六年級數學題及答案
❶ 六年級數學奧數題及答案
你干嗎不去買奧數題
已知關於X的一元二次方程ax2+bx+c=0沒有實數根,甲由於看錯了二次項系數,誤求得兩根為2和4,乙由於看錯了某一項系數的符號,誤求得兩根為-1和4 ,那麼a分之(2b+3c)=幾
甲看錯了二次項系數,設他所解的方程為a′x2+bx+c=0,於是有:
2+4=-b/a′,
2×4=c/a′,
∴-3/4=b/c........ ①
設乙看錯了一次項系數的符號,則他所解的方程為ax^2-bx+c=0.
於是-1+4=b/a......... ②
由①,②知,
△=b^2-4ac=b^2-4*b/3*(-4b/3)
=25/9b^2≥0,
與題設矛盾.
故乙看錯的只是常數項,即他所解的方程為ax2+bx-c=0,則
-1+4=-b/a
b/a=-3........③
由①,③可知:
(2b+3c)/a=(2b-4b)/a=-2b/6=a=6.
❷ 六年級數學,10道簡便計算題帶答案謝謝哦∩_∩
一、提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
= 0.92×(1.41+8.59)
二、借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
三、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
四、加法結合律
注意對加法結合律(a+b)+c=a+(b+c)
的運用,通過改變加數的位置來獲得更簡便的運算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
五、拆分法和乘法分配律結合
這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。
例如:
34×9.9
=34×(10-0.1)
案例再現:
57×101=?
六、利用基準數
在一系列數種找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
七、利用公式法(必背)
(1) 加法:
交換律,a+b=b+a,
結合律,(a+b)+c=a+(b+c).
(2) 減法運算性質:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3) 乘法(與加法類似):
交換律,a*b=b*a,
結合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法運算性質(與減法類似),a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)。
減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律。)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4;
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (運用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(運用除法性質)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(運用加法性質和結合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(運用除法性質, 相當加法性質)
❸ 六年級數學難題(練習題,附答案)
例1.只修改970405的某一個數字,就可使修改後的六位數能被225整除,修改後的六位數是_____.(安徽省1997年小學數學競賽題)
解:逆向思考:因為225=25×9,且25和9互質,所以,只要修改後的數能分別被25和9整除,這個數就能被225整除。我們來分別考察能被25和9整除的情形。
由能被25整除的數的特徵(末兩位數能被25整除)知,修改後的六位數的末兩位數可能是25,或75.
再據能被9整除的數的特徵(各位上的數字之和能被9整除)檢驗,得9+7+0+4+5=25,25+2=27,25+7=32.
故知,修改後的六位數是970425.
7. 在三位數中,個位、十位、百位都是一個數的平方的共有 個。
【答案】48
【解】百位有1、4、9三種選擇,十位、個位有0、1、4、9四種選擇。滿足題意的三位數共有
3×4×4=48(個)。
12. 已知三位數的各位數字之積等於10,則這樣的三位數的個數是 _____ 個.
【答案】6
【解】 因為10=2×5,所以這些三位數只能由1、2、5組成,於是共有 =6個.
12. 下圖中有五個三角形,每個小三角形中的三個數的和都等於50,其中A7=25,A1+A2+A3+A4=74,A9+A3+A5+A10=76,那麼A2與A5的和是多少?
【答案】25
【解】 有A1+A2+A8=50,
A9+A2+A3=50,
A4+A3+A5=50,
A10+A5+A6=50,
A7+A8+A6=50,
於是有A1+A2+A8+A9+A2+A3+A4+A3+A5+A10+A5+A6+A7+A8+A6=250,
即(A1+A2+A3+A4)+(A9+A3+A5+A10)+A2+A5+2A6+2A8+ A7=250.
有74+76+A2+A5+2(A6+A8) + A7=250,而三角形A6A7A8中有A6+A7+A8=50,其中A7=25,所以A6+A8=50-25=25.
那麼有A2+A5=250-74-76-50-25=25.
【提示】上面的推導完全正確,但我們缺乏方向感和總體把握性。
其實,我們看到這樣的數陣,第一感覺是看到這里5個50並不表示10個數之和,而是這10個數再加上內圈5個數的和。這一點是最明顯的感覺,也是重要的等量關系。
再「看問題定方向」,要求第2個數和第5個數的和,
說明跟內圈另外三個數有關系,而其中第6個數和第8個數的和是50-25=25,
再看第3個數,在加兩條直線第1、2、3、4個數和第9、3、5、10個數時,重復算到第3個數,
好戲開演:
74+76+50+25+第2個數+第5個數=50×5
所以 第2個數+第5個數=25
一、填空題:
1 滿足下式的填法共有 種?
口口口口-口口口=口口
【答案】4905。
【解】由右式知,本題相當於求兩個兩位數a與b之和不小於100的算式有多少種。
a=10時,b在90 99之間,有10種;
a=11時,b在89 99之間,有11種;
……
a=99時,b在1 99之間,有99種。共有
10+11+12+……99=4905(種)。
【提示】算式謎跟計數問題結合,本題是一例。數學模型的類比聯想是解題關鍵。
4 在足球表面有五邊形和六邊形圖案(見右上圖),每個五邊形與5個六邊形相連,每個六邊形與3個五邊形相連。那麼五邊形和六邊形的最簡整數比是_______ 。
【答案】3∶5。
【解】設有X個五邊形。每個五邊形與5個六邊形相連,這樣應該有5X個六邊形,可是每個六邊形與3個五邊形相連,即每個六邊形被數了3遍,所以六邊形有 個。
二、解答題:
1.小紅到商店買一盒花球,一盒白球,兩盒球的數量相等,花球原價是2元錢3個,白球原價是2元錢5個.新年優惠,兩種球的售價都是4元錢8個,結果小紅少花了5元錢,那麼,她一共買了多少個球?
【答案】150個
【解】
用矩形圖來分析,如圖。
容易得,
解得:
所以 2x=150
2.22名家長(爸爸或媽媽,他們都不是老師)和老師陪同一些小學生參加某次數學競賽,已知家長比老師多,媽媽比爸爸多,女老師比媽媽多2人,至少有一名男老師,那麼在這22人中,共有爸爸多少人?
【答案】5人
【解】家長和老師共22人,家長比老師多,家長就不少於12人,老師不多於10人,媽媽和爸爸不少於12人,媽媽比爸爸多,媽媽不少於7人.女老師比媽媽多2人,女老師不少於7+2=9(人).女老師不少於9人,老師不多於10人,就得出男老師至多1人,但題中指出,至少有1名男老師,因此,男老師是1人,女老師就不多於9人,前面已有結論,女老師不少於9人,因此,女老師有9人,而媽媽有7人,那麼爸爸人數是:22-9-1-7=5(人) 在這22人中,爸爸有5人.
【提示】妙,本題多次運用最值問題思考方法,且巧借半差關系,得出不等式的范圍。
正反結合討論的方法也有體現。
3.甲、乙、丙三人現在歲數的和是113歲,當甲的歲數是乙的歲數的一半時,丙是38歲,當乙的歲數是丙的歲數的一半時,甲是17歲,那麼乙現在是多大歲數?
【答案】32歲
【解】如圖。
設過x年,甲17歲,得:
解得 x=10,
某個時候,甲17-10=7歲,乙7×2=14歲,丙38歲,年齡和為59歲,
所以到現在每人還要加上(113-59)÷3=18(歲)
所以乙現在14+18=32(歲)。
7. 甲、乙兩班的學生人數相等,各有一些學生參加數學選修課,甲班參加數學選修課的人數恰好是乙班沒有參加的人數的1/3,乙班參加數學選修課的人數恰好是甲班沒有參加的人數的1/4。那麼甲班沒有參加的人數是乙班沒有參加的人數的幾分之幾?
【答案】
【解】:設甲班沒參加的是4x人,乙班沒參加的是3y人
那麼甲班參加的人數是y人,乙班參加的人數是x人
根據條件兩班人數相等,所以4x+y=3y+x
3x=2y x:y=2:3
因此4x:3y=8:9 故那麼甲班沒有參加的人數是乙班沒有參加的人數的
【另解】列一元一次方程:可假設兩班人數都為「1」,設甲班參加的為x,則甲班未參加的為(1-x);則乙班未參加的為3x,則乙班參加的為(1-3x),可列方程:(1-x)/4=1-3x 求x=3/11。
【提示】方程演算、設而不求、量化思想都有了,這道題不錯。
目標班
名校真卷七
一、填空題:
31 滿足下式的填法共有 種?
口口口口-口口口=口口
【答案】4905。
【解】由右式知,本題相當於求兩個兩位數a與b之和不小於100的算式有多少種。
a=10時,b在90 99之間,有10種;
a=11時,b在89 99之間,有11種;
……
a=99時,b在1 99之間,有99種。共有
10+11+12+……99=4905(種)。
【提示】算式謎跟計數問題結合,本題是一例。數學模型的類比聯想是解題關鍵。
34 在足球表面有五邊形和六邊形圖案(見右上圖),每個五邊形與5個六邊形相連,每個六邊形與3個五邊形相連。那麼五邊形和六邊形的最簡整數比是_______ 。
【答案】3∶5。
【解】設有X個五邊形。每個五邊形與5個六邊形相連,這樣應該有5X個六邊形,可是每個六邊形與3個五邊形相連,即每個六邊形被數了3遍,所以六邊形有 個。
36 用方格紙剪成面積是4的圖形,其形狀只能有以下七種:
如果用其中的四種拼成一個面積是16的正方形,那麼,這四種圖形的編號和的最大值是______.
【答案】19.
【解】為了得到編號和的最大值,應先利用編號大的圖形,於是,可以拼出,由:(7),(6),(5),(1);(7),(6),(4),(1);(7),(6),(3),(1)組成的面積是16的正方形:
顯然,編號和最大的是圖1,編號和為7+6+5+1=19,再驗證一下,並無其它拼法.
