a≠0); (5)商的乘方:nnnbaba=)(();(b≠0) 7. 分式方程:含分式,並且分母中含未知數的方程——分式方程。 解分式方程的過程,實質上是將方程兩邊同乘以一個整式(最簡公分母),把分式方程轉化為整式方程。 解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。 解分式方程的步驟 : (1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;(3)解整式方程;(4)驗根. 增根應滿足兩個條件:一是其值應使最簡公分母為0,二是其值應是去分母後所的整式方程的根。 分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。 列方程應用題的步驟是什麼? (1)審;(2)設;(3)列;(4)解;(5)答. 應用題有幾種類型;基本公式是什麼?基本上有五種: (1)行程問題:基本公式:路程=速度×時間而行程問題中又分相遇問題、追及問題. (2)數字問題 在數字問題中要掌握十進制數的表示法. (3)工程問題 基本公式:工作量=工時×工效. (4)順水逆水問題 v順水=v靜水+v水. v逆水=v靜水-v水. 8.科學記數法:把一個數表示成na10×的形式(其中101<≤a,n是整數)的記數方法叫做科學記數法. 用科學記數法表示絕對值大於10的n位整數時,其中10的指數是1−n 用科學記數法表示絕對值小於1的正小數時,其中10的指數是第一個非0數字前面0的個數(包括小數點前面的一個0) 第十七章 反比例函數 1.定義:形如y=xk(k為常數,k≠0)的函數稱為反比例函數。其他形式xy=k 1−=kxyxky1= 2.圖像:反比例函數的圖像屬於雙曲線。反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點3.性質:當k>0時雙曲線的兩支分別位於第一、第三象限,在每個象限內y值隨x值的增大而減小; 當k<0時雙曲線的兩支分別位於第二、第四象限,在每個象限內y值隨x值的增大而增大。 4.|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。 第十八章 勾股定理 1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼a2+b2=c2。 2.勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那麼這個三角形是直角三角形。 3.經過證明被確認正確的命題叫做定理。 我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那麼另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理) 第十九章 四邊形 平行四邊形定義: 有兩組對邊分別平行的四邊形叫做平行四邊形。 平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。 平行四邊形的判定1.兩組對邊分別相等的四邊形是平行四邊形2.對角線互相平分的四邊形是平行四邊形; 3.兩組對角分別相等的四邊形是平行四邊形; 4.一組對邊平行且相等的四邊形是平行四邊形。 三角形的中位線平行於三角形的第三邊三角形的中位線平行於三角形的第三邊三角形的中位線平行於三角形的第三邊三角形的中位線平行於三角形的第三邊,,,,且等於第三邊的一半且等於第三邊的一半且等於第三邊的一半且等於第三邊的一半。。。。 直角三角形斜邊上的中線等於斜邊的一半直角三角形斜邊上的中線等於斜邊的一半直角三角形斜邊上的中線等於斜邊的一半直角三角形斜邊上的中線等於斜邊的一半。。。。 矩形的定義:有一個角是直角的平行四邊形。 矩形的性質: 矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD 矩形判定定理: 1.有一個角是直角的平行四邊形叫做矩形。 2.對角線相等的平行四邊形是矩形。 3.有三個角是直角的四邊形是矩形。 菱形的定義 :鄰邊相等的平行四邊形。 菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。 菱形的判定定理: 1.一組鄰邊相等的平行四邊形是菱形。 2.對角線互相垂直的平行四邊形是菱形。 3.四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線) 正方形定義:一個角是直角的菱形或鄰邊相等的矩形。 正方形的性質:四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。 正方形判定定理: 1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。 梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。 直角梯形的定義:有一個角是直角的梯形 等腰梯形的定義:兩腰相等的梯形。 等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。 等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。 解梯形問題常用的輔助線:如圖 線段的重心就是線段的中點。 平行四邊形的重心是它的兩條對角線的交點。 三角形的三條中線交於疑點,這一點就是三角形的重心。 寬和長的比是21-5(約為0.618)的矩形叫做黃金矩形。 第二十章 數據的分析 1.加權平均數:加權平均數的計算公式。 權的理解:反映了某個數據在整個數據中的重要程度。 學會權沒有直接給出數量,而是以比的或百分比的形式出現及頻數分布表求加權平均數的方法。 2.將一組數據按照由小到大(或由大到小)的順序排列,如果數據的個數是奇數,則處於中間位置的數就是這組數據的中位數(median);如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。 3.一組數據中出現次數最多的數據就是這組數據的眾數(mode)。 4.一組數據中的最大數據與最小數據的差叫做這組數據的極差(range)。 5. 方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。 數據的收集與整理的步驟:1.收集數據 2.整理數據 3.描述數據 4.分析數據 5.撰寫調查報告 6.交流 6. 平均數受極端值的影響眾數不受極端值的影響,這是一個優勢,中位數的計算很少不受極端值的影響。

