當前位置:首頁 » 語數英語 » 初中數學優秀論文

初中數學優秀論文

發布時間: 2020-11-22 16:03:20

❶ 初中數學教學論文

1.開頭2.數學隱含條件處理3.數學一題多變4.數學一題多解5.數學一題多問。
不懂

❷ 600字初中數學論文

生活中的數學
其實我們生活中處處都有數學,比如說奇妙的圓
圓是生活中最常見的圖形,人們幾乎無處不在應用圓。在車上,在路上,在家裡,甚至在空中,你總是能見到圓的蹤跡。
圓有一個很大的好處,就是它們沒有稜角。汽車為什麼可以使汽車運行得快速,而又使坐在車里的人感到不顛簸?就是因為汽車的輪子是圓的。你在玩保齡球的時候,為什麼保齡球是球體而不是正方體或長方體的?就是因為球體與地面的摩擦力最小,速度慢下來的時間最長,且速度並不容易改變。正因為沒有稜角,人們才把圓形和球體稱之為最美觀的平面圖形和最美觀的立體圖形。
圓是公認的最經濟的圖形。大家都知道,周長相同時,圓的面積比其他任何形狀都要大。依據這個道理,人們設計出了圓形的窨井蓋,因為圓形的窨井蓋在與地面垂直放在窨井上時,不會像正方形或長方形窨井蓋那樣掉進窨井裡,而是穩穩地卡在上面。這么可愛的圖形,怎麼能不受到人們的青睞呢?
除了圓,還有一些和圓相關的,諸如圓柱體和球體之類的立體圖形也有著舉足輕重的作用呢!在材料面積相同的情況下,圓柱體的容積是最大的,同樣,它的支撐力也是最大的。樹干,竹子,水桶等東西,無不應用了圓柱體。 還有小數點,數學,在我們生活中無處不在。高斯求積、植樹問題……這一個個奇妙的數學定律令我們驚奇。下面讓我們去尋找奇妙的數字之旅吧!

小數點不論在體重、價格上無處不有。無處不在它向右移動代表擴大,向左移動代表縮小,這個神奇的小數點揭開了我們今天的數字之旅。

在我們測量和計算中有時得不到整數,小數點就在這里登場了。小數點擁有巨大的「權利」它右邊是小數部分,左邊是整數部分。它在數字界擁有很大的威望,因為:它的移動就改變了數字的大小。它有兩種方法改變數字的大小:1、數字調換位置,2、移動小數點。

在生活中,小數點變化多端一轉身變成了單名數,一轉身變成了復名數,小數點不僅移動小數點來改變數字的大小,還用乘除法改變數字的大小,乘表示向右移動,移動一位擴大10倍;除表示向左移動,移動一位縮小10倍。

小數點真神奇,在生活中還有很多神奇的定律,讓我們一起探尋吧!

❸ 初中數學小論文 1000以上

生活中的數學
有一個謎語:有一樣東西,看不見、摸不著,但它卻無處不在,請問它是什麼?謎底是:空氣。而數學,也像空氣一樣,看不見,摸不著,但它卻時時刻刻存在於我們身邊。
奇妙的「黃金數」
取一條線段,在線段上找到一個點,使這個點將線段分成一長一短兩部分,而長段與短段的比恰好等於整段與長段的比,這個點就是這條線段的黃金分割點。這個比值為:1:0.618…而0.618…這個數就被叫作「黃金數」。
有趣的事,這個數在生活中隨處可見:人的肚臍是人體總長的黃金分割點;有些植物莖上相鄰的兩片葉子的夾角恰好是把圓周分成1:0.618…的兩條半徑的夾角。據研究發現,這種角度對植物通風和採光效果最佳。
建築師們對數0.618…特別偏愛,無論是古埃及的金字塔,還是巴黎聖母院,或是近代的埃菲爾鐵塔,都少不了0.618…這個數。人們還發現,一些名畫,雕塑,攝影的主體大都在畫面的0.618…處。音樂家們則認為將琴馬放在琴弦的0.618…處會使琴聲更柔和甜美。
數0.618…還使優選法成為可能。優選法是一種求最優化問題的方法。如在煉鋼時需要加入某種化學元素來增加鋼材的強度,假設已知在每噸鋼中需加某化學元素的量在1000—2000克之間。為了求得最恰當的加入量,通常是取區間的中點進行試驗,然後將實驗結果分別與1000克與2000克時的實驗結果作比較,從中選取強度較高的兩點作為新的區間,再取新區間的中點做實驗,直到得到最理想的效果為止。但這種方法效率不高,如果將試驗點取在區間的0.618處,效率將大大提高,這種方法被稱作「0.618法」,實踐證明,對於一個因素的問題,用「0.618法」做16次試驗,就可以達到前一種方法做2500次試驗的效果!
「黃金數」在生活中竟有如此多的實例和運用。或許,在它的身上,還有更多的奧秘,等待我們去探尋,使它能更好地為我們服務,為我們解決更多問題。
美妙的軸對稱
如果在一個圖形上能找到一條直線,將這個圖形沿著條直線對這可以使兩邊完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸。
如果仔細觀察,可以發現飛機是一個標準的軸對稱物體,俯視看,它的機翼、機身、機尾都呈左右對稱。軸對稱使它飛行起來更平穩,如果飛機沒有軸對稱,那飛行起來就會東倒西歪,那時,還有誰願意乘飛機呢?
再仔細觀察,不難發現有許多藝術品也成軸對稱。舉個最簡單的例子:橋。它算是生活中最常見的藝術品了(應該算藝術品吧),就拿金華的橋來說:通濟橋、金虹橋、雙龍大橋、河磐橋。個個都呈軸對稱。中國的古代建築就更明顯了,古代宮殿,基本上都呈軸對稱。再說個有名的:北京城的布局。這可是最典型的軸對稱布局了。它以故宮、天安門、人民英雄紀念碑、前門為中軸線成左右對稱。將軸對稱用在藝術上,能使藝術品看上去更優美。
軸對稱還是一種生物現象:人的耳、眼、四肢、都是對稱生長的。耳的軸對稱,使我們聽到的聲音具有強烈的立體感,還可以確定聲源的位置;而眼的對稱,可以使我們看物體更准確。可見我們的生活離不開軸對稱。
數學離我們很近,它體現在生活中的方方面面,我們離不開數學,數學,無處不在,上面只是兩個極普通的例子,這樣的例子根本舉不完。我認為,生活中的數學能給人帶來更多地發現。

高學生綜合分析能力是幫助學生解答應用題的重要教學手段。通過多變的練習可以達到這一目的。教學時,可以根據教學需要和學生實際情況,組織對應用題改變問題,改變條件或問題和條件同時改變的練習,達到目的。但「變」要為「練」服務,「練」要做到有計劃、有針對性。因此,教師就要精心設計練習題,加強思維訓練,使學生練得精、練得巧、練到點子上。

一、一題多問

一題多問是就相同條件,啟發學生通過聯想,提出不同問題,以此促進學生思維的靈活性。

例如:三年級有女生45人,比男生少1/10。

問:(1)男生有多少人?

