數學的由來
❶ 數學起源
名稱來源
數學(mathematics;希臘語:μαθηματικ?)這一詞在西方源自於古希臘語的μ?θημα(máthēma),其有學習、學問、科學,以及另外還有個較狹隘且技術性的意義-「數學研究」,即使在其語源內。其形容詞意義為和學習有關的或用功的,亦會被用來指數學的。其在英語中表面上的復數形式,及在法語中的表面復數形式les mathématiques,可溯至拉丁文的中性復數mathematica,由西塞羅譯自希臘文復數τα μαθηματικ?(ta mathēmatiká),此一希臘語被亞里士多德拿來指「萬物皆數」的概念。(拉丁文:Mathemetica)原意是數和數數的技術。
我國古代把數學叫算術,又稱算學,最後才改為數學。 要想學好數學,勤練才可以。
❷ 數學起源於哪裡
數學起源於公元前4世紀。公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。
從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)
直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」
從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」
拓展資料:
學數學意義
學數學的意義就是不光會做老師們純粹為了考大家的題目,更重要的是把這些討厭的問題變成人人都喜聞樂見的實際性成果,數學家們是默默無聞卻強大無比的歷史推進者!
掌握數字規律,訓練邏輯思維,能訓練人們的思維能力.開發腦力.更理性的去認識這個世界.數學一種工具,它邏輯性強,能訓練人們的思維能力;它注重方式方法,能讓你的思維更敏銳;再者就是能幫助你解決一些實際問題 掌握數字規律,訓練邏輯思維,數學是一門基礎學科,除了語言學科以外,其他學科基本上都會運用到數學.意義深遠!
❸ 數學的起源
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」
自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。
從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。
對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。
事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」
另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」
從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。
基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。
人類從學會計數開始就一直和自然數打交道了,後來由於實踐的需要,數的概念進一步擴充,自然數被叫做正整數,而把它們的相反數叫做負整數,介於正整數和負整數中間的中性數叫做0。它們和起來叫做整數。
對於整數可以施行加、減、乘、除四種運算,叫做四則運算。其中加法、減法和乘法這三種運算,在整數范圍內可以毫無阻礙地進行。也就是說,任意兩個或兩個以上的整數相加、相減、相乘的時候,它們的和、差、積仍然是一個整數。但整數之間的除法在整數范圍內並不一定能夠無阻礙地進行。
人們在對整數進行運算的應用和研究中,逐步熟悉了整數的特性。比如,整數可分為兩大類—奇數和偶數(通常被稱為單數、雙數)等。利用整數的一些基本性質,可以進一步探索許多有趣和復雜的數學規律,正是這些特性的魅力,吸引了古往今來許多的數學家不斷地研究和探索。
❹ 數學的由來是什麼
數學在我國古代叫算術,後來叫算學,也叫數學。直到幾十年前,我國才確定統一叫作數學。
那是在古代,「算」字有三種寫法:籌、等、算(祘)。從字形的結構,就可以看到事物演變的一些痕跡。漢代許慎的《說文解字》對這幾個字作如下解釋:「等」,「長六寸,計歷數者」。「算,數也,從竹從具,讀若。」
「算(祘)」原來是一種竹製的工具,是幾寸長的竹簽,也叫籌碼,用來記數、計算或卜卦。擺弄這些「算」有一套技術及學問,自然就叫作「算術」或「算學」。
我國盛產竹子,是世界上最善於利用竹子的國家。用竹子做計算工具,使我國古代數學帶有許多和西方不同的特色。因此,「祘」由兩個「示」字合成。
《說文解字》中解釋「示」字說:「示,天垂家見吉凶所以示人也。「二」是古文的上字,三豎代表日、月、星。古人以為天上有神靈,神的表示是從上面下來的。