❽ 初二數學下冊分式知識點

簡介

分式
編輯本段
第一節 分式的基本概念

形如A/B,A、B是整式,B中含有未知數且B不等於0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
掌握分式的概念應注意:
判斷一個式子是否是分式,不要看式子是否是A/B的形式,關鍵要滿足。
(1)分式的分母中必須含有未知數。
(2)分母的值不能為零,如果分母的值為零,那麼分式無意義。
由於字母可以表示不同的數,所以分式比分數更具有一般性。
整式和分式統稱為有理式。
帶有根號的式子叫做無理式
無理式和有理式統稱代數式
法則
1.約分:
把一個分式的分子和分母的公因式(不為1的數)約去,這種變形稱為約分。
2.分式的乘法法則:
兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。
3. 分式的加減法法則:
同分母的分式相加減,分母不變,把分子相加減。
4.通分:
異分母的分式可以化成同分母的分式,這一過程叫做通分。如:3/2和2/3可化為9/6和4/6.即:3*3/2*3,2*2/3*2!
5.異分母分式的加減法法則:
異分母的分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法法則進行計算。
(1).定義:一般地,如果A,B表示兩個整式,並且B中含有字母,那麼式子 A/B 叫做分式(fraction)。
註:A/B=A×1/B
(2).組成:在分式 中A稱為分式的分子,B稱為分式的分母。
(3).意義:對於任意一個分式,分母都不能為0,否則分式無意義。
(4)意義:對於任意一個分式,分母為零則是無意義。
(5).分式值為0的條件:在分母不等於0的前提下,分子等於0,則分式值為0。
註:分式的概念包括3個方面:①分式是兩個整式相除的分式,其中分子為被除式,分母為除式,分數線起除號的作用;②分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區別整式的重要依據;③在任何情況下,分式的分母的值都不可以為0,否則分式有意義。這里,分母是指除式而言。而不是只就分母中某一個字母來說的。也就是說,分式的分母不為零是隱含在此分式中而無須註明的條件。
編輯本段
第二節 分式的基本性質和變形應用

1.分式的基本性質:分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=A*C/B*C A/B=A÷C/B÷C(A,B,C為整式,且B、C≠0)
2.約分:把一個分式的分子和分母的公因式約去,這種變形稱為分式的約分.
3.分式的約分步驟:(1)如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去。(2)分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去.
註:公因式的提取方法:系數取分子和分母系數的最大公約數,字母取分子和分母共有的字母,指數取公共字母的最小指數,即為它們的公因式。
4.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式。約分時,一般將一個分式化為最簡分式.
5.通分:把幾個異分母分式分別化為與原分式值相等的同分母分式,叫做分式的通分。
6.分式的通分步驟:先求出所有分式分母的最簡公分母,再將所有分式的分母變為最簡公分母。同時各分式按照分母所擴大的倍數,相應擴大各自的分子.
註:最簡公分母的確定方法:系數取各因式系數的最小公倍數,相同字母的最高次冪及單獨字母的冪的乘積。
註:(1)約分和通分的依據都是分式的基本性質2.(2)分式的約分和通分都是互逆運算過程。
編輯本段
第三節 分式的四則運算

1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減。用字母表示為:a/c±b/c=a±b/c
2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法法則進行計算。用字母表示為:a/b±c/d=ad±cb/bd
3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。用字母表示為:a/b * c/d=ac/bd
4.分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。a/b÷c/d=ad/bc
(2).除以一個分式,等於乘以這個分式的倒數:a/b÷c/d=a/b*d/c
編輯本段
第四節 分式方程