(2)男生比女生多幾分之幾?

(3)男生佔全年級總人數的幾分之幾?

二、一題多變

這種練習,有助於啟發引導學生分析比較其異同點,抓住問題的實質,加深對本質特徵的認識,從而更好地區分事物的各種因素,形成正確的認識,進而更深刻地理解所學知識,促進和增強學生思維的深刻性。一般可以採用「縱變」和「橫變」兩種形式。

1、「縱變」:使學生對某一數量關系的發展有一個清晰的認識。

例:某工廠原來每天生產40台機器,現在每天生產50台機器,是原來的百分之幾?

變化題:

(1) 某工廠原來每天生產40台機器,現在每天生產50台機器,比原來增產了百分之幾?

(2) 某工廠現在每天生產50台機器,比原來增產了25%,原來每天生產多少台機器?

(3) 某工廠原來每天生產40台機器,現在比原來增產了25%,現在每天生產多少台機器?

2、「橫變」:訓練學生對各種數量關系的綜合運用。

例:糧店要運進一批大米,已經運進12噸,相當於要運進大米總數的75%。糧店要運進大米多少噸?

變化題:

(1) 糧店要運進大米16噸,用4輛汽車運一次,每輛運2.5噸,還剩下多少噸大米沒有運到?

(2) 糧店要運進大米16噸,先用4輛汽車運一次,每輛運2.5噸,剩下的改用大車運,每輛大車運0.6噸。一次運完,需要大車多少輛?

(3) 糧店要運進大米16噸,先用4輛汽車運一次,每輛運2.5噸,剩下的改用大車運,每輛大車比汽車少運1.9噸。一次運完,需要大車多少輛?

(4) 糧店要運進大米16噸,先用汽車運進75%;剩下的改用大車運,每輛大車運的噸數是汽車已運噸數的1/24。一次運完,需要大車多少輛?

(5) 糧店要運進麵粉14噸,是運進大米噸數的7/8。這些麵粉和大米,用4輛汽車運,每輛運2.5噸,需要運幾次?

這樣,從「縱」、「橫」兩個方面進行練習,就不斷加深了學生對數量關系的理解,使學生的思維從具體不斷地向抽象過渡。發展了邏輯思維,提高了學生分析、解答應用題的能力。

三、一題多解

一題多解主要指根據實際情況,從不同角度啟發誘導學生得到新的解題思路和解題方法,溝通解與解之間的內在聯系,選出最佳解題方案,從而訓練了思維的靈活性。

例1、某班有學生50人,男生是女生的2/3,女生有多少人?

(1)用分數方法解:50÷(1+2/3)=30(人)

(2)用方程方法解:X+2/3X=50 或X(1+2/3)=50X=30

(3)用歸一方法解:50÷(2+3)×3=30(人)

(4)用按比例分配方法解:50×3/(3+2)=30(人)

例2、某工廠計劃10天製造200台機器。結果2 天就完成了計劃的25%。照這樣計算,可以提前幾天完成任務?

有以下幾種解法:

(1)10-200÷(200×25%÷2)=2(天)

(2)把計劃產量看作「1」。

Ⅰ、10-1÷(25%÷2)=2(天)

Ⅱ、10-2×(1÷25%)=2(天)

Ⅲ、10-(1-25%)÷(25%÷2)-2=2(天)

(3)把實際天數看作「1」。

10-2÷25%=2(天)

這樣,培養學生從多種角度,不同方向去分析、思考問題,克服了思維定勢的不利因素,開拓思路,運用知識的遷移,使學生能正確、靈活地解答千變萬化的應用題。能做到大綱要求的「根據應用題的具體情況,靈活運用解答方法。」

通過以上形式多樣的練習,不僅調動了學生濃厚的學習興趣,更重要的是溝通了知識間的內在聯系,使知識深化,而且可以達到以點帶面,舉一反三,觸類旁通的目的。

《勾股定理的證明方法探究》

勾股定理又叫畢氏定理:在一個直角三角形中,斜邊邊長的平方等於兩條直角邊邊長平方之和。

據考證,人類對這條定理的認識,少說也超過 4000 年!又據記載,現時世上一共有超過 300 個對這定理的證明!

勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若鶩,其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。

勾股定理的證明:在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。

首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。

1.中國方法:畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。

左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是
a^2+b^2=c^2。
這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。

2.希臘方法:直接在直角三角形三邊上畫正方形,如圖。

容易看出,

△ABA』 ≌△AA'C 。

過C向A』』B』』引垂線,交AB於C』,交A』』B』』於C』』。

△ABA』與正方形ACDA』同底等高,前者面積為後者面積的一半,△AA』』C與矩形AA』』C』』C』同底等高,前者的面積也是後者的一半。由△ABA』≌△AA』』C,知正方形ACDA』的面積等於矩形AA』』C』』C』的面積。同理可得正方形BB』EC的面積等於矩形B』』BC』C』』的面積。

於是, S正方形AA』』B』』B=S正方形ACDA』+S正方形BB』EC,

即 a2+b2=c2。

至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這里只用到簡單的面積關系,不涉及三角形和矩形的面積公式。

這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。

以上兩個證明方法之所以精彩,是它們所用到的定理少,都只用到面積的兩個基本觀念:

⑴ 全等形的面積相等;

⑵ 一個圖形分割成幾部分,各部分面積之和等於原圖形的面積。

這是完全可以接受的樸素觀念,任何人都能理解。

我國歷代數學家關於勾股定理的論證方法有多種,為勾股定理作的圖注也不少,其中較早的是趙爽(即趙君卿)在他附於《周髀算經》之中的論文《勾股圓方圖注》中的證明。採用的是割補法:

如圖,將圖中的四個直角三角形塗上硃色,把中間小正方形塗上黃色,叫做中黃實,以弦為邊的正方形稱為弦實,然後經過拼補搭配,「令出入相補,各從其類」,他肯定了勾股弦三者的關系是符合勾股定理的。即「勾股各自乘,並之為弦實,開方除之,即弦也」。

趙爽對勾股定理的證明,顯示了我國數學家高超的證題思想,較為簡明、直觀。

西方也有很多學者研究了勾股定理,給出了很多證明方法,其中有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為「百牛定理」。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。