無論如何,「算術」這個名稱在漢代已經通行了,正式使用是在《九章算術》一書中。在宋、元兩代,我國數學發展居世界前列。那時「算學」和「數學」這兩個詞是並用的。
1935年,中國數學會名詞審查委員會仍主張兩詞並存。直到1939年6月,為統一才確定用「數學」。
❺ 數學的故事的數學由來
書中使用了大量豐富多彩的圖片,展示這一科學的變化軌跡。從豪華燦爛的中世紀的手稿到達利及杜尚的震撼人心的藝術傑作;從巴比倫泥土板的簡朴美到計算機生成圖像的精美組成,通過中世紀歐洲偉大翻譯家破解中國文明和印度文明,一直到科學革命和數字革命,作者用淺顯易懂的語言記述了數學發展的歷史過程。書中既生動形象地描述了眾所周知的偉人如開普勒、哥白尼等人的故事,同時也對數學領域的偉人如阿貝爾、歐拉等人進行了生動形象的描述。《數學的故事》是歷史、傳記及大眾科學的巧妙集成。它使我們得以了解以前從沒意識到的數學的重要性、數學發展的內幕以及它的魅力。
❻ 數學的由來
數學是一門最古老的學科,它的起源可以上溯到一萬多年以前。但是,公內元1000年以前的資容料留存下來的極少。迄今所知,只有在古代埃及和巴比倫發現了比較系統的數學文獻。
遠在1 萬5千年前人類就已經能相當逼真地描繪出人和動物的形象。這是萌發圖形意識的最早證據。後來就逐漸開始了對圓形和直線形的追求,因而成為數學圖形的最早的原型。在日常生活和生產實踐中又逐漸產生了計數意識和計數系統,人類摸索過多種記數方法,有開始的結繩記數,用石塊記數,語言點數進一步用符號,逐步發展到今天我們所用的數字。圖形意識和計數意識發展到一定程度,又產生了度量意識。
這一系列的發展演變逐漸形成了今天我們所熟悉的完整的數學這一門學科,它包括算術、幾何、代數、三角、微積分、統計和概率(其實它一開始是人們為了鑽研賭博而來的呢)……等等各個分支,而且還在不斷發展下去.
❼ 數學起源於什麼時候
一. 「什麼是數學?」
數學本身是一個歷史的概念,數學的內涵隨著時代的變化而變化,給數學下一個一勞永逸的定義是不可能的。我們在這里就從歷史的角度來談談「什麼是數學」這個問題。
公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。
公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)
直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」
從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」
二.數與形的概念的產生
人類在蒙昧時代就已具有識別事物多寡的能力。原始人在採集、狩獵等生產活動中首先注意到一隻羊與許多羊、一頭狼與整群狼在數量上的差異。通過一隻羊與許多羊、一頭狼與整群狼的比較,就逐漸看到了一隻羊、一頭狼、一條魚、一棵樹等等之間存在著某種共通的東西(即它們的單位性)。當對數的認識變得越來越明確時,人們感到有必要以某種方式來表達事物的這一屬性,於是導致了記數。
古代的記數方法:
1. 手指計數:利用兩只手的十個手指。亞里士多德指出:十進制的廣泛採用,
只不過是我們絕大多數人生來具有10個手指這一事實的結果。
2. 石子記數:在地上擺小石子,但記數的石子堆很難長久保存。
3. 結繩記數:在一根繩子上打結來表示事物的多少。比如今天獵到五頭羊,就
以在繩子上打五個結來表示;約定三天後再見面,就在繩子上打三個結,過一天解一個結;等等。
秘魯的印加族人(印第安人中的一部分)古時(公元前1500年前)每收進一捆莊稼,就在繩上打個結,用來記錄收獲的多少。
中國古代文獻《周易 系辭下》有「上古結繩而治」之說。「結繩而治」即結繩記數或結繩記事。
結繩記數這種方法,不但在遠古時候使用,而且一直在某些民族中沿用下來。宋朝人在一本書中說:「韃靼無文字,每調發軍馬,即結草為約,使人傳達,急於星火。」這是用結草來調發軍馬,傳達要調的人數。
其他如藏族、彝族等,雖都有文字,但在一般不識字的人中間都還長期使用這種方法。中央民族大學就收藏著一副高山族的結繩,由兩條繩子組成:每條上有兩個結,再把兩條繩結在一起。
4. 刻痕記數:1937年在維斯托尼斯(摩拉維亞)發現一根40萬年前的幼狼前
肢骨,7英寸長,上面有55道很深的刻痕。這是已發現的用刻痕方法計數的最早資料。直到今天,在歐、亞、非大陸的某些地方,仍然有一些牧人用在棒上刻痕的方法來計算他們的牲畜。
直到距今大約五千年前,終於出現了書寫記數以及相應的記數系統。我們介紹幾種古老文明的早期記數系統。(按時代順序)
1. 古埃及的象形數字(公元前3400年左右)
2. 巴比倫楔形文字(公元前2400年左右)
3. 中國甲骨文數字(公元前1600年左右)
4. 希臘阿提卡數字(公元前500年左右)
5. 中國籌算數碼(公元前500年左右)
6. 印度婆羅門數字(公元前300年左右)
7. 瑪雅數字(?)