【提示】注意從結果入手的思考方法。我們畫出面積16的正方形,先塗上陰影(6)(7),再塗出(5),經過適當變換,可知,只能利用(1)了。
而其它情況,用上(6)(7),和(4),則只要考慮(3)(5)這兩種情況是否可以。
40 設上題答數是a,a的個位數字是b.七個圓內填入七個連續自然數,使每兩個相鄰圓內的數之和等於連線上的已知數,那麼寫A的圓內應填入_______.
【答案】A=6
【解】如圖所示:
B=A-4,
C=B+3,所以C=A-1;
D=C+3,所以D=A+2;
而A +D =14;
所以A=(14-2)÷2=6.
【提示】本題要點在於推導隔一個圓的兩個圓的差,
從而得到最後的和差關系來解題。
43 某個自然數被187除餘52,被188除也餘52,那麼這個自然數被22除的余數是_______.
【答案】8
【解】這個自然數減去52後,就能被187和188整除,為了說明方便,這個自然數減去52後所得的數用M表示,因187=17×11,故M能被11整除;因M能被188整除,故,M也能被2整除,所以,M也能被11×2=22整除,原來的自然數是M+52,因為M能被22整除,當考慮M+52被22除後的余數時,只需要考慮52被22除後的余數. 52=22×2+8這個自然數被22除餘8.
56 有一堆球,如果是10的倍數個,就平均分成10堆,並且拿走9堆;如果不是10的倍數個,就添加幾個球(不超過9個),使這堆球成為10的倍數個,然後將這些球平均分成10堆,並且拿走9堆。這個過程稱為一次操作。如果最初這堆球的個數為
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2…9 8 9 9.
連續進行操作,直至剩下1個球為止,那麼共進行了 次操作;共添加了 個球.
【答案】189次; 802個。
【解】這個數共有189位,每操作一次減少一位。操作188次後,剩下2,再操作一次,剩下1。共操作189次。這個189位數的各個數位上的數字之和是
(1+2+3+…+9)20=900。
由操作的過程知道,添加的球數相當於將原來球數的每位數字都補成9,再添1個球。所以共添球
1899-900+1=802(個)。
60 有一種最簡真分數,它們的分子與分母的乘積都是693,如果把所有這樣的分數從大到小排列,那麼第二個分數是______.
【答案】
【解】把693分解質因數:693=3×3×7×11.為了保證分子、分母不能約分(否則,約分後分子與分母之積就不是693),相同質因數要麼都在分子,要麼都在分母,並且分子應小於分母.分子從大到小排列是11,9,7,1,
68 在1,2,…,1997這1997個數中,選出一些數,使得這些數中的每兩個數的和都能被22整除,那麼,這樣的數最多能選出______個.
【答案】91
【解】有兩種選法:(1)選出所有22的整數倍的數,即:22,22×2,22×3,…,22×90=1980,共90個數;(2)選出所有11的奇數倍的數,即:11,11+22×1,11+22×2…,11+22×90=1991,共91個數,所以,這樣的數最多能選出91個.
二、解答題:
1.小紅到商店買一盒花球,一盒白球,兩盒球的數量相等,花球原價是2元錢3個,白球原價是2元錢5個.新年優惠,兩種球的售價都是4元錢8個,結果小紅少花了5元錢,那麼,她一共買了多少個球?
【答案】150個
【解】
用矩形圖來分析,如圖。
容易得,
解得:
所以 2x=150
2.22名家長(爸爸或媽媽,他們都不是老師)和老師陪同一些小學生參加某次數學競賽,已知家長比老師多,媽媽比爸爸多,女老師比媽媽多2人,至少有一名男老師,那麼在這22人中,共有爸爸多少人?
【答案】5人
【解】家長和老師共22人,家長比老師多,家長就不少於12人,老師不多於10人,媽媽和爸爸不少於12人,媽媽比爸爸多,媽媽不少於7人.女老師比媽媽多2人,女老師不少於7+2=9(人).女老師不少於9人,老師不多於10人,就得出男老師至多1人,但題中指出,至少有1名男老師,因此,男老師是1人,女老師就不多於9人,前面已有結論,女老師不少於9人,因此,女老師有9人,而媽媽有7人,那麼爸爸人數是:22-9-1-7=5(人) 在這22人中,爸爸有5人.
【提示】妙,本題多次運用最值問題思考方法,且巧借半差關系,得出不等式的范圍。
正反結合討論的方法也有體現。
3.甲、乙、丙三人現在歲數的和是113歲,當甲的歲數是乙的歲數的一半時,丙是38歲,當乙的歲數是丙的歲數的一半時,甲是17歲,那麼乙現在是多大歲數?
【答案】32歲
【解】如圖。
設過x年,甲17歲,得:
解得 x=10,
某個時候,甲17-10=7歲,乙7×2=14歲,丙38歲,年齡和為59歲,
所以到現在每人還要加上(113-59)÷3=18(歲)
所以乙現在14+18=32(歲)。
11. 甲、乙兩班的學生人數相等,各有一些學生參加數學選修課,甲班參加數學選修課的人數恰好是乙班沒有參加的人數的1/3,乙班參加數學選修課的人數恰好是甲班沒有參加的人數的1/4。那麼甲班沒有參加的人數是乙班沒有參加的人數的幾分之幾?
【答案】
【解】:設甲班沒參加的是4x人,乙班沒參加的是3y人
那麼甲班參加的人數是y人,乙班參加的人數是x人
根據條件兩班人數相等,所以4x+y=3y+x
3x=2y x:y=2:3
因此4x:3y=8:9 故那麼甲班沒有參加的人數是乙班沒有參加的人數的
【另解】列一元一次方程:可假設兩班人數都為「1」,設甲班參加的為x,則甲班未參加的為(1-x);則乙班未參加的為3x,則乙班參加的為(1-3x),可列方程:(1-x)/4=1-3x 求x=3/11。
【提示】方程演算、設而不求、量化思想都有了,這道題不錯。
2007年重點中學入學試卷分析系列七
24. 著名的數學家斯蒂芬 巴納赫於1945年8月31日去世,他在世時的某年的年齡恰好是該年份的算術平方根(該年的年份是他該年年齡的平方數).則他出生的年份是 _____ ,他去世時的年齡是 ______ .
【答案】1892年;53歲。
【解】 首先找出在小於1945,大於1845的完全平方數,有1936=442,1849=432,顯然只有1936符合實際,所以斯蒂芬 巴納赫在1936年為44歲.
那麼他出生的年份為1936-44=1892年.
他去世的年齡為1945-1892=53歲.
【提示】要點是:確定范圍,另外要注意的「潛台詞」:年份與相應年齡對應,則有年份-年齡=出生年份。
36. 某小學即將開運動會,一共有十項比賽,每位同學可以任報兩項,那麼要有 ___ 人報名參加運動會,才能保證有兩名或兩名以上的同學報名參加的比賽項目相同.
【答案】46
【解】 十項比賽,每位同學可以任報兩項,那麼有 =45種不同的報名方法.
那麼,由抽屜原理知為 45+1=46人報名時滿足題意.
37.
43. 如圖,ABCD是矩形,BC=6cm,AB=10cm,AC和BD是對角線,圖中的陰影部分以CD為軸旋轉一周,則陰影部分掃過的立體的體積是多少立方厘米?(π=3.14)
【答案】565.2立方厘米
【解】設三角形BOC以CD為軸旋轉一周所得到的立體的體積是S,S等於高為10厘米,底面半徑是6厘米的圓錐的體積減去2個高為5厘米,底面半徑是3厘米的圓錐的體積減去2個高為5厘米,底面半徑是3厘米的圓錐的體積。即:
S= ×62×10×π-2× ×32×5×π=90π,
2S=180π=565.2(立方厘米)
【提示】S也可以看做一個高為5厘米,上、下底面半徑是3、6厘米的圓台的體積減去一個高為5厘米,底面半徑是3厘米的圓錐的體積。
4.如圖,點B是線段AD的中點,由A,B,C,D四個點所構成的所有線段的長度均為整數,若這些線段的長度的積為10500,則線段AB的長度是 。
【答案】5
【解】由A,B,C,D四個點所構成的線段有:AB,AC,AD,BC,BD和CD,由於點B是線段AD的中點,可以設線段AB和BD的長是x,AD=2x,因此在乘積中一定有x3。
對10500做質因數分解:
10500=22×3×53×7,
所以,x=5,AB×BD×AD=53×2,AC×BC×CD=2×3×7,
所以,AC=7,BC=2,CD=3,AD=10.
5.甲乙兩地相距60公里,自行車和摩托車同時從甲地駛向乙地.摩托車比自行車早到4小時,已知摩托車的速度是自行車的3倍,則摩托車的速度是 ______ .
【答案】30公里/小時
【解】 記摩托車到達乙地所需時間為「1」,則自行車所需時間為「3」,有4小時對應「3」-「1」=「2」,所以摩托車到乙地所需時間為4÷2=2小時.摩托車的速度為60÷2=30公里/小時.
【提示】這是最本質的行程中比例關系的應用,注意份數對應思想。
6. 一輛汽車把貨物從城市運往山區,往返共用了20小時,去時所用時間是回來的1.5倍,去時每小時比回來時慢12公里.這輛汽車往返共行駛了 _____ 公里.
【答案】576
【解】 記去時時間為「1.5」,那麼回來的時間為「1」.
所以回來時間為20÷(1.5+1)=8小時,則去時時間為1.5×8=12小時.