下面介紹的是美國第二十任總統伽菲爾德對勾股定理的證明。

如圖,

S梯形ABCD= (a+b)2

= (a2+2ab+b2), ①

又S梯形ABCD=S△AED+S△EBC+S△CED

= ab+ ba+ c2

= (2ab+c2)。 ②

比較以上二式,便得

a2+b2=c2。

這一證明由於用了梯形面積公式和三角形面積公式,從而使證明相當簡潔。

1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證明。5年後,伽菲爾德就任美國第二十任總統。後來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為勾股定理的「總統」證法,這在數學史上被傳為佳話。

在學習了相似三角形以後,我們知道在直角三角形中,斜邊上的高把這個直角三角形所分成的兩個直角三角形與原三角形相似。

如圖,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足為D。則

△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD ? BA, ①

由△CAD∽△BAC可得AC2=AD ? AB。 ②

我們發現,把①、②兩式相加可得

BC2+AC2=AB(AD+BD),

而AD+BD=AB,

因此有 BC2+AC2=AB2,這就是

a2+b2=c2。

這也是一種證明勾股定理的方法,而且也很簡潔。它利用了相似三角形的知識。

在對勾股定理為數眾多的證明中,人們也會犯一些錯誤。如有人給出了如下證明勾股定理的方法:

設△ABC中,∠C=90°,由餘弦定理

c2=a2+b2-2abcosC,

因為∠C=90°,所以cosC=0。所以

a2+b2=c2。

這一證法,看來正確,而且簡單,實際上卻犯了循環證論的錯誤。原因是餘弦定理的證明來自勾股定理。

人們對勾股定理感興趣的原因還在於它可以作推廣。

歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:「直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和」。

從上面這一定理可以推出下面的定理:「以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和」。

勾股定理還可以推廣到空間:以直角三角形的三邊為對應棱作相似多面體,則斜邊上的多面體的表面積等於直角邊上兩個多面體表面積之和。

若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等於兩直角邊上所作二球表面積之和。

總之,在勾股定理探索的道路上,我們走向了數學殿堂

❹ 初中數學論文3000字

黃金分割
對於「黃金分割」大家應該都不陌生吧!
由於公元前6世紀古希臘的畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。 公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。
公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。 中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。 到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣。
也許,0.618在科學藝術上的表現我們已了解了很多,但是,你有沒有聽說過,0.618還與炮火連天、硝煙彌漫、血肉橫飛的慘烈、殘酷的戰場也有著不解之緣,在軍事上也顯示出它巨大而神秘的力量?一代梟雄的的拿破崙大帝可能怎麼也不會想到,他的命運會與0.618緊緊地聯系在一起。1812年6月,正是莫斯科一年中氣候最為涼爽宜人的夏季,在未能消滅俄軍有生力量的博羅金諾戰役後,拿破崙於此時率領著他的大軍進入了莫斯科。這時的他可是躊躇滿志、不可一世。他並未意識到,天才和運氣此時也正從他身上一點點地消失,他一生事業的頂峰和轉折點正在同時到來。後來,法軍便在大雪紛揚、寒風呼嘯中灰溜溜地撤離了莫斯科。三個月的勝利進軍加上兩個月的盛極而衰,從時間軸上看,法蘭西皇帝透過熊熊烈焰俯瞰莫斯科城時,腳下正好就踩著黃金分割線。
古希臘帕提儂神廟是舉世聞名的完美建築,它的高和寬的比是0.618。建築師們發現,按這樣的比例來設計殿堂,殿堂更加雄偉、美麗;去設計別墅,別墅將更加舒適、漂亮.連一扇門窗若設計為黃金矩形都會顯得更加協調和令人賞心悅目.
有趣的是,這個數字在自然界和人們生活中到處可見:人們的肚臍是人體總長的黃金分割點,人的膝蓋是肚臍到腳跟的黃金分割點。大多數門窗的寬長之比也是0.618…;有些植莖上,兩張相鄰葉柄的夾角是137度28',這恰好是把圓周分成1:0.618……的兩條半徑的夾角。據研究發現,這種角度對植物通風和採光效果最佳。黃金分割與人的關系相當密切。地球表面的緯度范圍是0——90°,對其進行黃金分割,則34.38°——55.62°正是地球的黃金地帶。無論從平均氣溫、年日照時數、年降水量、相對濕度等方面都是具備適於人類生活的最佳地區。說來也巧,這一地區幾乎囊括了世界上所有的發達國家。
多去觀察生活,你就會發現生活中奇妙的數學!
數字
中國有一個成語——「顧名思義」。很多事物都能顧名思義,但是也有例外。比如,阿拉伯數字。很多人一聽到阿拉伯數字,就會認為是阿拉伯人發明的。但事實證明,不是。 阿拉伯數字1、2、3、4、5、6、7、8、9。0是國際上通用的數碼。這種數字的創制並非阿拉伯人,但也不能抹掉阿拉伯人的功勞。其實,阿拉伯數字最初出自印度人之手,是他們的祖先在生產實踐中逐步創造出來的。
公元前3000年,印度河流域居民的數字就已經比較進步,並採用了十進位制的計演算法。到吠陀時代(公元前1400-公元前543年),雅利安人已意識到數碼在生產活動和日常生活中的作用,創造了一些簡單的、不完全的數字。公元前3世紀,印度出現了整套的數字,但各地的寫法不一,其中典型的是婆羅門式,它的獨到之處就是從1~9每個數都有專用符號,現代數字就是從它們中脫胎而來的。當時,「0」還沒有出現。到了笈多時代(300-500年)才有了「0」,叫「舜若」(shunya),表示方式是一個黑點「●」,後來衍變成「0」。這樣,一套完整的數字便產生了。這就是古代印度人民對世界文化的巨大貢獻。
印度數字首先傳到斯里蘭卡、緬甸、柬埔寨等國。7-8世紀,隨著地跨亞、非、歐三洲的阿拉伯帝國的崛起,阿拉伯人如飢似渴地吸取古希臘、羅馬、印度等國的先進文化,大量翻譯其科學著作。771年,印度天文學家、旅行家毛卡訪問阿拉伯帝國阿撥斯王朝(750-1258年)的首都巴格達,將隨身攜帶的一部印度天文學著作《西德罕塔》獻給了當時的哈里發曼蘇爾(757-775),曼蘇爾令翻譯成阿拉伯文,取名為《信德欣德》。此書中有大量的數字,因此稱「印度數字」,原意即為「從印度來的」。
阿拉伯數學家花拉子密(約780-850)和海伯什等首先接受了印度數字,並在天文表中運用。他們放棄了自己的28個字母,在實踐中加以修改完善,並毫無保留地把它介紹給西方。9世紀初,花拉子密發表《印度計數演算法》,闡述了印度數字及應用方法。
印度數字取代了冗長笨拙的羅馬數字,在歐洲傳播,遭到一些基督教徒的反對,但實踐證明優於羅馬數字。1202年義大利雷俄那多所發行的《計算之書》,標志著歐洲使用印度數字的開始。該書共15章,開章說:「印度九個數字是:『9、8、7、6、5、4、3、2、1』,用這九個數字及阿拉伯人稱作sifr(零)的記號『0』,任何數都可以表示出來。」
14世紀時中國的印刷術傳到歐洲,更加速了印度數字在歐洲的推廣應用,逐漸為歐洲人所採用。
西方人接受了經阿拉伯人傳來的印度數字,但忘卻了其創始祖,稱之為阿拉伯數字。

