當前位置:首頁 » 語數英語 » 數學集合

數學集合

發布時間: 2020-11-22 00:52:09

1. 數學集合中的「|」是什麼意思

分隔線,前面的說明有哪些元素,後面的說明這些元素的特徵,沒有特別的含義,只是劃分用的
你的例子里, 「|」前面的y表示這個集合的元素用y來表示,後面y=x+2,表示y(也就是集合中的所有元素)有哪些特徵和限制,這個例子里y=x+2,而對x沒有任何限制,也就是x可以取全體實數,所以y也能取到全部實數,因此這個集合等價於實數集R

2. 數學集合中,N,N*,Z,Q,R,C分別是什麼意思

1、全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N

2、非負整數集內排除0的集,也稱正整數集,記作N+(或N*)

3、全體整數的集合通常稱作整數集,記作Z

4、全體有理數的集合通常簡稱有理數集,記作Q

5、全體實數的集合通常簡稱實數集,記作R

6、復數集合計作C

(2)數學集合擴展閱讀

一、集合的運算:

1、集合交換律:

A∩B=B∩A

A∪B=B∪A

2、集合結合律:

(A∩B)∩C=A∩(B∩C)

(A∪B)∪C=A∪(B∪C)

3、集合分配律:

A∩(B∪C)=(A∩B)∪(A∩C)

A∪(B∩C)=(A∪B)∩(A∪C)

二、集合的表示方法:常用的有列舉法和描述法。

1、列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……}

2、描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π}

3、圖式法(Venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內部表示一個集合。

3. 數學集合中CuA是什麼意思

補集:屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA。

設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做子集A在S中的絕對補集。在集合論和數學的其他分支中,存在補集的兩種定義:相對補集和絕對補集。

相對補集:若A和B是集合,則A在B中的相對補集是這樣一個集合:其元素屬於B但不屬於A,B-A= { x| x∈B且x∉A}。

絕對補集:若給定全集U,有A⊆U,則A在U中的相對補集稱為A的絕對補集,寫作∁UA。

(3)數學集合擴展閱讀:

全集是一個相對的概念,只包含所研究問題中所涉及的所有元素,補集只相對於相應的全集而言。如:我們在整數范圍內研究問題,則Z為全集,而當問題拓展到實數集時,則R為全集,補集也只是相對於此而言。

補集符號∁UA有三層含義:

1、A是U的一個子集,即A⊆U;

2、∁UA表示一個集合,且∁UA⊊U;

3、∁UA是由U中所有不屬於A的元素組成的集合,∁UA與A沒有公共元素,U中的元素分布在這兩個集合中。

4. 數學中,什麼叫做集合

一般的把一些能夠確定的對象看成一個整體我們就說這個整體是由這些對象的全體構成的集合.集合一般是在高中一年級的基礎數學章節。是高中數學函數的基礎哦~~
關於集合的概念:
點、線、面等概念都是幾何中原始的、不加定義的概念,集合則是集合論中原始的、不加定義的概念.
初中代數中曾經了解「正數的集合」、「不等式解的集合」;初中幾何中也知道中垂線是「到兩定點距離相等的點的集合」等等.在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識.教科書給出的「一般地,某些指定的對象集在一起就成為一個集合,也簡稱集.」這句話,只是對集合概念的描述性說明.
我們可以舉出很多生活中的實際例子來進一步說明這個概念,從而闡明集合概念如同其他數學概念一樣,不是人們憑空想像出來的,而是來自現實世界.
總之,集合:某些指定的對象集在一起就形成一個集合。
集合的表示方法
1、列舉法:把集合中的元素一一列舉出來,寫在大括弧內表示集合的方法。
例如,由方程
的所有解組成的集合,可以表示為{-1,1}.
註:(1)有些集合亦可如下表示:
從51到100的所有整數組成的集合:{51,52,53,…,100}
所有正奇數組成的集合:{1,3,5,7,…}
(2)a與{a}不同:a表示一個元素,{a}表示一個集合,該集合只有一個元素。
描述法:用確定的條件表示某些對象是否屬於這個集合,並把這個條件寫在大括弧內表示集合的方法。
格式:{x∈A|
P(x)}
含義:在集合A中滿足條件P(x)的x的集合。
例如,不等式
的解集可以表示為:

所有直角三角形的集合可以表示為:
註:(1)在不致混淆的情況下,可以省去豎線及左邊部分。
如:{直角三角形};{大於104的實數}
(2)錯誤表示法:{實數集};{全體實數}
3、文氏圖:用一條封閉的曲線的內部來表示一個集合的方法。
註:何時用列舉法?何時用描述法?
(1)
有些集合的公共屬性不明顯,難以概括,不便用描述法表示,只能用列舉法。
(2)
有些集合的元素不能無遺漏地一一列舉出來,或者不便於、不需要一一列舉出來,常用描述法。
如:集合{1000以內的質數}

5. 數學集合中,全集U是什麼意思

一般的,如果抄一個集合含有我們所研究問題中涉及的所有元素,那麼就稱這個集合為全集,通常記作U。數學上,特別是在集合論和數學基礎的應用中,全類(若是集合,則為全集)大約是這樣一個類,它(在某種程度上)包含了所有的研究對象和集合。

(5)數學集合擴展閱讀

1、N:非負整數集合或自然數集合{0,1,2,3,…}

2、N*或N+:正整數集合{1,2,3,…}

3、Z:整數集合{…,-1,0,1,…}

4、Q:有理數集合

5、Q+:正有理數集合

6、Q-:負有理數集合

7、R:實數集合(包括有理數和無理數)

8、R+:正實數集合

9、R-:負實數集合

10、C:復數集合

11、∅ :空集(不含有任何元素的集合)