根據反比關系,往返時間比為1.5∶1=3∶2,則往返速度為2:3,
按比例分配,知道去的速度為12÷(3-2)×2=24(千米)
所以往返路程為24×12×2=576(千米)。
7. 有70個數排成一排,除兩頭兩個數外,每個數的3倍恰好等於它兩邊兩個數之和.已知前兩個數是0和1,則最後一個數除以6的余數是 ______ .
【答案】4
【解】 顯然我們只關系除以6的余數,有0,1,3,2,3,1,0,5,3,,3,5,0,1,3,……
有從第1數開始,每12個數對於6的余數一循環,
因為70÷12=5……10,
所以第70個數除以6的余數為循環中的第10個數,即4.
【提示】找規律,原始數據的生成也是關鍵,細節決定成敗。
8. 老師在黑板上寫了一個自然數。第一個同學說:「這個數是2的倍數。」第二個同學說:「這個數是3的倍數。」第三個同學說:「這個數是4的倍數。」……第十四個同學說:「這個數是15的倍數。」最後,老師說:「在所有14個陳述中,只有兩個連續的陳述是錯誤的。」老師寫出的最小的自然數是 。
【答案】60060
【解】2,3,4,5,6,7的2倍是4,6,8,10,12,14,如果這個數不是2,3,4,5,6,7的倍數,那麼這個數也不是4,6,8,10,12,14的倍數,錯誤的陳述不是連續的,與題意不符。所以這個數是2,3,4,5,6,7的倍數。由此推知,這個數也是(2×5=)10,(3×4=)12,(2×7)14,(3×5=)15的倍數。在剩下的8,9,11,13中,只有8和9是連續的,所以這個數不是8和9的倍數。2,3,4,5,6,7,10,11,12,,13,14,15的最小公倍數是22×3×5×7×11×13=60060。
16. 小王和小李平時酷愛打牌,而且推理能力都很強。一天,他們和華教授圍著桌子打牌,華教授給他們出了道推理題。華教授從桌子上抽取了如下18張撲克牌:
紅桃A,Q,4 黑桃J,8,4,2,7,3,5
草花K,Q,9,4,6,lO 方塊A,9
華教授從這18張牌中挑出一張牌來,並把這張牌的點數告訴小王,把這張牌的花色告訴小李。然後,華教授問小王和小李,「你們能從已知的點數或花色中推斷出這張牌是什麼牌嗎?
小王:「我不知道這張牌。」
小李:「我知道你不知道這張牌。」
小王:「現在我知道這張牌了。」
小李:「我也知道了。」
請問:這張牌是什麼牌?
【答案】方塊9。
【解】小王知道這張牌的點數,小王說:「我不知道這張牌」,說明這張牌的點數只能是A,Q,4,9中的一個,因為其它的點數都只有一張牌。
如果這張牌的點數不是A,Q,4,9,那麼小王就知道這張牌了,因為A,Q,4,9以外的點數全部在黑桃與草花中,如果這張牌是黑桃或草花,小王就有可能知道這張牌,所以小李說:「我知道你不知道這張牌」,說明這張牌的花色是紅桃或方塊。
現在的問題集中在紅桃和方塊的5張牌上。
因為小王知道這張牌的點數,小王說:「現在我知道這張牌了」,說明這張牌的點數不是A,否則小王還是判斷不出是紅桃A還是方塊A。
因為小李知道這張牌的花色,小李說:「我也知道了」,說明這張牌是方塊9。否則,花色是紅桃的話,小李判斷不出是紅桃Q還是紅桃4。
【提示】在邏輯推理中,要注意一個命題真時指向一個結論,而其逆命題也是明確的結論。
10.從1到100的自然數中,每次取出2個數,要使它們的和大於100,則共有 _____ 種取法.
【答案】2500
【解】 設選有a、b兩個數,且a<b,
當a為1時,b只能為100,1種取法;
當a為2時,b可以為99、100,2種取法;
當a為3時,b可以為98、99、100,3種取法;
當a為4時,b可以為97、98、99、100,4種取法;
當a為5時,b可以為96、97、98、99、100,5種取法;
…… …… ……
當a為50時,b可以為51、52、53、…、99、100,50種取法;
當a為51時,b可以為52、53、…、99、100,49種取法;
當a為52時,b可以為53、…、99、100,48種取法;
…… …… ……
當a為99時,b可以為100,1種取法.
所以共有1+2+3+4+5+…+49+50+49+48+…+2+1=502=2500種取法.
【拓展】從1-100中,取兩個不同的數,使其和是9的倍數,有多少種不同的取法?
【解】從除以9的余數考慮,可知兩個不同的數除以9的余數之和為9。通過計算,易知除以9餘1的有12種,余數為2-8的為11種,余數為0的有11種,但其中有11個不滿足題意:如9+9、18+18……,要減掉11。而余數為1的是12種,多了11種。這樣,可以看成,1-100種,每個數都對應11種情況。
11×100÷2=550種。除以2是因為1+8和8+1是相同的情況。
14. 已知三位數的各位數字之積等於10,則這樣的三位數的個數是 _____ 個.
【答案】6
【解】 因為10=2×5,所以這些三位數只能由1、2、5組成,於是共有 =6個.
12. 下圖中有五個三角形,每個小三角形中的三個數的和都等於50,其中A7=25,A1+A2+A3+A4=74,A9+A3+A5+A10=76,那麼A2與A5的和是多少?
【答案】25
【解】 有A1+A2+A8=50,
A9+A2+A3=50,
A4+A3+A5=50,
A10+A5+A6=50,
A7+A8+A6=50,
於是有A1+A2+A8+A9+A2+A3+A4+A3+A5+A10+A5+A6+A7+A8+A6=250,
即(A1+A2+A3+A4)+(A9+A3+A5+A10)+A2+A5+2A6+2A8+ A7=250.
有74+76+A2+A5+2(A6+A8) + A7=250,而三角形A6A7A8中有A6+A7+A8=50,其中A7=25,所以A6+A8=50-25=25.
那麼有A2+A5=250-74-76-50-25=25.
【提示】上面的推導完全正確,但我們缺乏方向感和總體把握性。
其實,我們看到這樣的數陣,第一感覺是看到這里5個50並不表示10個數之和,而是這10個數再加上內圈5個數的和。這一點是最明顯的感覺,也是重要的等量關系。
再「看問題定方向」,要求第2個數和第5個數的和,
說明跟內圈另外三個數有關系,而其中第6個數和第8個數的和是50-25=25,
再看第3個數,在加兩條直線第1、2、3、4個數和第9、3、5、10個數時,重復算到第3個數,
好戲開演:
74+76+50+25+第2個數+第5個數=50×5
所以 第2個數+第5個數=25
13.下面有三組數
(1) ,1.5, (2)0.7,1.55 (3) , ,1.6,
從每組數中取出一個數,把取出的三個數相乘,那麼所有不同取法的三個數乘積的和是多少?
【答案】720
【鋪墊】在一個6×5的方格中,最上面一行依次填寫0、1、3、5、7、9;在最左一列依次填寫0、2、4、6、8,其餘每個格子中的數字等於與他同一行中最左邊的數字與同一列中最上面的數字之和。問:依次填滿數字以後,這30個數字之和是多少?
【解】思路同原題。(2+4+6+8)×6+(1+3+5+7+9)×5=245
因為原題較復雜,也可先講此題,然後再講原題。
【解】 =16×2.25×20=720.
【提示】推導這部分內容,可別忘了幫學生復習一下求一個數所有約數和的公式。融會貫通的機會來了。
家 庭 作 業
1.
【答案】
【解】將分子、分母分解因數:9633=3×3211,35321=11×3211
【提示】用輾轉相除法更妙了。
14. 甲、乙二人分別從A、B兩地同時出發,相向而行,出發時他們的速度比是3:2,他們第一次相遇後,甲的速度提高了20%,乙的速度提高了30%,這樣,當甲到達B地時,乙離A還有14千米,那麼,A、B兩地間的距離是多少千米?
【答案】45千米
【解】設A、B兩地間的距離是5段,根據兩人速度比是3∶2,當他們第一次相遇時,甲走3段,乙走了2段,此後,甲還要走2段,乙還要走3段.當甲、乙分別提高速度後,再者之比是:
【提示】題目很老套了。但考慮方法的靈活性,可以作不同方法的練習。
本題還可以用通比(或者稱作連比)來解。
14÷(27-13)×(27+18)=45(千米)
20. 新年聯歡會上,六年級一班的21名同學參加猜謎活動,他們一共猜對了44條謎語.那麼21名同學中,至少有_______人猜對的謎語一樣多.
【答案】5
【解】 我們應該使得猜對的謎語的條數盡可能的均勻分布,有:
0+0+0+0+1+1+1+1+2+2+2+2+3+3+3+3+4+4+4+4=(0+1+2+3+4)×4=40,現在還有1個人還有4條謎語,0+0+0+0+1+1+1+1+2+2+2+2+3+3+3+3+4+4+4+4+4=44.
所以此時有5個人猜對的謎語一樣多,均為4條.
不難驗證至少有5人猜對的謎語一樣多.
此題難點在入手點,即思考方法,可由學生發言,由其發言引出問題,讓學生們把他們的意見充分表達出來,再在老師的啟發下,糾正問題,解決問題。這樣講法要比老師直接切入解題要好。
【提示】注意如果沒有人數限制,則這里的「至少」應該是1個人。結合21人,應該找到方向了。
26. 某一個工程甲單獨做50天可以完成,乙單獨做75天可以完成,現在兩人合作,但途中乙因事離開了幾天,從開工後40天把這個工程做完,則乙中途離開了 ____ 天.
【答案】25
【解】 乙中途離開,但是甲從始至終工作了40天,完成的工程量為整個工程的40× = .
那麼剩下的1- = 由乙完成,乙需 ÷ =15天完成,所以乙離開了40-15=25天.