數學很有用
學數學就是為了能在實際生活中應用,數學是人們用來解決實際問題的,其實數學問題就產生在生活中。比如說,上街買東西自然要用到加減法,修房造屋總要畫圖紙。類似這樣的問題數不勝數,這些知識就從生活中產生,最後被人們歸納成數學知識,解決了更多的實際問題。
我曾看見過這樣的一個報道:一個教授問一群外國學生:「12點到1點之間,分針和時針會重合幾次?」那些學生都從手腕上拿下手錶,開始撥表針;而這位教授在給中國學生講到同樣一個問題時,學生們就會套用數學公式來計算。評論說,由此可見,中國學生的數學知識都是從書本上搬到腦子中,不能靈活運用,很少想到在實際生活中學習、掌握數學知識。
從這以後,我開始有意識的把數學和日常生活聯系起來。有一次,媽媽烙餅,鍋里能放兩張餅。我就想,這不是一個數學問題嗎?烙一張餅用兩分鍾,烙正、反面各用一分鍾,鍋里最多同時放兩張餅,那麼烙三張餅最多用幾分鍾呢?我想了想,得出結論:要用3分鍾:先把第一、第二張餅同時放進鍋內,1分鍾後,取出第二張餅,放入第三張餅,把第一張餅翻面;再烙1分鍾,這樣第一張餅就好了,取出來。然後放第二張餅的反面,同時把第三張餅翻過來,這樣3分鍾就全部搞定。
我把這個想法告訴了媽媽,她說,實際上不會這么巧,總得有一些誤差,不過演算法是正確的。看來,我們必須學以致用,才能更好的讓數學服務於我們的生活。
數學就應該在生活中學習。有人說,現在書本上的知識都和實際聯系不大。這說明他們的知識遷移能力還沒有得到充分的鍛煉。正因為學了不能夠很好的理解、運用於日常生活中,才使得很多人對數學不重視。希望同學們到生活中學數學,在生活中用數學,數學與生活密不可分,學深了,學透了,自然會發現,其實數學很有用處。

各門科學的數學化
數學究竟是什麼呢?我們說,數學是研究現實世界空間形式和數量關系的一門科學.它在現代生活和現代生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具.
同其他科學一樣,數學有著它的過去、現在和未來.我們認識它的過去,就是為了了解它的現在和未來.近代數學的發展異常迅速,近30多年來,數學新的理論已經超過了18、19世紀的理論的總和.預計未來的數學成就每「翻一番」要不了10年.所以在認識了數學的過去以後,大致領略一下數學的現在和未來,是很有好處的.
現代數學發展的一個明顯趨勢,就是各門科學都在經歷著數學化的過程.
例如物理學,人們早就知道它與數學密不可分.在高等學校里,數學系的學生要學普通物理,物理系的學生要學高等數學,這也是盡人皆知的事實了.
又如化學,要用數學來定量研究化學反應.把參加反應的物質的濃度、溫度等作為變數,用方程表示它們的變化規律,通過方程的「穩定解」來研究化學反應.這里不僅要應用基礎數學,而且要應用「前沿上的」、「發展中的」數學.
再如生物學方面,要研究心臟跳動、血液循環、脈搏等周期性的運動.這種運動可以用方程組表示出來,通過尋求方程組的「周期解」,研究這種解的出現和保持,來掌握上述生物界的現象.這說明近年來生物學已經從定性研究發展到定量研究,也是要應用「發展中的」數學.這使得生物學獲得了重大的成就.
談到人口學,只用加減乘除是不夠的.我們談到人口增長,常說每年出生率多少,死亡率多少,那麼是否從出生率減去死亡率,就是每年的人口增長率呢?不是的.事實上,人是不斷地出生的,出生的多少又跟原來的基數有關系;死亡也是這樣.這種情況在現代數學中叫做「動態」的,它不能只用簡單的加減乘除來處理,而要用復雜的「微分方程」來描述.研究這樣的問題,離不開方程、數據、函數曲線、計算機等,最後才能說清楚每家只生一個孩子如何,只生兩個孩子又如何等等.
還有水利方面,要考慮海上風暴、水源污染、港口設計等,也是用方程描述這些問題再把數據放進計算機,求出它們的解來,然後與實際觀察的結果對比驗證,進而為實際服務.這里要用到很高深的數學.
談到考試,同學們往往認為這是用來檢查學生的學習質量的.其實考試手段(口試、筆試等等)以及試卷本身也是有質量高低之分的.現代的教育統計學、教育測量學,就是通過效度、難度、區分度、信度等數量指標來檢測考試的質量.只有質量合格的考試才能有效地檢測學生的學習質量.
至於文藝、體育,也無一不用到數學.我們從中央電視台的文藝大獎賽節目中看到,給一位演員計分時,往往先「去掉一個最高分」,再「去掉一個最低分」.然後就剩下的分數計算平均分,作為這位演員的得分.從統計學來說,「最高分」、「最低分」的可信度最低,因此把它們去掉.這一切都包含著數學道理.
我國著名的數學家關肇直先生說:「數學的發明創造有種種,我認為至少有三種:一種是解決了經典的難題,這是一種很了不起的工作;一種是提出新概念、新方法、新理論,其實在歷史上起更大作用的、歷史上著名的正是這種人;還有一種就是把原來的理論用在嶄新的領域,這是從應用的角度有一個很大的發明創造.」我們在這里所說的,正是第三種發明創造.「這里繁花似錦,美不勝收,把數學和其他各門科學發展成綜合科學的前程無限燦爛.」
正如華羅庚先生在1959年5月所說的,近100年來,數學發展突飛猛進,我們可以毫不誇張地用「宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁等各個方面,無處不有數學」來概括數學的廣泛應用.可以預見,科學越進步,應用數學的范圍也就越大.一切科學研究在原則上都可以用數學來解決有關的問題.可以斷言:只有現在還不會應用數學的部門,卻絕對找不到原則上不能應用數學的領域.
關於「0」
0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」
「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。
「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……
愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。

