數學a
總體上說A與B的區別就是:
4.高等數學(A類)是理工科本科各專業學生的一門公共必修的重要基礎理論課,它是為培養我國社會主義現代化建設所需要的高質量專門人才服務的。高等數學(B類)是生物,化學相關本科專業學生的一門公共必修的重要基礎理論課,它是為培養我國社會主義現代化建設所需要的高質量專門人才服務的。
5.高等數學A(學時數160),力學、物理等理論要求較高的理工科專業。高等數學B(學時數136),生物等大部分的工科專業。
(1)數學a擴展閱讀:
什麼是高等數學
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。工科、理科研究生考試的基礎科目。
參考資料:網路-高等數學
㈡ 數學中,排列組合A C P分別代表什麼求詳細。
排列組合中P是舊版教材的寫法,後來新版教材將P改成A,所以A和P是一樣的,都是排列數。而C是排列組合中的組合數。
1、排列的定義:從n個不同元素中,任取m(m≤n,m與n均為自然數,下同)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示,舊版教材中用P(n,m)表示。
計算公式:
C(n,m)=C(n,n-m)。(n≥m)
(2)數學a擴展閱讀:
排列組合中的基本計數原理
1、加法原理和分類計數法
(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。
(2)第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2,……,第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合A1UA2U…UAn。
(3)分類的要求 :每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
2、乘法原理和分步計數法
(1)乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有N=m1×m2×m3×…×mn種不同的方法。
(2)合理分步的要求
任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務;各步計數相互獨立;只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。
㈢ 考研高數A包括什麼
考研高數A包括高等數學、線性代數、概率論與數理統計。
考試要求:
1、理解函數的概念。
2、了解函數的有界性、單調性、周期性和奇偶性。
3、理解復合函數及分段函數的概念,了解反函數及隱函數的概念。
4、掌握基本初等函數的性質及其圖形,了解初等函數的概念。
5、理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左、右極限之間的關系。
6、掌握極限的性質及四則運演算法則。
7、掌握極限存在的兩個准則,並會利用它們求極限,掌握利用兩個重要極限求極限的方法。
8、理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限。
9、理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型。
10、了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),並會應用這些性質。
(3)數學a擴展閱讀:
一、適用范圍
高等數學A(或高等數學1)適用於力學、機械工程、光學工程、儀器科學與技術、冶金工程、動力工程及工程熱物理、電氣工程、電子科學與技術、信息與通信工程、控制科學與工程、計算機科學與技術、土木工程、水利工程、測繪科學與技術。
交通運輸工程、船舶與海洋工程、航空宇航科學與技術、兵器科學與技術、核科學與技術、生物醫學工程等一級學科中所有的二級學科的研究生招生。
二、命題原則
1、科學性與公平性原則
作為公共基礎課,考研數學試題以基礎性、生活類試題為主,盡量避免過於廣大考生來說過於專業和抽象難懂的內容。
2、覆蓋全面的原則
考研數學試題的內容要求涵蓋所有考綱所要求考核的內容,尤其涵蓋數(一)、數(二)、數(三)、數(四)相區別之處。
3、控制難易度的原則
考研數學試題要求以中等偏上題為主,考試及格率控制在30-40%,平均分(滿分150分)控制在75分左右。
4、控制題量的原則
考研數學試題的題量控制在20-22道之間(一般6道填空題,6道選擇題,10道大題),保證考生基本能答完試題並有時間檢查。
數學試卷的結構是總共20道題,填空5個,選擇5個,大的綜合題10個,其中高數6個,線性代數和概率論各2個。
㈣ 人教版高中數學A版和B版有什麼區別
1、難易程度不同
人教版高中數學A版要比B版簡單一些。B版除了內容比A版多而難以外,B版的練習題,尤其是B版的B組練習題,難度非常大。
2、編輯模塊不同
A版是傳統的運用公理定理做輔助線等幾何方式來解立體幾何題的。
B版屬於新設內容,也就是沿襲高一下冊平面向量部分的知識,用空間向量的方法和概念來解立體幾何題,將幾何問題代數化計算求解。
3、實行的地區不同
A版B版是分「地區」進行區分的,也就是地區相同一般都是用一個版的教材。
4、側重點不同:
B版比A版更全面注重揭示概念的本質,提高數學素養。所以適合對數學有興趣的學生,而A版教材適用於自學者或者對高中數學要求沒有那麼高的學生。比如同樣是立體幾何,A版注重空間想像思維考查,B版則著重考查概念的延伸。
㈤ 關於數學排列組合,A什麼的C什麼的到底怎麼算舉個例子。。
A開頭的叫排列,C開頭的叫組合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
註:當且僅當兩個排列的元素完全相同,且元素的排列順序也相同,則兩個排列相同。例如,abc與abd的元素不完全相同,它們是不同的排列;又如abc與acb,雖然元素完全相同,但元素的排列順序不同,它們也是不同的排列。
㈥ 高中數學A B版的區別
區別如以下三個:
1. A版、B版是分「地區」進行區分的,也就是地區相同一般都是用一個版版的教材。
2. B版比較權難,一般給理科生用的。
3. A版、B版主編不同,從而導致部分內容不同。
(6)數學a擴展閱讀
《高中數學》是由人民教育出版社出版的圖書,該書由人民教育出版社、課程教材研究所、數學課程教材研究開發中心共同編制,內容包括《集合與函數》《三角函數》《不等式》《數列》《復數》《排列、組合、二項式定理》《立體幾何》《平面解析幾何》等部分。
公式口訣
《集合與函數》
內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數
正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸
㈦ 數學排列組合中,A 和 C的區別
一、定義不同:
(1)排列,一般地,從n個不同元素中取出m(m≤n)個元素,按照一定的順序排成一列,叫做從n個元素中取出m個元素的一個排列(permutation)。
(2)組合(combination)是一個數學名詞。一般地,從n個不同的元素中,任取m(m≤n)個元素為一組,叫作從n個不同元素中取出m個元素的一個組合。
二、計算方法不同:
(1)排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
(2)組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
(1)A(4,2)=4!/2!=4*3=12
(2)C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
(7)數學a擴展閱讀:
排列組合的難點:
(1)從千差萬別的實際問題中抽象出幾種特定的數學模型,需要較強的抽象思維能力。
(2)限制條件有時比較隱晦,需要我們對問題中的關鍵性詞(特別是邏輯關聯詞和量詞)准確理解。
(3)計算手段簡單,與舊知識聯系少,但選擇正確合理的計算方案時需要的思維量較大。
(4)計算方案是否正確,往往不可用直觀方法來檢驗,要求我們搞清概念、原理,並具有較強的分析能力。
㈧ a在數學里是什麼意思
是個常數,可以指代一個數字,在初中以上的數學中會經常遇到。
如已知正方形的邊長是a,則它的周長可以表示為4a,面積可以表示為a²
,即不需要知道具體數字,能用字母把它表達出來即可
㈨ 在數學中a,b,h,s,分別代表什麼
a,b通常表示兩條邊,s通常表面積,h通常表示高