❹ 六年級數學題及答案
1.甲、乙兩隊學生從相距18km的兩地同時出發,相向而行。一個同學騎車以14km/時的速度,在兩隊之間聯絡。甲隊5km/時,乙隊4km/時。兩隊相遇時,騎車的同學共行多少千米?
1、18/(5+4)=2小時
2.將5個數從小到大排列,平均數是38,前3個數的平均數是27,後3個數的平均數是48,中間一個數是多少?
2)5個數共190
前兩個數之和190-48*3=46
第三個數為X,則:(46+X)/3=27
X=35
3.除法求出469和1072的最大公因數
3、1072/469=2餘134
469/134=3餘67
134/67=2餘0
即469和1072的最大公因數是67
4.()()x()()=1995?()里數字不同。
4、1995=3*5*7*19=21*95=35*57
又()里數字不同
所以填(2)(1)x(9)(5)=1995
或(9)(5)x(2)(1)=1995
三個小朋友家裡都種著樹,小月說我家比小華家少種了20棵,小亮說我家比小月家多種1/4,小華說我家比小月家多種1/5,
問5、小華家種了多少棵樹
5.120棵
6、小亮家種了多少棵樹
6.125棵
7 .打四分鍾電話最多可以通知多少個學生?
四分鍾最多通知:一分鍾1個,兩分鍾3個,三分鍾7個,四分鍾15個
8要通知60個學生,最少要幾分鍾?
六分鍾
9數學題90,100,600,3四個數的答案是2400(用加減乘除或括弧計算)90÷3×100-600 =2400
10.還有一題,,姐姐做英語題,比妹妹做數學題多用48分鍾,比妹妹做英語題多用42分鍾,妹妹做數學、英語兩門共用了44分鍾,那麼妹妹做英語練慣用了多少分鍾?
設妹做數學用x英語用y 1,{x+y=44 {x=25
{x+42=y+48 解{y=19 答:用了19分鍾
給分!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
❺ 六年級數學趣味智力題(附上答案)
1、設p、q是兩個數,規定:p△q=3×p-(p+q)÷2,求7△(2△4)。16
2、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……,那麼4*3=4+44+444 ;105*2=105+1155 。
3、x,y是自然數,規定x*y=4x-3y,如果5*a=8,那麼a是幾?4
4、設a*b=5a-3b,已知x*(3*2)=18,求x。9
5、設a*b=4a-b,求(5*4)*(10*6)。2
6、設x,y是兩個數,規定:x*y=x/y-y/x,求18*3-1/3。5 又1/2
7、規定a*3=a+(a+1)+(a+2),那麼x*5=45,求x。7
8、小芳三天看完一本書,第一天看了全書的1/3,第二天看餘下的3/4,第二天比第一天多看了20頁,這本書共有多少頁?120
9、運送一堆水泥,第一天運了這堆水泥的1/4,第二天運的是第一天的2/3,還剩84噸沒有運,這堆水泥有多少噸?144
10、修路隊修一條公路,第一天修了這條公路的2/5,第二天修了餘下的1/3,已知這兩天共修路120米,這條公路全長多少米?200
11、某工廠有三個車間,第一車間的人數佔三個車間總人數的20%,第二車間的人數是第三車間的2/3。已知第一車間比第二車間少30人,三個車間一共有多少人?250
12、甲比乙多60%,乙比甲少百分之幾?37。5
13、加工一批零件,甲先加工了這批零件的1/3,接著乙加工了餘下的5/6。已知乙加工的個數比甲多160個,這批零件共有多少個?720
14、學校體育室有籃球、排球和足球,籃球的只數佔三種球25總數的3/5,足球的只數是排球的2/3,足球比籃球少11隻,這三種球一共有多少只?25
15、實驗小學六年級三個班植樹,一班植樹的棵樹佔三個班總棵樹的1/4,二班與三班植樹棵樹的比是3:4,二班比三班少植樹24棵,這三個班各植多少棵? 56,72,96
(也可以找過去希望杯,華杯賽,五洋杯,兩岸四地的題)
❻ 六年級數學計算題及答案
(1)2.64×1.7-2.64×0.7
=2.64×(1.7-0.7)
=2.64×1
=2.64
(2)31.5×1.07-3.15×0.7
=3.15×10.7-3.15×0.7
=3.15×(10.7-0.7)
=3.15×10
=31.5
(3)2.7×5.7-2.7+5.3×2.7
=2.7×(5.7-1+5.3)
=2.7×10
=27
(4)0.625÷0.125×0.8
=(0.625×0.8)×8÷(0.128×8)
=0.5×8÷1
=4
(5)18.6×6.1+3.9×18.6
=18.6×(6.1+3.9)
=18.6×10
=186
(6)1.3579+3.5791+5.7913+7.9135+9.1357
=(1+3+5+7+9)×1.1111
=25×1.1111
=27.7775
(7)52.5x2.9+5.45
=5.25x29+5.25+0.2
=5.25×(29+1)+0.2
=5.25×30+0.2
=157.5+0.3
=157.7
(8)0.92x15+0.08x15
=(0.92+0.08)×15
=1×15
=15
(9)0.72×1.25×2.5
=0.9×(0.8×1.25)×2.5
=0.9×1×2.5
=2.25
(10)400.6x7-2003x0.4
=200.3x14-200.3x4
=200.3×(14-4)
=200.3×10
=2003
❼ 六年級數學練習題及答案
六年級數學期末試卷
一、填空。第1題2分,其餘每題1分,共22%
1、2—公頃=_____公頃____平方米 2—小時=_____小時_____分
2、120千克的—是_____千克 72公頃比_____公頃少—
3、30:( )=——=( )÷—=1—=( )%
4、在( )里填「>、<或=」
1—÷—( )1— 1—÷—( )1—÷—
1—( )1—×— 2—:—( )2—×1—
5、某班男生25人,女生20人,男生比女生多——,男生比女生多佔全班人數的——。
6、一個圓的半徑2厘米,這個圓的周長_____厘米,面積_____平方厘米。
7、一件工程,甲隊單獨做要20天完成,乙隊單獨做要30天完成,甲乙兩隊的工作效率之比是_____。
8、一種小麥出粉率為85%,要磨13.6噸麵粉,需要這樣的小麥_____噸。
9、在推導圓面積計算公式時,將一個圓平均分成16等份,拼成一個近似的長方形;量得長方形寬3厘米,這個長方形長_____厘米,這個圓的面積_____平方厘米。
10、在邊長4厘米圓內,剪一個最大的正方形,這個正方形的面積_____平方厘米。
11、一個比,如果將前項增加30%,後項必須加上3,比值才能不變。這個比的後項是_____。
二、判斷。5%
1、甲數除以乙數等於甲數乘乙數的倒數。( )
2、男生比女生多25%,也就是女生比男生少25%。( )
3、周長相等的圓和正方形,面積相比,圓的面積大。( )
4、圓內最長的線段是直徑。( )
5、某工人生產102個零件,經檢驗有100個合格,合格率為100%。( )
三、選擇。4%
1、甲、乙兩件商品,甲比乙貴—,下列說法正確的是( )
A、乙比甲便宜— B、甲比乙貴的相當於甲的—
C、乙比甲便宜的相當於乙的— D、乙比甲便宜的相當於甲的—
2、一根繩長—米,剪去它的—,還剩這根繩的( )
A、— B、— 米 C、— D、—
3、一種商品先漲價—,再降價10%,現價與原價相比( )
A、貴 B、便宜 C、一樣 D、無法確定
4、一個半圓的周長10.28厘米,這個半圓的直徑( )厘米
A、2 B、4 C、6 D、8
四、計算。34%
1、直接寫得數。4%
—×3.2= —-0.6= 4.8÷1—= 0.8÷—=
8.5×—= —+0.5= 0.28÷0.21= —+5÷7=
2、用簡便方法計算。8%
5—-5.3+4—-2.7 3—÷—+5—×1—
4.7×—-0.125+12.5%×6.3 79—×—
3、解方程。4%
2X-—=0.54 8X=17.6-—X
4、用遞等式計算。(每題3分,計9分)
8—+5.6×1— 1.5×—+2.1÷— (4-3.5×—)÷1—
5、列綜合算式(或方程)解答。(每題3分,計6分)
(1)25個—相加的和比什麼數 (2)2—減去什麼數的40%,
多4—? 正好等於2—的一半?
6、已知下圖三角形面積25平方厘米,求圓的面積。3%
五、應用題。35%
1、一套西服原價480元,因季節調價,降價—出售,現在這套西服賣多少元?
2、修路隊修一條公路,已修了240米,比剩下的少—,這條公路還剩多少米未修?
3、一項工程,甲隊單獨修要20天完成,乙隊單獨修要30天完成;乙隊先修幾天後,甲隊再用8天就能正好修完?
4、紅星小學,五、六年級共有785名學生,其中五年級學生數相當於六年級的—,紅星小學六年級有多少名學生?
5、甲、乙兩桶汽油同樣多,從甲桶倒—到乙桶,這時乙桶有汽油30.4千克,甲桶原有汽油多少千克?
6、快、慢兩車同時從相距480千米的兩地相向而行,3小時後還相距全程的—,照這樣的速度,兩車還要經過幾小時才能相遇?
7、某工地想用甲乙兩輛汽車一次將一堆貨物運走,而甲乙兩車的運載總量為9.18噸;如甲車多裝—或乙車多裝—就能一次全部運走,甲車的運栽量是多少噸?