已解決問題收藏 轉載到QQ空間 有關數學文化方面的論文,3000字左右
200[ 標簽:文化 論文,數學,論文 ] 語言性論文,可以是數學的歷史,發展,以及數學與其他領域方面的關系和影響 匿名 回答:3 人氣:11 解決時間:2008-11-17 19:53
滿意答案數學的文化價值 一、數學是哲學思考的重要基礎 數學在科學、文化中的地位,也使得它成為哲學思考的重要基礎。歷史上哲學領域內許多重要論爭,常常牽涉到有關對數學的一些根本問題的認識。我們思考這些問題,有助於正確認識數學,正確理解哲學中有關的爭論。 (一)數學——-根源於實踐 數學的外在表現,或多或少人的智力活動相聯系。因此在數學和實踐的關繫上,歷來有人主張數學是「人的精神的自由創造」,否定數學來源於實踐其實,數學的一切發展都不同程度地歸結為實際的需要。從我國殷代的甲骨文中,就可以看到那時我們的祖先已經會使用十進制計數方法他們為適應農業的需要,將「十干」和「十二支」配成六十甲子,用以記年、月、日,幾千年的歷史說明這種日歷的計算方法是有效的。同樣,由於商業和債務的計算,古代的巴比倫人己經有了乘法表、倒數表,並積累了許多屬於初等代數范疇的資料。在埃及,由於尼羅河泛濫後重新測量土地的需要,積累了大量計算面積的幾何知識。後來隨著社會生產的發展,特別是為適應農業耕種與航海需要而產生的天文測量,逐漸形成了初等數學,包括當今我們在中學里學習到的大部分數學知識。再後來由於蒸汽機等機械的發明而引起的工業革命,需要對運動特別是變速運動作更精細的研究,以及大量力學問題出現,促使微積分在長期的醞釀後應運而生。20世紀以來近代科學技術的飛速發展,使數學進入一個空前繁榮時期。在這個時期數學出現了許多新的分支:計算數學,資訊理論,控制論,分形幾何等等。總之,實踐的需要是數學發展的最根本的推動力。 數學的抽象性往往被人所誤解。有些人認為數學的公理、公設、定理僅僅是數學家頭腦思維的產物。數學家靠一張紙、一支筆工作,和實際沒有什麼聯系。 其實,即使就最早以公理化體系面世的歐的幾里德幾何而言,實際事物的幾何直觀和實踐中人們發展的現象,盡管不合乎數學家公理化體系的各式,卻仍然包含著數學理論的核心。當數學家把建立幾何的公理體系當作自己的目標時,他伯頭腦中也一定聯繫到幾何作圖和直觀現象。一個人,即使是很有天賦的數學家,能在數學的研究中獲得具有科學價值的成果,除了他接受嚴格的數學思維訓練以外,他在數學理論研究的過程中,必定會在問題的提出、方法的選擇、結論的提示等諸多方面自覺或不自覺地受到實踐的指引。可以這么說,脫離了實踐,數學就會成為無源之水,無本之木。 其實,即使就最早以公理化體系面世的歐幾里德幾何而言,實際事物的幾何直觀和實踐中人們發現的現象,盡管不合乎數學家公理化體系的程式,卻仍然包含著數學理論的核心。當數學家把建立幾何的公理體系當作自己的目標時,他的頭腦中也一定聯繫到幾何作圖和直觀現象。一個人,即使是很有天賦的數學家,能在數學的研究中獲得具有科學價值的成果,除了他接受過嚴格的數學思維訓練以外,他在數學理論研究的過程中,必定會在問題的提出、方法的選擇、結論的提示等諸多方面自覺或不自覺地受到實踐的指引。可以這么說,脫離了實踐,數學就會變成無源之水,無本之木。 但是,數學理性思維的特點,使它不會滿足於僅研究現實的數量關系和空間形式,它還努力探索一切可能的數量關系和空間形式。在古希臘時期,數學家就超越了在現實有限尺度精度內度量線段的方法,覺察到了無公度量線段的存在,即無理數的存在。這其實是數學中最困難的概念之一—連續性、無限性的問題。直到兩千年以後,同樣的問題導致極限理論的深入研究,大大地推動了數學的發展。試想今天如果還沒有實數的概念,我們將面臨怎樣的處境。這時人們無法度量正方形對角線的長度,也不會解一元二次方程:至於極限理論與微積分學更不可能建立即使人們可以像牛頓那樣應用微積分,但是在判斷結論的真實性時會感到無所適從。在這種狀況下,科學技術還能走多遠呢?又如在歐幾里德幾何產生時,人們就對其中一個公設的獨立性產生懷疑。到19世紀上半葉,數學家改變這個公設,得到了另一種可能的幾何一一非歐幾里德幾何。這種幾何的創立者表現了極大的勇氣,因為這種幾何得出的結論從「常理」來說是非常「荒唐」的。例如「三角形的面積不會超過某一個正數」。現實世界似乎沒有這種幾何的容身之地。但是過了近一百年,在物理學家愛因斯坦發現的相對論中,非歐幾里德幾何卻是最合適的幾何。再如,20世紀30年代哥德爾得到了數學結論不可判別性的結果,其中的某些概念非常抽象,近幾十年卻在演算法語言的分析中找到了應用。實際上,許多數學在一些領域或一些問題中的應用,一旦實踐推動了數學,數學本身就會不可避免地獲得了一種動力,使之有可能超出直接應用的界限。而數學的這種發展,最終也會回到實踐中去。 總之,我們應該大力提倡研究和當前實際應用有直接聯系的數學課題,特別是現實經濟建設中的數學問題。但是我們也應該在純粹科學和應用科學之間建立有機的聯系,建立抽象的共性和豐富多彩的個性之間的平衡,以此來推動整個科學協調地發展。 (二)數學—充滿了辯證法由於數學嚴密性的特點,很少有人懷疑數學結論的正確性。相反,數學的結論往往成為真理的一種典範。例如人們常常用「像一加一等於二那麼確定」來表示結論不容置疑。在我們的中小學的教學中,數學更是只准模仿、演練、背誦。數學真的是萬古不變的絕對真理嗎? 事實上,數學結論的真理性是相對的即使像1+1=2這樣簡單的公式,也有它不成立的地方。例如在布爾代數中,1+1=0!而布爾代數在電子線路中有廣泛的應用。歐幾里德幾何在我們的日常生活中總是正確的,但在研究天體某些問題或速度很快的粒子運動時非歐幾何卻是適宜的。數學其實是非常多樣化的,它的研究范圍也隨著新問題的出現而不斷擴大。如同一切科學一樣,數學家們如果死守著前輩的思想、方法、結論不放,數學科學就不會進步。把數學的嚴密性和公理化體系看作一種「教條」是錯誤的,更不能像封建時代的文人對待孔夫子說的話:「真理」已經包含在聖人說過的話里,後人只能對其作詮釋。數學發展的歷史可以證明,正是數學家特別是年輕數學家的創新精神,敢於向守舊的思想挑戰,數學的面貌才得以不斷地更新,數學才成長為今天這樣一門蓬勃發展、富有朝氣的學科。 數學的公理化體系從來也不是不容懷疑、不容變化的「絕對真理」歐幾里德的幾何體系是最早出現的數學公理化體系,但從一開始就有人懷疑其中的第五公設不是獨立的,即該公設可以從公理體系的其他部分推出。兩千多年來人們一直在尋找答案,終於在19世紀由此發現了非歐幾何。雖然人們長時期受到歐幾里德幾何的束縛,但是最終人們還是接受了不同的幾何公理體系。如果歷史上某些數學家多一點敢於向舊體系挑戰的革新精神,非歐幾何也許還可能早幾百年出現 數學公理化體系反映了內部邏輯嚴密性的要求。在一個學科領域內,當有關的知識積累到一定程度後,理論就會要求把一堆看來散亂的結果以某種體系的形式表現出來。這就需要對己有的事實再認識、再審視、再思索,創造新概念、新方法,盡可能地使理論能包括最一般、最新發現的規律。這實在是一個艱苦的理論創新過程。數學公理化也一樣,它表示數學理論已經發展到了一個成熟的階段,但並不是認識一勞永逸的終結。現有的認識可能被今後更深刻的認識所代替,現有的公理也可能被今後更一般化、包含更多事實的公理體系所代替。數學就在不斷地更新過程中得到發展。 有種看法以為,應用數學就是把熟誦的數學結論套到實際問題上去,以為中小學的教學就是教給學生這些萬古不變的教條。其實數學的應用極充滿挑戰性,一方面不但需要深切地認識實際問題本身,另一方面要求掌握相關數學知識的真諦,更重要的是要求能創造性地把兩者結合起來。 就數學的內容來說,數學充滿了辯證法。在初等數學發展時期,占統治地位的是形而上學。在該時期的數學家或其他科學家看來,世界由僵硬的、不變的東西組成。與此相適應,那時數學研究的對象是常量,即不變的量。笛卡爾的變數是數學中的轉折點,他把初等數學中完全不同的兩個領域一一幾何和代數結合起來,建立了解析幾何這個框架具備了表現運動和變化的特性,辯證法因此進入了數學。在此後不久產生的微積分拋棄了把初等數學的結論作為永恆真理的觀點,常常做出相反的判斷,提出一些在初等數學的代表人物看來完全不可理解的命題。數學走到了這樣一個領域,在那裡即使很簡單的關系,都採取了完全辯證的形式,迫使數學家們不自覺又不自願地轉變為辯證數學家。在數學研究的對象中,充滿了矛盾的對立面:曲線和直線,無限和有限,微分和積分,偶然和必然,無窮大和無窮小,多項式和無窮級數,正因為如此,馬克思主義經典作家在有關辯證法的論述中經常提到數學。我們學一點數學,一定會對體會辯證法有所幫助。