而我們現代廣泛使用的是阿拉伯數字。其實,這些阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯人掌握、改進,並傳到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。
與數的概念形成一樣,人類最初的幾何知識也是他們從對形的直覺中萌發出來的,例如,不同種族的人都注意到了圓月和挺拔的松樹在形象上的區別。幾何學便是建立在對這類從自然界提取出來的「形」的總結的基礎之上。例如,一個平面只不過是一片平地的表面,而一條直線則是拉緊了的一段繩子,來自希臘文的英文Hypotenuse(斜邊、弦)原先的意思就是「拉緊」。同樣,三角形、圓、正方形、長方形等一系列幾何形式的概念也來自於人們的觀察和實踐。
在不同的地區,幾何學的這種實踐來源方向不盡相同。
1. 古埃及幾何學:正如古羅馬歷史學家希羅多德所指出的,埃及的幾何學是「尼
羅河的饋贈」。一年一度的尼羅河洪水沖毀了某個人的土地,那麼他就必須向
法老報告所受的損失。法老會派專人來測量所失去的土地,再按相應的比例減稅。這樣一來,幾何學就產生並發展起來了。這類專門負責測量事物的人有專門的名稱,叫做「司繩」。
2. 巴比倫人的幾何學:也是源於實際的測量,它的重要特徵是其算術性質,至
少在公元前1600年,他們就已熟悉長方形、直角三角形和等腰三角形和某些梯形的面積計算。
3. 古印度幾何學:起源與宗教實踐密切相關,公元前8世紀至5世紀形成的所
謂「繩法經」,便是關於祭壇與寺廟建造中的幾何問題及其求解法則的記載。
4. 古代中國幾何學:起源更多地與天文觀測相聯系。中國最早的數學經典《周
髀算經》(至晚在公元前2世紀成書)事實上是一部討論西周初年天文測量中所用數學方法的著作。
❽ 數學的起源啊
一. 「什麼是數學?」
數學本身是一個歷史的概念,數學的內涵隨著時代的變化而變化,給數學下一個一勞永逸的定義是不可能的。我們在這里就從歷史的角度來談談「什麼是數學」這個問題。
公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。
公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)
直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」
從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」
二.數與形的概念的產生
人類在蒙昧時代就已具有識別事物多寡的能力。原始人在採集、狩獵等生產活動中首先注意到一隻羊與許多羊、一頭狼與整群狼在數量上的差異。通過一隻羊與許多羊、一頭狼與整群狼的比較,就逐漸看到了一隻羊、一頭狼、一條魚、一棵樹等等之間存在著某種共通的東西(即它們的單位性)。當對數的認識變得越來越明確時,人們感到有必要以某種方式來表達事物的這一屬性,於是導致了記數。
古代的記數方法:
1. 手指計數:利用兩只手的十個手指。亞里士多德指出:十進制的廣泛採用,
只不過是我們絕大多數人生來具有10個手指這一事實的結果。
2. 石子記數:在地上擺小石子,但記數的石子堆很難長久保存。
3. 結繩記數:在一根繩子上打結來表示事物的多少。比如今天獵到五頭羊,就
以在繩子上打五個結來表示;約定三天後再見面,就在繩子上打三個結,過一天解一個結;等等。
秘魯的印加族人(印第安人中的一部分)古時(公元前1500年前)每收進一捆莊稼,就在繩上打個結,用來記錄收獲的多少。
中國古代文獻《周易 系辭下》有「上古結繩而治」之說。「結繩而治」即結繩記數或結繩記事。
結繩記數這種方法,不但在遠古時候使用,而且一直在某些民族中沿用下來。宋朝人在一本書中說:「韃靼無文字,每調發軍馬,即結草為約,使人傳達,急於星火。」這是用結草來調發軍馬,傳達要調的人數。
其他如藏族、彝族等,雖都有文字,但在一般不識字的人中間都還長期使用這種方法。中央民族大學就收藏著一副高山族的結繩,由兩條繩子組成:每條上有兩個結,再把兩條繩結在一起。
4. 刻痕記數:1937年在維斯托尼斯(摩拉維亞)發現一根40萬年前的幼狼前
肢骨,7英寸長,上面有55道很深的刻痕。這是已發現的用刻痕方法計數的最早資料。直到今天,在歐、亞、非大陸的某些地方,仍然有一些牧人用在棒上刻痕的方法來計算他們的牲畜。
直到距今大約五千年前,終於出現了書寫記數以及相應的記數系統。我們介紹幾種古老文明的早期記數系統。(按時代順序)
1. 古埃及的象形數字(公元前3400年左右)
2. 巴比倫楔形文字(公元前2400年左右)
3. 中國甲骨文數字(公元前1600年左右)
4. 希臘阿提卡數字(公元前500年左右)
5. 中國籌算數碼(公元前500年左右)
6. 印度婆羅門數字(公元前300年左右)
7. 瑪雅數字(?)