小學數學六年級期末試卷
【列印】【時間:2005-5-23】【關閉】
小學數學六年級期末試卷(A卷)
一、填空。(6,10題每空2分,其餘每空1分,共18分)
1、一百零五萬八千寫作( ),改寫成以萬為單位的數是( )萬。
2、20.08千米=( )千米( )米
3、3時45分寫成分數是( )時,寫成小數是( )時。
4、 的分數單位是( ),有( )個這樣的分數單位。
5、把340分解質因數應寫成340=( )。
6、10以內所有質數的平均數是( )。
7、7==( )%
8、8.4:的比值是( )。
9、( )米的與6米的相等。
10、一個圓柱的高等於底面半徑的4倍,這個圓柱的側面展開圖的周長是61.68厘米,這個圓柱體底面半徑是( )。(π取3.14)。
二、判斷題。對的畫「√」,錯的畫「×」。(4分)
1、一個自然數沒有比它本身再大的約數。( )
2、97是100以內最大的質數。( )
3、在一個乘法算式里,乘數是,積與被乘數的比是4:5。( )
4、任何一個圓柱體的體積都比圓錐體多2倍。( )
三、選擇題。把表示正確答案的字母填在( )里。(4分)
1、一桶油5千克,先用去全部的,再用去千克,一共用去( )。
A、千克 B、千克 C、4千克
2、用4個體積是1立方分米的正方體木塊拼成一個長方體,這個長方體的表面積可能是( )。
A、16平方分米 B、18平方分米 C、24平方分米
四、用簡便方法計算(寫出簡算過程)(6分)
1、
2、1.25×25×0.4×8
五、脫式計算。(20分)
1、205×32-656
2、2975÷125+26×3.5
3、
4、(2-1.25×)×(
5、
六、求下面圖形中空白部分的面積。(5分)
七、列式計算。(8分)
1、560的40%比它的多多少?
2、一個數的15%比12.8多,求這個數。(用方程解)
八、應用題。(35分)
1、機床廠第一季度生產機床570台,比計劃多生產90台,超額完成計劃的百分之幾?
2、一項工程,甲隊獨干3天完成總工程的,照這樣計算,完成全部工程的,需要多少天?
3、A、B兩地相距32千米,甲、乙分別從A、B兩地同時出發,相向而行,乙和甲的速度之比是 3:5,相遇時,甲行了多少千米?
4、一個梯形的面積是12平方分米,上底和高都是2.4分米,下底長多少分米?(用方程解)
5、原來做一套校服需要78元,現在每套提價12元,原來60套校服的錢現在可以做多少套?
6、張老師借來一本書,第一天看了全書的30%,第二天看的比全書的少14頁,兩天共看了70頁,這本書一共多少頁?
7、一個圓柱形玻璃缸,底面半徑2分米,裡面盛有1.5分米深的水,將一塊不規則的鐵放入這缸水中,水面上升0.5分米,這塊鐵的體積是多少?
小學數學六年級期末試卷 (B卷)
一、填空。(每空1分,共19分)
1、100個億,5個千萬,4個十萬組成的數寫作( ),用四捨五入法省略「億」後面的尾數是( )。
2、升=( )升( )毫升
3.45時=( )時( )分
3、先把8.05擴大10倍,再把小數點向左移動兩位,得( )
4、在9、10和18三個數中,( )能被( )整除,( )和( )互質。
5、18和21的最大公約數是( ),最小公倍數是( )。
6、a和b都是自然數,如果>,那麼,a和b相比,( )大。
7、如果把甲數的給乙數,這時甲、乙兩個數恰好相等,原來乙數與甲數的最簡整數比是( )。
8、六(1)班男生人數是女生人數的125%,男生人數是全班人數的,女生人數比是男生人數少( )%。
9、把一個棱長4分米的正方體木塊削成一個最大的圓柱體,圓柱體的體積是( )。
10、把一塊長80米、寬60米的長方形菜地畫在比例尺是1:2000的圖紙上,圖上面積是( )。
二、判斷題。對的畫「√」,錯的畫「×」。(4分)
1、能被2整除的數一定不能被3整除。( )
2、把12.5米:千米化成最簡單的整數比是1:10( )
3、一個長方體的棱長和是24厘米,這個長方體的體積一定是6立方厘米。( )
4、甲數的等於乙數的,甲數比乙數多60%。
三、選擇題。把正確答案的序號填在( )里。(4分)
1、已知把3米長的線段平均分成4份,可以得出( )
①每份是3米的
②每份是米
③每份是3米的
④每份是1米的
2、根據甲數除以乙數商是4,可以確定( )。
①甲數一定能被乙數整除
②乙數一定能被甲數除盡
③甲數與乙數的比是4:1
④甲數是甲乙兩數的最小公倍數
四、用簡便方法計算(寫出簡單過程)(6分)
五、脫式計算。(20分)
1、98×102-6999
2、0.4÷2.5+0.07×50
六、下圖中的排水管,外直徑30厘米,管壁厚3厘米,管長4米,求排水管的體積。(4分)
七、列式計算。(8分)
1、13.6減去9.4的差,除以,商是多少?
2、3.1比一個數的少1.6,這個數是多少?(用方程解)
八、應用題。(35分)
1、李明把500元存入銀行,一年後取回本息537.35元,求年利率。
2、果園里的蘋果樹比梨樹多160棵,梨樹比蘋果樹少。果園里有蘋果樹多少棵?
3、一輛汽車從東城開往西城,前3小時每小時行41千米,後4小時共行220千米,這輛汽車平均每小時行多少千米?
4、建築隊用480塊方磚可以鋪地15平方米,照這樣計算,學校的電化教室地面是120平方米,需要購買多少塊方磚?(用比例方法解)
5、用鐵皮焊一隻底面邊長都是25厘米,高40厘米的長方體無蓋水桶,至少需要鐵皮多少平方厘米?
(1)求三個植樹隊共有多少人。把數據填入表內。
(2)求三個隊平均每人植樹多少棵。把得數填入表內。
7、上學期紅光小學六年級共有學生180人,這學期男生人數增加了16%,女生人數減少6人,這學期全年級共有學生186人,上學期六年級有男生有多少人?
❽ 人教版六年級上冊數學題及答案
六年級第一學期數學期中試卷A
班級 姓名 得分
一.填空(22分)
1. 40千克= 噸 小時=( )分
2. 100的 是75 25噸是( )噸的13
3. 9的倒數是( );( )的倒數是 。
4. 千克黃豆可以榨油528 , 1千克黃豆可以榨油( )千克,榨1千克油需要( )千克黃豆。
5. 3.5= =( )÷6= =( ):( )最簡比
6. 甲數是乙數的 ,乙數與甲乙總數的比是( ),兩數的差相當於乙數的 。
7. 在○里填上「>」、「<」或「=」。
78 ×54 ○ 54 1× ○1÷ 14 ÷0.1○14 ×10
8. 8噸煤,用去14 後,再用去14 噸,一共用去( )噸。
9. 一個比的前項是16 ,比值是13 ,後項是( )。
10. 走一段路,甲用了15小時,乙用了10小時,甲與乙所行時間的最簡比是( ),甲與乙行走的速度比的比值是( )。
11. 某班女生比男生少5人,男女生人數的比是3:2,這個班共( )人。
二.判斷下面的說法是否正確(4分)
1. 兩個因數都是34 ,求它們的積的列式為34 ×2。 ( )
2. a、b都是不為0的自然數,已知a× =b÷ ,則a<b。 ( )
3. 甲數的14 和乙數 13 相等,則甲乙兩數的比是 4:3 ( )
4. 在3:8中,前項增加6,要使比值不變,後項應該擴大3倍。( )
三.選擇正確答案的序號填在括弧里(4分)
1. 因為 × =1,所以( )。
A. 是倒數 B. 是倒數 C. 和 都是倒數 D. 和 互為倒數
2. a是一個不為0的自然數,下列各式中,得數最大的是 ( )。
A.a× B. ÷a C.a÷ D. ÷
3. 從甲堆煤中取出15 給乙堆,這時兩堆煤的噸數相等,原來甲、乙兩堆煤的噸數的比是( )。
A.5 : 4 B.6 : 5 C.5 : 3 D.3 : 5
4. 100克糖水中有25克糖,糖與糖水的比和糖與水的比分別為( )。
A.1 : 4和1: 3 B.1 : 4和1 : 5 C.1 : 5和1 : 4 D.1 : 5和1: 3
四.計算
1.直接寫出得數(4分)
21× = ÷2= × = ÷ =
512 ÷56 = 12÷ = 1÷59 = 536 ×0=
2.解方程(6分)
1112 x= 56 ÷x= 34 x÷25 =
3.脫式計算,注意使計算簡便(18分)
+ × ÷2 [1-( + )]÷
( + - )×24 × + ÷4
2- ÷ - [4-( - )]×
4.列式計算(6分)
(1)56除以8個 的和,商是多少? (2)一個數的 是120的 ,求這個數。
五.應用題(第1~5題每題6分,第6題2分,共32分)
1. 小偉和小英給希望工程捐款錢數的比是2 :5。小英捐了35元,小偉捐了多少元?
2. 電視機廠今年計劃比去年增產 。去年生產電視機 萬台,今年計劃增產多少萬台?
3. 某村要挖一條長2700米的水渠,已經挖了1050米,再挖多少米正好挖完這條水渠的 ?
4. 某校少先隊員採集樹種,四年級採集了 千克,五年級比四年級多採集 千克,六年級採集的是五年級的 。六年級採集樹種多少千克?
5. 倉庫運來大米240噸,運來的大豆是大米噸數的 ,大豆的噸數又是麵粉的 。運來麵粉多少噸?
6. 把一批貨物按5 : 3分給甲、乙兩隊運,甲隊完成本隊任務的 ,剩下的給乙隊運,乙隊共運了48 噸。這批貨物一共有多少噸?
票數: 1
❾ 急需六年級上冊數學應用題100道題 要帶答案
1.麗麗和家家去書店買書,他們同時喜歡上了一本書,最後麗麗用自己的錢的5分之3,家家用自己的錢的3分之2各買了一本,麗麗剩下的錢比家家剩下的錢多5塊。兩人原來各有多少錢?書多少錢?