1.分式方程的意義:分母中含有未知數的方程叫做分式方程。
2.分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數的值;③驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根).
分式方程的解法
①去分母{方程兩邊同時乘以最簡公分母(最簡公分母:①系數取最小公倍數②出現的字母取最高次冪③出現的因式取最高次冪),將分式方程化為整式方程;若遇到互為相反數時。不要忘了改變符號};②按解整式方程的步驟(移項,若有括弧應去括弧,注意變號,合並同類項, 系數化為1)求出未知數的值;③驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根).
驗根時把整式方程的根代入最簡公分母,如果最簡公分母等於0,這個根就是增根。否則這個根就是原分式方程的根。若解出的根是增根,則原方程無解。
如果分式本身約分了,也要帶進去檢驗。
在列分式方程解應用題時,不僅要檢驗所的解是否滿足方程式,還要檢驗是否符合題意。
一般的,解分式方程時,去分母後所得整式方程的解有可能使原方程中分母為零,因此要將整式方程的解代入最簡公分母,如果最簡公分母的值不為零,則是方程的解。
歸納:
解分式方程的基本思路是將分式方程化為整式方程,具體做法是「去分母」,即方程兩邊同乘最簡公分母,這也是解分式方程的一般思路和做法。
例題:
(1)x/(x+1)=2x/(3x+3)+1
兩邊乘3(x+1)
3x=2x+(3x+3)
3x=5x+3
2x=-3
x=-3/2
分式方程要檢驗
經檢驗,x=-3/2是方程的解
(2)2/(x-1)=4/(x^2-1)
兩邊乘(x+1)(x-1)
2(x+1)=4
2x+2=4
2x=2
x=1
分式方程要檢驗
把x=1帶入原方程,使分母為0,是增根。
所以原方程2/x-1=4/x^2-1
無解
必須要檢驗!!
檢驗格式:把x=a 帶入最簡公分母,若x=a使最簡公分母為0,則a是原方程的增根.若x=a使最簡公分母不為零,則a是原方程的根。
注意:可憑經驗判斷是否有解。若有解,帶入所有分母計算:若無解,帶入無解分母即可.
分式約分
如果分子和分母是多項式,要把多項式分解因式再約分
如:x^2-2x+1/x^2-1=(X-1)^2/(X+1)(X-1)=X-1/X+1
最簡分式:分子分母沒有公因式————如上!
分式的通分:將n個異分母的分式分別化為與原來分式相等的同分母分式
分式的分子和分母都同時乘以或除以一個不等於零的整式,分式的值不變。這個是分式的基本性質

❾ 初2數學下冊全部知識點

初二數學下知識點總結
平移與旋轉
旋轉
旋轉的定義:
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
旋轉的性質:
旋轉後得到的圖形與原圖形之間有:對應點到旋轉中心的距離相等,旋轉角相等。
中心對稱
中心對稱的定義:
如果一個圖形繞某一點旋轉180度後能與另一個圖形重合,那麼這兩個圖形叫做中心對稱。
中心對稱圖形的定義:
如果一個圖形繞一點旋轉180度後能與自身重合,這個圖形叫做中心對稱圖形。
中心對稱的性質:
在中心對稱的兩個圖形中,連結對稱點的線段都經過對稱中心,並且被對稱中心平分。
軸對稱
軸對稱的定義:
如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對
稱圖形,這條直線叫做對稱軸。
軸對稱圖形的性質:
①角的平分線上的點到這個角的兩邊的距離相等。
②線段垂直平分線上的點到這條線段兩個端點的距離相等。
③等腰三角形的「三線合一」。
3.軸對稱的性質:對應點所連的線段被對稱軸垂直平分,對應線段/對應角相等。
圖形變換
圖形變換的定義:圖形的平移、旋轉、和軸對稱統稱為圖形變換。
函數及其相關概念
1、變數與常量
在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。
3、函數的三種表示法及其優缺點
(1)解析法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,如果(k,b是常數,k0),那麼y叫做x的一次函數。
特別地,當一次函數中的b為0時,(k為常數,k0)。這時,y叫做x的正比例函數。
2、一次函數的圖像
所有一次函數的圖像都是一條直線
3、一次函數、正比例函數圖像的主要特徵:
一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。(如下圖)
4.
正比例函數的性質
一般地,正比例函數有下列性質:
(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;
(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。
5、一次函數的性質
一般地,一次函數有下列性質:
(1)當k>0時,y隨x的增大而增大
(2)當k<0時,y隨x的增大而減小
6、正比例函數和一次函數解析式的確定
確定一個正比例函數,就是要確定正比例函數定義式(k0)中的常數k。確定一個一次函數,需要確定一次函數定義式(k0)中的常數k和b。解這類問題的一般方法是待定系數法。

熱點內容
中國房價歷史 發布:2025-07-05 16:22:07 瀏覽:309
2年級的英語 發布:2025-07-05 13:33:31 瀏覽:773
初中物理電動機 發布:2025-07-05 11:48:09 瀏覽:245
慈利教育網 發布:2025-07-05 11:15:09 瀏覽:622
奧特曼黑歷史 發布:2025-07-05 05:13:59 瀏覽:8
2017全國二語文試卷 發布:2025-07-05 02:17:04 瀏覽:679
德陽是哪個省的 發布:2025-07-05 01:20:18 瀏覽:562
歐豪年彩墨教學視頻 發布:2025-07-05 00:38:16 瀏覽:713
教學實踐內容 發布:2025-07-04 21:32:22 瀏覽:431
雲南教育論文 發布:2025-07-04 18:10:10 瀏覽:16