❺ 初中數學小論文500字

生活中的數學
數學究竟是什麼呢?我們說,數學是研究現實世界空間形式和數量關系的一門科學.它在現代生活和現代生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具,而生活也是缺不了數學的。
現實生活中,我們會看到用正多邊形拼成的各種圖案,例如,平時在家裡、在商店裡、在中心廣場、進入賓館、飯店等等許多地方會看到瓷磚。他們通常都是有不同的形狀和顏色。其實,這裡面就有數學問題。
在用瓷磚鋪成的地面或牆面上,相鄰的地磚或瓷磚平整地貼合在一起,整個地面或牆面沒有一點空隙。這些形狀的地磚或瓷磚為什麼能鋪滿地面而不留一點空隙呢?
例如,三角形。三角形是由三條不在同一條直線上的線段首尾順次連結組成的平面圖形。我們知道,三角形的內角和是180度,外角和是360度。用6個正三角形就可以鋪滿地面。
再看正四邊形,它可以分成2個三角形,內角和是360度,一個內角的度數是90度,外角和是360度。用4個正四邊形就可以鋪滿地面。
正五邊形呢?它可以分成3個三角形,內角和是540度,一個內角的度數是108度,外角和是360度。它不能鋪滿地面。
……
由此,我們得出了。n邊形,可以分成(n-2)個三角形,內角和是(n-2)*180度,一個內角的度數是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那麼就能用它來鋪滿地面,若不能,則不能用其鋪滿地面。
瓷磚,這樣一種平常的東西里都存在了這么有趣的數學奧秘,更何況生活中的其它呢?
至於文藝、體育,也無一不用到數學.我們從中央電視台的文藝大獎賽節目中看到,給一位演員計分時,往往先「去掉一個最高分」,再「去掉一個最低分」.然後就剩下的分數計算平均分,作為這位演員的得分.從統計學來說,「最高分」、「最低分」的可信度最低,因此把它們去掉.這一切都包含著數學道理.
正如華羅庚先生所說的:近100年來,數學發展突飛猛進,我們可以毫不誇張地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁等各個方面,用「無處不有數學」來概括數學的廣泛應用.可以預見,科學越進步,應用數學的范圍也就越大.一切科學研究在原則上都可以用數學來解決有關的問題.
可以斷言:只有現在還不會應用數學的部門,卻絕對找不到原則上不能應用數學的領域