設麗麗有x元錢 家家有y元錢 得出:
3/5x=2/3y
2/5x=1/3y+5 (麗麗剩下2/5 家家剩下1/3)
解2元一次方程得x=50 y=45 即麗麗50元 家家45元 書30元一本
2.一輛汽車每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?
8除4/5=10(km/)
4/5除8=0.1(kg)
3.一輛摩托車1/2小時行30千米,他每小時行多少千米?他行1千米要多少小時 ?
30÷1/2=60千米 1÷60=1/60小時
4.閱覽室看書的同學中,男同學佔七分之四,從閱覽室走出5位男同學後,看書的同學中,女同學佔二十三分之十二,原來閱覽室一共有多少名同學在看書?
原來有x名同學,女生數不變,所以(1-4/7)x=(x-5)*12/23
求出x=28
5.紅,黃,藍氣球共有62隻,其中紅氣球的五分之三等於黃氣球的三分之二,藍氣球有24隻,紅氣球和黃氣球各有多少只?
62-24=38(只)
3/5紅=2/3黃
9紅=10黃 紅:黃=10:9
38/(10+9)=2
紅:2*10=20
黃:20*9=18
6.學校閱覽室有36名學生看書,其中4/9是女學生.後又來了幾名女學生,這時女學生人數占看書人數的3/5,後來了幾名女生?
原有女生:36×4/9=16(人)
原有男生:36-16=20(人)
後有總人數:20÷(1-3/5)=50(人)
後有女生:50×3/5=30(人)
來女生人數:30-16=14(人)
7.水結成冰後,體積要比原來膨脹11分之1,2.16立方米的冰融化成水後,體積是多少?
2.16/(1+1/11)=1.98(立方米)
8.甲乙的糧食560噸,如果把甲的糧食運出2/9給乙,則甲乙的糧食正好相等.原來甲的糧食有多少噸?,乙的糧食有多少噸?
現在甲乙各有
560÷2=280噸
原來甲有
280÷(1-2/9)=360噸
原來乙有
560-360=200噸
9.電視機降價200元.比原來便宜了2/11.現在這種電視機的價格是多少錢?
原價是
200÷2/11=2200元
現價是
2200-200=2000元
10。一輛車從甲地到乙地,行了全程的2/5還多20千米,這時候離乙地還有70千米,甲乙兩地相距多少千米?
全程的
1-2/5=3/5
是
20+70=90千米
甲乙兩地相距
90÷3/5=150千米
11.小明看一本書,第一天看了28頁,第二天看了全書的1/5(5分之1),兩天共看了全書的3/8(3分之8),這本書共有多少頁?
第一天看的佔全書的
3/8-1/5=7/40
這本書共有
28÷7/40=160頁
12.師徒二人同加工一批零件,加工一段時間後,師傅加工了84個.徒弟加工了63個.師傅比徒弟多加工的正好佔全部任務的1/28.這批零件共有多少個?
假設這批零件共有X個
1/28X=84-63
1/28X=19
X=532
所以這批零件共有532個。
13.一桶油,吃了7/10後,又添進了15千克,這時桶中的油正好是一桶油的一半,這桶油重多少千克?
15÷(7/10-1/2)=75(千克)
14.一列火車從上海開往天津,行了全路程的3/5,剩下的路程,如果每小時行106千米,5小時可以到天津.上海到天津的鐵路長多少千米?
(106*5)/(1-(3/5))
=530/0.4
=1325(km)
15.六年級參加數學興趣小組的共有46,其中女生人數的4/5是男生人數的3/2倍,參加興趣小組的男、女生各有多少人?
男女生人數比是:4/5:3/2=8:15
男生人數:46/(8+15)*8=16人
女生人數46-16=30人
16.張紅抄寫一份稿件,需要5小時抄完.這份稿件已由別人抄了1/3,剩下的交給張紅抄,還要用幾小時才能抄完?
(1-1/3)/(1/5)=10/3
還要3 1/3個小時抄完
17.兩列火車同時從相距600千米的兩城相對開出.列火車每小時行60千米,另一列火車每小時行75千米,經過幾小時兩車可以相遇?
600/(60+75)=40/9(小時)
經過40/9小時兩車可以相遇。
18.一輛摩托車每小時行了64千米,找這樣的速度,從甲到乙用了3/4小時,甲乙兩地相距多少千米?
64×3/4=48千米
19.水果店在兩天內賣完一批水果,第一天賣出水果總重量的3/5,比第二天多賣了30千克,這批水果共有多少千克?
第一天賣出水果總重量的3/5,則,第二天賣了2/5,
3/5-2/5=1/5,第一天比第二天多的,
30÷1/5=150千克,
算式是,
1-3/5=2/5
3/5-2/5=1/5
30÷1/5=150千克
20.西街小學共有學生910人,其中女生佔4/7,女生有多少人?男生有多少人?
910*4/7=(910*4)/7=520......女生
910-520=390.......男生
21.一塊長方形地,長60米,寬是長的2/5,這塊地的面積是多少平方米?
4/5*5/8=(4*5)/(5*8)=1/2(米)
4/5-1/2=8/10-5/10=3/10(米)
22.金魚池裡紅金魚與黑金魚條數的比是7:3,黑金魚有9條,紅金魚有多少條?
9÷3×7=21條
23.6年級有學生132人,其中男學生與女學生人數的比是6:5,6年級男.女學生各有多少人?
132÷(6+5)=12人
男同學有
12×6=72人
女同學有
12×5=60人
24.甲數和乙數的比是2:3,乙數和丙數的比是4:5.求甲數和丙數的比.
甲:乙=2:3=8:12
乙:丙=4:5=12:15
甲:乙:丙=8:12:15
甲:丙=8:15
25.解放路小學今年植樹的棵數是去年的1.2倍.寫出這個小學今年植樹棵數和去年植樹棵數的比.化簡.
1.2:1=6:5
26.一個電視機廠去年彩色電視機的產量與電視機總產量的比是20分之9.去年共生產電視機250000太,其中彩色電視機有多少台?
250000×20分之9=112500台
27.某工廠工人佔全廠職工總數的3分之2,技術人員佔全場職工總數的9分之2,其餘的是幹部.寫出這個廠的工人,技術人員和幹部人數的比.
幹部佔全廠職工總數的
1-3分之2-9分之2=9分之1
這個廠的工人,技術人員和幹部人數的比是
3分之2:9分之2:9分之1=6:2:1
28.某班學生人數在40到50人之間,男生人數和女生人數的比是5:6.
這個班的男生和女生各有多少人..
因為人數為整數,
所以班級人數能被5+6=11整除
所以班級人數為44人
男生有
44÷(5+6)×5=20人
女生有
44-20=24人
29.圖書館科技書與文藝書的比是4 :5,又購進300本文藝術後,科技書與文藝書的比是5 :7,文藝書比原來增加了百分之幾?
文藝書原有:300÷(7/12-5/9)=10800(本)
文藝書比原來增加了:300÷10800≈2.8%
30.100克糖水正好裝滿了一個玻璃杯,其中含糖10克.從杯中倒出10克糖水後,再往杯中加滿水,這是被子里糖與水的比是多少?
原來裡面水是90,糖是10
倒出10克,那裡面還剩90,其中水81,糖9
再加滿水又水為91,糖還是9
那就是9/91
31.五、六年級只有學生175人。分成三組參加活動。一、二兩組的人數比是5:4,第三組有67人,第一、二兩組各有多少人?
(1)一、二組共有學生175人-67人=108人
(2)一組學生有108人×5/9=60人
(3)二組學生有108人×4/9=48人
32.某校有學生465人,其中女生的2/3比男生的4/5少20人。男·女各個多少?
女生的3分之2比男生的5分之4少20人
女生比男生的(4/5)/(2/3)=6/5少20/(2/3)=30人
男生有
(465+30)/(1+6/5)=225(人)
女生有
465-225=240(人)
33.一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9頁,這篇稿件有多少頁?
9除以(5分之2-7分之1)
=9除以35分之9
=35(頁)
答:這見稿件有35頁。
34.一塊地,長和寬的比是8:5,長比寬多24米。這塊地有多少平方米?
設長是8份,則寬是5份,多了:3份,即是24米
那麼一份是:24/3=8米
即長是:8*8=64米,寬是:8*5=40米
面積是:64*40=2560平方米
35.如果男同學的人數比女同學多25%那麼女同學的人數比男同學少多少?
女同學為單位1
男同學為1+25%=125%
女同學的人數比男同學少(125%-1)÷125%=20%
36.飼養廠今年養豬1987頭,比去年養豬頭數的3倍少245頭,今年比去年多養豬多少頭?
去年養豬:(1987+245)/3=744
今年比去年多養豬:1987-744=1243
37.小偉和小英給希望工程捐款錢數的比是2:5.小英捐了35元,小偉捐了多少錢?
設小偉捐了X元
所以 2:5=X:35 得:X=14元 小偉捐了14元
38.三個平均數為8.4,其中第一個數是9.2,第二個數比第三個數少0.8,第三個數是什麼
第3個數是8.4
解:設第3個數為x,列方程為:
3*[9.2+(x-0.8)+x]=8.4
解得 x=8.4
39.有兩根繩子,第一根繩子的長度是第二根的1.5倍,第二根比第一根短3米,兩根繩子各長多少米?
設第二根長x米,則第二根長1.5x米
1.5x-x=3
0.5x=3
x=6
6×1.5=9(米)
第一根長6米
第二根長9米
40.工程隊修一條路,已修好的長度與剩下的比是4:5,若再修25米就恰好修到了這條路的中點,這條路全長多少米?