而我們現代廣泛使用的是阿拉伯數字。其實,這些阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯人掌握、改進,並傳到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。
與數的概念形成一樣,人類最初的幾何知識也是他們從對形的直覺中萌發出來的,例如,不同種族的人都注意到了圓月和挺拔的松樹在形象上的區別。幾何學便是建立在對這類從自然界提取出來的「形」的總結的基礎之上。例如,一個平面只不過是一片平地的表面,而一條直線則是拉緊了的一段繩子,來自希臘文的英文Hypotenuse(斜邊、弦)原先的意思就是「拉緊」。同樣,三角形、圓、正方形、長方形等一系列幾何形式的概念也來自於人們的觀察和實踐。
在不同的地區,幾何學的這種實踐來源方向不盡相同。
1. 古埃及幾何學:正如古羅馬歷史學家希羅多德所指出的,埃及的幾何學是「尼
羅河的饋贈」。一年一度的尼羅河洪水沖毀了某個人的土地,那麼他就必須向
法老報告所受的損失。法老會派專人來測量所失去的土地,再按相應的比例減稅。這樣一來,幾何學就產生並發展起來了。這類專門負責測量事物的人有專門的名稱,叫做「司繩」。
2. 巴比倫人的幾何學:也是源於實際的測量,它的重要特徵是其算術性質,至
少在公元前1600年,他們就已熟悉長方形、直角三角形和等腰三角形和某些梯形的面積計算。
3. 古印度幾何學:起源與宗教實踐密切相關,公元前8世紀至5世紀形成的所
謂「繩法經」,便是關於祭壇與寺廟建造中的幾何問題及其求解法則的記載。
4. 古代中國幾何學:起源更多地與天文觀測相聯系。中國最早的數學經典《周
髀算經》(至晚在公元前2世紀成書)事實上是一部討論西周初年天文測量中所用數學方法的著作。
❾ 數學的來歷
大約在300萬年前,處於原始社會的人類用在繩子上打結的方法來記數,並以繩結的大小來表示野獸的大小。數的概念就是這樣逐漸發展起來的。在距今約五六千年前,古埃及人較早地學會了農業生產。尼羅河每年7月定期泛濫,11月洪水逐漸減退。
當時古埃及的農業制度,是國王分配同樣大小的正方形土地給每一個人,耕種的人每年提取收獲的一部分交租。如果洪水沖垮了他們所耕種的土地,他們可以報告國王,國王就派人前來調查並將損失的那一部分測量出來,這樣,他們可以相應地少交一些租。
這種對於土地的測量,最終產生了幾何學。實際上,幾何學本來就是「土地測量」的意思。數學就是從「結繩記數」和「土地測量」開始的。距今兩千年前,在歐洲東南部生活的古希臘人,繼承和發展了這些數學知識,並將數學發展成為一門科學。
古希臘文明毀滅後,阿拉伯人將他們的文化保存下來並加以發展,後來又傳回歐洲,數學重新得到繁榮,並最終導致了近代數學的創立。
(9)數學的由來擴展閱讀:
在中國古代,數學叫作算術,又稱算學,最後才改為數學。中國古代的算術是六藝之一(六藝中稱為「數」)。
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展。但當時的代數學和幾何學長久以來仍處於獨立的狀態。
現今數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展。數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用。
❿ 數學的來歷 50字
數學」一詞是來自希臘語,字面意思有學習、科學之意。它起源於人類早期的生產活動,其基本概念的精煉早在古埃及、美索不達米亞及古印度就已經出現。
人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支。
(10)數學的由來擴展閱讀:
許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。
此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統。
把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域.由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。
代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法。