❻ 初中數學教學論文

:初中數學復習實踐談 初中數學總復習是完成初中三年數學教學任務之後的一個系統、完善、深化所學內容的關鍵環節。重視並認真完成這個階段的教學任務,不僅有利於升學學生鞏固、消化、歸納數學基礎知識,提高分析、解決問題的能力,而且有利於就業學生的實際運用。同時是對學習基礎較差學生達到查缺補漏,掌握教材內容的再學習。因此有計劃、有步驟地安排實施總復習教學是初中數學教師的基本功之一。 一、緊扣大綱,精心編制復習計劃 初中數學內容多而雜,其基礎知識和基本技能又分散覆蓋在三年的教科書中,學生往往學了新的,忘了舊的。因此,必須依據大綱規定的內容和系統化的知識要點,精心編制復習計劃。計劃的編寫必須切合學生實際。可採用基礎知識習題化的方法,根據平時教學中掌握的學生應用知識的實際,編制一份滲透主要知識點的測試題,讓學生在規定時間內獨立完成。然後按測試中出現的學生難以理解、遺忘率較高且易混易錯的內容,確定計劃的重點。復習計劃制定後,要做好復習課例題的選擇、練習題配套作業篩眩教師制定的復習計劃要交給學生,並要求學生再按自己的學習實際制定具體復習規劃,確定自己的奮進目標。 二、追本求源,系統掌握基礎知識總 復習開始的第一階段,首先必須強調學生系統掌握課本上的基礎知識和基本技能,過好課本關。對學生提出明確的要求:①對基本概念、法則、公式、定理不僅要正確敘述,而且要靈活應用;②對課本後練習題必須逐題過關;③每章後的復習題帶有綜合性,要求多數學生必須獨立完成,少數困難學生可在老師的指導下完成。 三、系統整理,提高復習效率 總復習的第二階段,要特別體現教師的主導作用。對初中數學知識加以系統整理,依據基礎知識的相互聯系及相互轉化關系,梳理歸類,分塊整理,重新組織,變為系統的條理化的知識點。例如,初三代數可分為函數的定義、正反比例函數、一次函數;一元二次方程、二次函數、二次不等式;統計初步三大部分。幾何分為4塊13線:第一塊為以解直角三角形為主體的1條線。第二塊相似形分為3條線:(1)成比例線段;(2)相似三角形的判定與性質。(3)相似多邊形的判定與性質;第三塊圓,包含7條線:(4)圓的性質;(5)直線與圓;(6)圓與圓;(7)角與圓;(8)三角形與圓;(9)四邊形與圓;(10)多邊形與圓。第四塊是作圖題,有2條線:(11)作圓及作圓的內外公切線等;(12)點的軌跡。這種歸納總結對程度差別不大、素質較好的班級可在教師的指導下師生共同去作,即由學生「畫龍」,教師「點睛」。中等及其以下班級由教師歸類,對比講解,分塊練習與綜合練習交叉進行,使學生真正掌握初中數學教材內容。 四、集中練習,爭取最佳效果 梳理分塊,把握教材內容之後,即開始第三階段的綜合復習。這個階段,除了重視課本中的重點章節之外,主要以反復練習為主,充分發揮學生的主體作用。通常以章節綜合習題和系統知識為骨乾的綜合練習題為主,適當加大模擬題的份量。對教師來說,這時主要任務是精選習題,精心批改學生完成的練習題,及時講評,從中查漏補缺,鞏固復習成效,達到自我完善的目的。精選綜合練習題要注意兩個問題:第一,選擇的習題要有目的性、典型性和規律性。如,函數的取值范圍可選擇如下一組例題: (2)y=13-2x (3)y=3x+2x-1 (4)y=1x+1-1 (5)y=x+2x-2第二,習題要有啟發性、靈活性和綜合性。如,角平分線定理的證明及應用,圓的證明題中圓周角、圓心角、弦心角、圓冪定理、射影定理等的應用都是綜合性強且是重點應掌握的題目,都要抓住不放,抓出成效。 『PSSP學習問題個性化解決方案是上海復旦科技園啟導教育研究中心集合專家資源,結合國內外先進的教育成果,依託PSSP和生涯品牌 ,為幫助中小學生提高學習成績所提供的一種教育服務,開創了教育行業教育顧問的先河,這可能是目前最好的教育項目。我們還特別推出「教師教研和親友創富計劃」,為教師提供了一個科研和創富的平台,在網站上增設了教師資源專欄,大家可以共享彼此的課件、教案、教學論文、教育案例、教學案例、試題、學科總結等教學資源。讓我們攜手,共同開創中國的學習顧問業。』

❼ 江蘇省 初中數學優秀教學論文評比一等獎有什麼用

為了總結、交流全省廣大中小學和幼兒園教師在教學實踐中取得的寶貴經驗,鼓勵教師和教研員積極開展教育教學特別是課堂教學的研究,促進提高教育教學理論水平和教學業務水平,進一步推動我省基礎教育教學改革的深入實施,我室決定組織2014年江蘇省優秀教學論文評比活動。現將有關事項通知如下:
一、參評學科
2014年江蘇省優秀教學論文評比的學科有:幼兒園,小學品德、數學、體育與健康、信息技術、勞動與技術,初中數學、歷史、體育與健康、信息技術、勞動與技術,高中數學、生物、歷史、體育與健康、信息技術、通用技術。
二、論文要求
1.教學論文應突出科學性、前瞻性、實踐性,立意新穎,觀點明確,論證充分,給人啟迪,對學科教學有較深刻的見解;能體現教育教學新理念、新探索、新成果;關注教學改革、評價改革的熱點,關注學科教育教學的發展,對優化課堂教學提高教學效益有自己的思考與發現等。
2.參評論文題目自擬,內容自定,應注重理論思考和實踐研究,屬於工作總結或解題指導等文章不予評比。
3.引用他人原始資料的信息、觀點、句子等應做標注,文責自負,堅決反對抄襲行為,一旦發現將取消參評資格,並通知作者所在單位及所在市、縣(市、區)教研室。
4.論文字數在3000 - 5000字為宜。
三、報送要求
l.各市在廣泛發動的基礎上,經評審後推薦幼兒園和小學、初中參評學科各20篇,高中參評學科各10篇(包括紙質稿一式1份和電子稿1份),參加省優秀教學論文評比。
2.參評論文的作者,必須填寫《2014年江蘇省優秀教學論文評比申報表》(見附件2)並置於論文前裝訂,隨參評論文一起上報。每位作者只能報送1篇論文。
3.論文的格式為:標題用宋體三號加粗,正文小標題用宋體四號加粗,正文用宋體小四號字不加粗。「摘要」「關鍵詞」「參考文獻」用【】黑體五號加粗,摘要、關鍵詞、參考文獻內容用宋體五號不加粗。論文標明頁碼「第1頁,第2頁…」,用A4紙列印。
4.送評論文,各市請以學科為單位填寫《2014年江蘇省優秀教學論文評比各市匯總目錄》(見附件1),於2014年10月15日前,將本市的參評論文和附件1(文本和電子稿各1份)報至我室各有關學科聯系人。

❽ 初中數學論文4000字

數學書也需要讀。讀是一種學習方式、學習方法、學習過程,是新理念中與文本的對話過程,是認知的基礎,是創造的根本。讀可以感受數學,有益於吸納知識,交流成長,倡導自主的一種有效學習。

關鍵詞:讀文本 新理念 對話過程 創造根本 感受感知數學 感悟理解 溝通交流 有益成長 自主學習 有效學習。

今天在新教學理念的實施過程中,學習方法多種多樣,但都是殊途同歸,都是以獲取知識為目的。正所謂「教學有法、學無定法、貴在得法」。其實「讀」本身就是一種很好地學習方法。談到讀書,好像是只重視了文科類知識的讀、寫、念、看、想………,特別是語文教材中的每一課,學生會左一遍右一遍地讀呀讀。當然,這也是語文學科的突出特點所至。可是,數學課本中的內容,又有誰能達到一遍又一遍地讀呢?所以筆者認為「數學書也需要讀」。「讀書」不只是文科學習的專利,應該是任何學科都需要的過程。