4+5=9
解:設這條路全長x米:
(5/9-4/9)x=25
1/9x=25
x=225
這條路全長225米
41.某工廠6月份計劃用煤54噸,前半月平均每天燒煤1.6噸,剩下的煤如果每天燒1.5噸,還可以燒多少天?
42.「三跳」活動中,參加跳繩的人數是踢毽人數的3倍,已知跳繩人數比踢鍵子人數多18人,跳繩和踢毽子的同學各有多少人?
43.商店有一批運動衣,第一天賣出35件,第二天賣出28件,第二天比第一天少收入168元,每件運動衣售價多少元?
44.縫紉組里有布27.8米,計劃先做8套成人衣服,每套用布2.6米,剩下的布再做成兒童服裝,按每套用布1.4米計算,能做成兒童服裝多少套?
45.小明看一本450頁的書,前3天每天看30頁,餘下的每天看40 頁,看完這本書還需多少天?
46.一輛汽車從甲地開往乙地,前2小時共行120千米,後3小時共行210千米,平均每小時行多少千米?
47.一個築路隊有13人,3天修路9.75千米,如果每人的工作效率不變,15人5天修路多少千米?
48.同學們為災區捐獻衣服,第一次捐了890件,第二次捐了950件,兩次一共捐了多少件?
49.學校舉行跳繩比賽,四年級組跳了800個,五年級組跳了950個,五年級組比四年級組多跳了多少個?
50.學校舉行跳繩比賽,四年級組跳了800個,五年級組比四年級組多跳了150,五年級組跳了多少個?
51.飛機每小時飛行360千米,7小時一共飛行多少千米?
52.幼兒園買來蘋果36千克,梨12千克,蘋果的重量是梨的重量的幾倍?
53
.幼兒園買來梨12千克,蘋果的重量是梨的3倍,蘋果有多少千克?
54.幼兒園買來蘋果36千克,蘋果的重量是梨的3倍,梨有多少千克?
55. 甲、乙、丙三人在A、B兩塊地植樹,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分別能植樹24,30,32棵,甲在A地植樹,丙在B地植樹,乙先在A地植樹,然後轉到B地植樹.兩塊地同時開始同時結束,乙應在開始後第幾天從A地轉到B地?
56. 有三塊草地,面積分別是5,15,24畝.草地上的草一樣厚,而且長得一樣快.第一塊草地可供10頭牛吃30天,第二塊草地可供28頭牛吃45天,問第三塊地可供多少頭牛吃80天?
57. 某工程,由甲、乙兩隊承包,2.4天可以完成,需支付1800元;由乙、丙兩隊承包,3+3/4天可以完成,需支付1500元;由甲、丙兩隊承包,2+6/7天可以完成,需支付1600元.在保證一星期內完成的前提下,選擇哪個隊單獨承包費用最少?
58. 一個圓柱形容器內放有一個長方形鐵塊.現打開水龍頭往容器中灌水.3分鍾時水面恰好沒過長方體的頂面.再過18分鍾水已灌滿容器.已知容器的高為50厘米,長方體的高為20厘米,求長方體的底面面積和容器底面面積之比.
59. 甲、乙兩位老闆分別以同樣的價格購進一種時裝,乙購進的套數比甲多1/5,然後甲、乙分別按獲得80%和50%的利潤定價出售.兩人都全部售完後,甲仍比乙多獲得一部分利潤,這部分利潤又恰好夠他再購進這種時裝10套,甲原來購進這種時裝多少套?
60. 有甲、乙兩根水管,分別同時給A,B兩個大小相同的水池注水,在相同的時間里甲、乙兩管注水量之比是7:5.經過2+1/3小時,A,B兩池中注入的水之和恰好是一池.這時,甲管注水速度提高25%,乙管的注水速度不變,那麼,當甲管注滿A池時,乙管再經過多少小時注滿B池?
61. 小明早上從家步行去學校,走完一半路程時,爸爸發現小明的數學書丟在家裡,隨即騎車去給小明送書,追上時,小明還有3/10的路程未走完,小明隨即上了爸爸的車,由爸爸送往學校,這樣小明比獨自步行提早5分鍾到校.小明從家到學校全部步行需要多少時間?
62. 甲、乙兩車都從A地出發經過B地駛往C地,A,B兩地的距離等於B,C兩地的距離.乙車的速度是甲車速度的80%.已知乙車比甲車早出發11分鍾,但在B地停留了7分鍾,甲車則不停地駛往C地.最後乙車比甲車遲4分鍾到C地.那麼乙車出發後幾分鍾時,甲車就超過乙車.
63. 甲、乙兩輛清潔車執行東、西城間的公路清掃任務.甲車單獨清掃需要10小時,乙車單獨清掃需要15小時,兩車同時從東、西城相向開出,相遇時甲車比乙車多清掃12千米,問東、西兩城相距多少千米?
64. 今有重量為3噸的集裝箱4個,重量為2.5噸的集裝箱5個,重量為1.5噸的集裝箱14個,重量為1噸的集裝箱7個.那麼最少需要用多少輛載重量為4.5噸的汽車可以一次全部運走集裝箱?
小學數學應用題綜合訓練(02)
65. 師徒二人共同加工170個零件,師傅加工零件個數的1/3比徒弟加工零件個數的1/4還多10個,那麼徒弟一共加工了幾個零件?
66. 一輛大轎車與一輛小轎車都從甲地駛往乙地.大轎車的速度是小轎車速度的0%.已知大轎車比小轎車早出發17分鍾,但在兩地中點停了5分鍾,才繼續駛往乙地;而小轎車出發後中途沒有停,直接駛往乙地,最後小轎車比大轎車早4分鍾到達乙地.又知大轎車是上午10時從甲地出發的.那麼小轎車是在上午什麼時候追上大轎車的.
67. 一部書稿,甲單獨打字要14小時完成,,乙單獨打字要20小時完成.如果甲先打1小時,然後由乙接替甲打1小時,再由甲接替乙打1小時.......兩人如此交替工作.那麼打完這部書稿時,甲乙兩人共用多少小時?
68. 黃氣球2元3個,花氣球3元2個,學校共買了32個氣球,其中花氣球比黃氣球少4個,學校買哪種氣球用的錢多?
69. 一隻帆船的速度是60米/分,船在水流速度為20米/分的河中,從上游的一個港口到下游的某一地,再返回到原地,共用3小時30分,這條船從上游港口到下游某地共走了多少米?
70. 甲糧倉裝43噸麵粉,乙糧倉裝37噸麵粉,如果把乙糧倉的麵粉裝入甲糧倉,那麼甲糧倉裝滿後,乙糧倉里剩下的麵粉占乙糧倉容量的1/2;如果把甲糧倉的麵粉裝入乙糧倉,那麼乙糧倉裝滿後,甲糧倉里剩下的麵粉占甲糧倉容量的1/3,每個糧倉各可以裝麵粉多少噸?
71. 甲數除以乙數,乙數除以丙數,商相等,余數都是2,甲、乙兩數之和是478.那麼甲、乙丙三數之和是幾?
72. 一輛車從甲地開往乙地.如果把車速減少10%,那麼要比原定時間遲1小時到達,如果以原速行駛180千米,再把車速提高20%,那麼可比原定時間早1小時到達.甲、乙兩地之間的距離是多少千米?
73. 某校參加軍訓隊列表演比賽,組織一個方陣隊伍.如果每班60人,這個方陣至少要有4個班的同學參加,如果每班70人,這個方陣至少要有3個班的同學參加.那麼組成這個方陣的人數應為幾人?
74. 甲、乙、丙三台車床加工方形和圓形的兩種零件,已知甲車床每加工3個零件中有2個是圓形的;乙車床每加工4個零件中有3個是圓形的;丙車床每加工5個零件中有4個是圓形的.這天三台車床共加工了58個圓形零件,而加工的方形零件個數的比為4:3:3,那麼這天三台車床共加工零件幾個?
75. 圈金屬線長30米,截取長度為A的金屬線3根,長度為B的金屬線5根,剩下的金屬線如果再截取2根長度為B的金屬線還差0.4米,如果再截取2根長度為A的金屬線則還差2米,長度為A的等於幾米?
76. 某公司要往工地運送甲、乙兩種建築材料.甲種建築材料每件重700千克,共有120件,乙種建築材料每件重900千克,共有80件,已知一輛汽車每次最多能運載4噸,那麼5輛相同的汽車同時運送,至少要幾次?
77. 從王力家到學校的路程比到體育館的路程長1/4,一天王力在體育館看完球賽後用17分鍾的時間走到家,稍稍休息後,他又用了25分鍾走到學校,其速度比從體育館回來時每分鍾慢15米,王力家到學校的距離是多少米?
78. 師徒兩人合作完成一項工程,由於配合得好,師傅的工作效率比單獨做時要提高1/10,徒弟的工作效率比單獨做時提高1/5.兩人合作6天,完成全部工程的2/5,接著徒弟又單獨做6天,這時這項工程還有13/30未完成,如果這項工程由師傅一人做,幾天完成?
79. 六年級五個班的同學共植樹100棵.已知每個班植樹的棵數都不相同,且按數量從多到少的排名恰好是一、二、三、四、五班.又知一班植的棵數是二、三班植的棵數之和,二班植的棵數是四、五班植的棵數之和,那麼三班最多植樹多少棵?
80. 甲每小時跑13千米,乙每小時跑11千米,乙比甲多跑了20分鍾,結果乙比甲多跑了2千米.乙總共跑了多少千米?
81. 有高度相等的A,B兩個圓柱形容器,內口半徑分別為6厘米和8厘米.容器A中裝滿水,容器B是空的,把容器A中的水全部倒入容器B中,測得容器B中的水深比容器高的7/8還低2厘米.容器的高度是多少厘米?