6. 數學中的集合是什麼意思

對於任來意的對象a與自b,都存在一個集合S,使得S恰有兩個元素,一個是對象a,一個是對象b。由外延公理,由它們組成的無序對集合是唯一的,記做{a,b}。
由於a,b是任意兩個對象,它們可以相等,也可以不相等。當a=b時,{a,b},可以記做{a}或{b},並且稱之為單元集合。
參考
http://ke..com/view/15216.htm#2

7. 數學集合中的所有符號及其意義是什麼

集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素.,集合可以用符號來表示,集合中的符號和意義如下:

∪ 並

∩ 交

⊂ A⊂B, A屬於B

⊃ A⊃B, A包括B

∈ a∈A,a是A的元素

⊆ A⊆B,A不大於B

⊇ A⊇B,A不小於B

Φ 空集

R 實數

N 自然數

Z 整數

Z+正整數

Z- 負整數

(7)數學集合擴展閱讀:

集合有關概念 :

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

(1)元素的確定性;

(2)元素的互異性;

(3)元素的無序性

相關知識:

1、對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

2、任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

3、集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

集合的分類:

1、有限集 含有有限個元素的集合

2、無限集 含有無限個元素的集合

3、空集 不含任何元素的集合 例:{x|x2=-5}

集合的表示方法:

1、列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

2、描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

8. 數學中,集合有哪幾種字母,分別是什麼意思

數學中的集合字母和意思:

N:非負整數集合或自然數集合{0,1,2,3,……}

N*或N+:正整數集合{1,2,3,……}

Z:整數集合{……,-1,0,1,……}

P:質數集合

Q:有理數集合

Q+:正有理數集合

Q-:負有理數集合

R:實數集合

R+:正實數集合

R-:負實數集合

C:復數集合

∅:空集合(不含有任何元素的集合稱為空集合)

U:全集合(包含了某一問題中所討論的所有元素的集合)

(8)數學集合擴展閱讀:

一、集合的特性:

(1)確定性

給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。

(2)互異性

一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。

(3)無序性

一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。(參見序理論)

(4)符號表示規則

元素則通常用a,b,c,d或x等小寫字母來表示;而集合通常用A,B,C,D或X等大寫字母來表示。當元素a屬於集合A時,記作a∈A。假如元素a不屬於A,則記作a∉A。如果A和B兩個集合各自所包含的元素完全一樣,則二者相等,寫作A=B。

二、集合的運算定律:

(1)交換律:A∩B=B∩A;A∪B=B∪A

(2)結合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C

(3)分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)

(4)對偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C

(5)同一律:A∪∅=A;A∩U=A

(6)求補律:A∪A'=U;A∩A'=∅

(7)對合律:A''=A

(8)等冪律:A∪A=A;A∩A=A

(9)零一律:A∪U=U;A∩∅=∅

(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A

(11)反演律(德·摩根律):(A∪B)'=A'∩B';(A∩B)'=A'∪B'。文字表述:1.集合A與集合B的交集的補集等於集合A的補集與集合B的補集的並集; 2.集合A與集合B的並集的補集等於集合A的補集與集合B的補集的交集。

(12)容斥原理(特殊情況):

card(A∪B)=card(A)+card(B)-card(A∩B)

card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)

9. 數學集合符號都有哪些

數學集合符號如下:

1、N:非負整數集合或自然數集合{0,1,2,3,…}

2、N*或N+:正整數集合{1,2,3,…}

3、Z:整數集合{…,-1,0,1,…}

4、Q:有理數集合

5、Q+:正有理數集合

6、Q-:負有理數集合

7、R:實數集合(包括有理數和無理數)

8、R+:正實數集合

9、R-:負實數集合

10、C:復數集合

11、∅ :空集(不含有任何元素的集合)

(9)數學集合擴展閱讀:

集合基礎知識:

1、定義:一般地,我們把研究對象統稱為元素,一些元素組成的總體叫集合,也簡稱集;

2、表示方法:集合通常用大括弧{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

3、關於集合的元素的特徵

(1)確定性:給定一個集合,那麼任何一個元素在或不在這個集合中就確定了;

(2)互異性:一個集合中的元素是互不相同的,即集合中的元素是不重復出現的;

(3)無序性:即集合中的元素無順序,可以任意排列、調換。

4、元素與集合的關系:(元素與集合的關系有「屬於」及「不屬於」兩種)

(1)若a是集合A中的元素,則稱a屬於集合A;

(2)若a不是集合A的元素,則稱a不屬於集合A。

5、集合的表示方法

(1)列舉法:把集合中的元素一一列舉出來, 並用花括弧括起來表示集合的方法叫列舉法;

(2)描述法:用集合所含元素的共同特徵表示集合的方法,稱為描述法;

(3)文氏(Venn)圖法:畫一條封閉的曲線,用它的內部來表示一個集合。

參考資料:網路:集合

熱點內容
教師資格證統考一年幾次 發布:2025-09-18 14:01:59 瀏覽:922
有關化學方程式的計算 發布:2025-09-18 07:59:57 瀏覽:944
師風師德評價表 發布:2025-09-18 07:01:17 瀏覽:886
實施的英語 發布:2025-09-18 03:25:05 瀏覽:151
教研組師德師風自查報告 發布:2025-09-18 01:09:50 瀏覽:611
壞老師吧 發布:2025-09-17 22:02:36 瀏覽:643
化學能力培養 發布:2025-09-17 20:28:02 瀏覽:584
師德師風演講稿格式 發布:2025-09-17 19:57:15 瀏覽:728
國畫培訓教學內容 發布:2025-09-17 18:11:05 瀏覽:464
公教育網 發布:2025-09-17 17:52:26 瀏覽:706