一、讀書不僅是一種學習方法,而且也是一種學習過程。

常言道「讀書百遍,其意自見」。任何書本上的知識經驗都需要讀。當學生做每一道應用題時,我們常常是強調了先讀題,讀題就是意味著審題,只有先審清題意後,才能夠去進一步分析解答,所以說:讀,不僅僅是一種學習方法,而且也是一種學習過程,也是一種分析、認知、理解的過程。

二、讀為創造的根本,是感悟理解的基礎。

新教學理念中提出:「讀書是一種與文本的對話過程。」這種對話過程也是一種互動的活動過程。通過這種對話互動,來收集信息,感知信息,接納信息,整理信息。對數學來講就是接受數感,感知數學,感受生活中的數學,體會和感悟、理解數學知識。如讀出「自然數」也是在認識自然數。讀出某種法則、意義,也就在理解和認識某種法則意義。

《新課標》還指出:課程本身是一種活動,課程是人的各種自主性活動的總和。學習者通過與活動對象的相互作用而實現自身方面的發展。其實,讀書的過程就是人的自主性的發揮,人的自主性的活動總和。學習者通過讀書這一活動過程,才能使知識內化,理解;才能進一步去體驗、感悟、反思和探究學習。通過讀才能與書與編者與生活中的數學溝通;才能與內容交流;才能與同學研討;才能知因果,斷正誤,辨關系;才能遷移類推;才能有變式理解。再通過實踐體驗,才能有再造有創意,或異想天開的假設、推論等可能。所以說讀為創造之根本,讀為理解之基礎。

三、讀書可以感受生活,感受身邊數學的存在。

學生學習什麼?新理念中指出:「學生活的知識,學生存在的本領,學生命的意義」。開放的數學課堂預設引導學生讓他們去發現、去觀察、去思考、去探究,那就必須先讀。書要自己去讀,果要自己去摘,圓要自己去畫,理要先自己去悟,心要自己用。以讀促講,以讀促思,以讀帶學,以讀悟情。讓他們自己感受到數學的存在,感受到數學的意義、價值,感受到數學生活和生活中的數學。這樣才能體現「把時間還給孩子」;把「能力還給孩子」;「將一切落實到學生的學」。

為讓他們讀出快樂,對中差生哪怕是讀一句話,讀一個算式,讀一點要求,或讀一道題也好,表示教師對他們的尊重,賞識或信任,貼近感情。

不僅如此,新理念在學法指導中著重關注有效學習,我認為數學書也需要讀。這也不乏是有效學習中的一部分。

四、讀書能知是什麼、為什麼、怎麼樣,使自己變聰明,體現自學培養習慣。

新教學理念要「教師轉變教的行為」。即教師不要太「聰明」。不要直接教他們「列式子」。要讓他們自己去讀;自己去想;自己去加、自己去減、自己去數、自己去拼、畫、改……。早在1500多年前就有「35隻頭和94隻腳」的問題答案,況且今天抓素質教育;就必須在「自主」上作文章,所以必須讓他們自己去讀,並且多讀、讀懂、讀明白。

讀書不僅僅是讀文字,讀題,讀概念,意義,法則,公式,解釋;更重要地是讀圖,讀畫面,讀關系,讀空白……。既要求讀原因,又要求讀方法、過程和結果,還要讀直觀,讀抽象,讀整體和部分,讀量與率,讀出邏輯與思維……,讀出成功感受、體驗、快樂,讀出收獲,價值意義,讀出興趣與拓展。

再是要及時將讀到的知識、能力與方法過程加以整理強化,並及時轉化為經驗,轉化為慾望、動力與興趣。「文本」中大部分是前人總結的經驗,不通過讀怎麼能知道,怎麼能感受理解?不只是語文學科課文要讀,故事書要讀,其實任何學科的書都需要讀。「讀才能知內容,讀才能理解內涵,讀才能明白科學的價值應用,讀才能使自己更充實」。「書中自有黃金屋」、「書中自有顏如玉」。當你時進感覺到快樂時,就越發想讀,願意讀,習慣讀。所以讀可以磨煉意志,也可以形成習慣。

如人教版《第十一冊》P122頁「納稅」一節課中,不讀就不知道什麼是納稅,納稅的意義及特點作用、存在、內涵要求。不讀就不會知道數學中的小數、分數、百分數………等好多知識及聯系運用。

五、讀書有益於自己和他人溝通交流,並在交流中發展成長。

讀數學書,仍然也是讀者。「有一千個讀者,就有一千個哈姆雷特。」正是如此,學生通過讀書,對語感、數感、形感的結合,揣摩,推敲,咀嚼,切已體察,展開想像,結合畫面,結合數與形的關系,可能會創造出新情境和意境。不同人的讀,可能有不同的理解和認識。可能會突發奇想,可能會引發新的創造。所以讀書應是最有益的,不僅使自己成長也可能在交流中促進或帶動他人的共同成長。

讀書作為學生與文本教材之間的一種精神上的相遇,通過兩者之間的對話式的相互溝通,達到學生自主和自由發展的目的。讀後若能有準備地講說、探討、交流,如我是這樣想的……, 我這樣認為……,我的理解是……, 我的看法……,我的感受……,所以結果從這方面看讀,不乏是積極倡導自主學習方式的一種形式,更是一種有效的途徑,何不充分利用。

總之,書是要讀的,數學書更是要讀的。數學是科學的一個分支,也是其它學科的基礎。數學源於生活,用於生活,又在身邊。語文能一遍又一遍地讀,甚至到背誦。而數學的讀的確也應該引起大家的重視。讀數學雖然不是什麼「精神大餐」,但一旦產生了興趣,那怕是膚淺的發現和猜想,也可能使人生充滿挑戰,激起希望,也可能會產生創意或奇跡,所以筆者認為數學更需要讀。

熱點內容
女和女親吻教學視頻 發布:2025-09-22 01:20:32 瀏覽:236
開展微格教學 發布:2025-09-22 00:07:23 瀏覽:867
化學銷售 發布:2025-09-21 23:38:45 瀏覽:271
英語教學法題 發布:2025-09-21 22:54:23 瀏覽:701
龐麗老師 發布:2025-09-21 20:32:58 瀏覽:966
一年級數學優質課 發布:2025-09-21 20:23:38 瀏覽:247
韓國漂亮老師電影 發布:2025-09-21 19:21:10 瀏覽:243
教師節給班主任一段話 發布:2025-09-21 18:07:10 瀏覽:820
長棍教學視頻 發布:2025-09-21 17:50:53 瀏覽:74
高考2017數學全國2卷 發布:2025-09-21 17:04:51 瀏覽:450