82. 有104噸的貨物,用載重為9噸的汽車運送.已知汽車每次往返需要1小時,實際上汽車每次多裝了1噸,那麼可提前幾小時完成.
83. 師、徒二人第一天共加工零件225個,第二天採用了新工藝,師傅加工的零件比第一天增加了24%,徒弟增加了45%,兩人共加工零件300個,第二天師傅加工了多少個零件?徒弟加工了幾個零件?
84. 奮斗小學組織六年級同學到百花山進行野營拉練,行程每天增加2千米.去時用了4天,回來時用了3天,問學校距離百花山多少千米?
小學數學應用題綜合訓練(04)
85. 某地收取電費的標準是:每月用電量不超過50度,每度收5角;如果超出50度,超出部分按每度8角收費.每月甲用戶比乙用戶多交3元3角電費,這個月甲、乙各用了多少度電?
86. 王師傅計劃用2小時加工一批零件,當還剩160個零件時,機器出現故障,效率比原來降低1/5,結果比原計劃推遲20分鍾完成任務,這批零件有多少個?
87. 媽媽給了紅紅一些錢去買賀年卡,有甲、乙、丙三種賀年卡,甲種卡每張1.20元.用這些錢買甲種卡要比買乙種卡多8張,買乙種卡要比買丙種卡多買6張.媽媽給了紅紅多少錢?乙種卡每張多少錢?
88. 一位老人有五個兒子和三間房子,臨終前立下遺囑,將三間房子分給三個兒子各一間.作為補償,分到房子的三個兒子每人拿出1200元,平分給沒分到房子的兩個兒子.大家都說這樣的分配公平合理,那麼每間房子的價值是多少元?
89. 小明和小燕的畫冊都不足20本,如果小明給小燕A本,則小明的畫冊就是小燕的2倍;如果小燕給小明A本,則小明的畫冊就是小燕的3倍.原來小明和小燕各有多少本畫冊?
90. 有紅、黃、白三種球共160個.如果取出紅球的1/3,黃球的1/4,白球的1/5,則還剩120個;如果取出紅球的1/5,黃球的1/4,白球的1/3,則剩116個,問(1)原有黃球幾個?(2)原有紅球、白球各幾個?
91. 爸爸、哥哥、妹妹三人現在的年齡和是64歲,當爸爸的年齡是哥哥年齡的3倍時,妹妹是9歲.當哥哥的年齡是妹妹年齡的2倍時,爸爸是34歲.現在三人的年齡各是多少歲?
92. B在A,C兩地之間.甲從B地到A地去送信,出發10分鍾後,乙從B地出發去送另一封信.乙出發後10分鍾,丙發現甲乙剛好把兩封信拿顛倒了,於是他從B地出發騎車去追趕甲和乙,以便把信調過來.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙從出發到把信調過來後返回B地至少要用多少時間?
93. 甲、乙兩個車間共有94個工人,每天共加工1998竹椅.由於設備和技術的不同,甲車間平均每個工人每天只能生產15把竹椅,而乙車間平均每個工人每天可以生產43把竹椅.甲車間每天竹椅產量比乙車間多幾把?
94. 甲放學回家需走10分鍾,乙放學回家需走14分鍾.已知乙回家的路程比甲回家的路程多1/6,甲每分鍾比乙多走12米,那麼乙回家的路程是幾米?
小學數學應用題綜合訓練(05)
95. 某商品每件成本72元,原來按定價出售,每天可售出100件,每件利潤為成本的25%,後來按定價的90%出售,每天銷售量提高到原來的2.5倍,照這樣計算,每天的利潤比原來增加幾元?
96. 甲、乙兩列火車的速度比是5:4.乙車先發,從B站開往A站,當走到離B站72千米的地方時,甲車從A站發車往B站,兩列火車相遇的地方離A,B兩站距離的比是3:4,那麼A,B兩站之間的距離為多少千米?
97. 大、小猴子共35隻,它們一起去採摘水蜜桃.猴王不在的時候,一隻大猴子一小時可採摘15千克,一隻小猴子一小時可採摘11千克.猴王在場監督的時候,每隻猴子不論大小每小時都可以採摘12千克.一天,採摘了8小時,其中只有第一小時和最後一小時有猴王在場監督,結果共採摘4400千克水蜜桃.在這個猴群中,共有小猴子幾只?
98. 某次數學競賽設一、二等獎.已知(1)甲、乙兩校獲獎的人數比為6:5.(2)甲、乙來年感校獲二等獎的人數總和占兩校獲獎人數總和的60%.(3)甲、乙兩校獲二等獎的人數之比為5:6.問甲校獲二等獎的人數占該校獲獎總人數的百分數是幾?
99. 已知小明與小強步行的速度比是2:3,小強與小剛步行的速度比是4:5.已知小剛10分鍾比小明多走420米,那麼小明在20分鍾里比小強少走幾米?
100. 加工一批零件,原計劃每天加工15個,若干天可以完成.當完成加工任務的3/5時,採用新技術,效率提高20%.結果,完成任務的時間提前10天,這批零件共有幾個?
❿ 六年級數學難題(練習題,附答案)
1、歲末商場打折出售服裝,一種美爾雅西服按八折出售,能獲得利潤20%。由於成本降低,現按原定價的七五折出售,卻能獲得利潤25%。那麼現在的成本比原來降低了多少?
2、甲乙兩人各加工一批零件,乙完成任務比甲完成任務少用2小時。如果甲先做150個,乙再開始生產,當乙完成任務時甲能超額90個。乙的工作效率是甲的五分之四,乙每小時做多少個?
3、有甲乙兩堆小球,甲堆小球比乙堆多,而且甲堆球的個數在130-200之間。從甲堆拿出與乙堆同樣多的球放入乙堆中,然後從乙堆拿出與甲堆的剩下同樣多放到甲堆……挪動5次以後,甲乙兩堆球一樣多,那麼甲堆原有小球多少個?
4、在一個長24分米,寬9分米,高8分米的水草中,注入4分米深的睡,然後放進一個棱長6分米的正方體鐵塊,則水面上升多少分米?
5、將直角三角形ABC中的角C折起,使得C點與A點重合,如果AB=3,BC=4,那麼四邊形的ABED的面積是多少(見下圖 如果不清晰請保存到桌面 在看圖)
6一件工程,甲隊單獨做要15天完成,乙隊單獨做要20天完成。兩隊合作要多少天完成?
7
一件工作,甲單獨做6小時完成,乙單獨做要4小時完成,丙單獨做要3小時完成。三人合作要幾小時完成?
8一項工程,甲獨做9天完成。甲獨做四天後,乙與甲合作。還要多少天才能完成?
9一項工程,甲乙合作10天完成。甲、乙合做8天後,乙又獨做了5天才完成,若乙單獨做這項工程,要多少天?
10六1班原有1/5的同學參加大掃除,後來又有2個同學主動參加,實際參加人數是未參加人數的1/3.原來有多少個同學參加大掃除?
11在一次知識競賽中,競賽試題共有25道,每道題都有4個答案,其中只有1個答案正確,要求學生把正確答案選出來,每道題選對得4分,不選或選錯倒扣2分,如果一個學生在本次競賽中的得分不低於60分,那麼他至少選對了多少道題?
12當 2x-y/5xy=2時,代數式2x-y/10xy的值是多少?代數式15xy/6x-3y的值是多少?
13當x+y=15,xy=-5/51時,求代數式6x+5xy+6y的值
14某商場的電視機原價為2500元,現以8折銷售,如果想使降價前後的銷售額都為10萬元,那麼銷售量應增加多少合?
15一位經銷商購進某產品的進價為1050元,按進價的150%標價,若他打算獲得商品的利潤率不低於20%,那麼他最低可以打幾折,請你幫他設計一下.
16玩「20點」游戲:從一副撲克牌(去掉大、小王)中任取4張,根據牌面上的數字進行混合運算(每張牌只能用一次),使得運算結果為21或-21,其中紅色撲克牌代表負數,黑色撲克牌代表正數,J 、Q、K分別代表11.12.13,和你的同伴做這個游戲,並寫出3組式子來
17一個數的三分之一比它的五分之二少8,這個數的四分之三是多少?
18每用戶的用水量不超過10噸,每噸水費0.8元,如果超過10噸,超出部分每用噸水,水費在每噸0.8元的基礎上加價50%,小紅上個月用水18噸,水費多少元?
19商店出售大,中,小氣球,大氣球每個3元,中氣球每個1.5元,小氣球每個1元。張老師用120元共買了55個氣球,其中買中氣球的錢與買小氣球的錢恰好一樣多。問每種球各買了幾個?
20某商場購進童裝500套,每套進價50元,加價60%,作為售價出售.
1.若能全部售完,則可盈利多少元?
2.當童裝售出80%後,由於季節變化,商店決定五折出售,又售出了15%,最後的5%是以四折出售,這樣,商店在這筆生意中共盈利了多少元?
21扇形的面積公式s=nπrr/360
設圓的半徑為r,這扇形的半徑為2r
得到nπ2r2r/360=πrr/2
得到n=45°
22某班學生有48人,喜歡足球的有12人,喜歡籃球的有22人喜歡乒乓的有8人,其他的有6人,求出他們所佔的百分比各是多少。
23袋子裡面兩個白球兩個紅球 不改變球的數量 怎麼摸才能摸到紅球的數量是六分之一
24一輛貨車從甲地開往乙地,每小時行35千米,行了全程的40%後,一輛小汽車從乙地開往甲地,每小時行45千米,小汽車開出3小時後與貨車相遇,甲乙兩地的距離是多少千米.
25把一個棱長為8厘米的正方形切割成兩個完全一樣的小長方形。兩個小長方形的表面積之和比原來正方體的表面積增加( )平方厘米,每個小長方體的體積是( )立方厘米。