當前位置:首頁 » 語數英語 » 高中數學解題方法與技巧

高中數學解題方法與技巧

發布時間: 2021-07-21 11:31:21

① 怎樣解題高中數學解題方法與技巧

其實高中數學還是很好學的,記住,在高中注意學習的是做題的方法,運用方法去做題才會達到事半功倍的效果,至於學習方法嘛,我給你提幾條建議,按照這個思路去試試,只要你能堅持,相信會有效果的。
第一,做好預習,有的同學說預習不好,聽課就沒什麼興趣了,或者看也看不明白,怎麼學啊,其實預習就需要10-15分鍾就可以,書上說的很簡單,然後試著做做課後題,如果有課後題不會,還有前面的知識沒有看懂的,那第二天上課的時候就要認真聽了,尤其是你沒看明白的地方。然後,第二天放學一定要認真完成當天的作業,記得還要留時間進行預習,這樣循環下來,應該有所收獲。
第二,整理一個關於錯題的本子,也叫錯題本,把你平時做的數學錯題都整理到這個本子上,記得標注卷子或者是哪本資料(頁碼)都要記清,因為你在整理的時候可能會出錯,標注頁碼有助於查找原題,說了這么多就是想告訴你好好整理做錯的題,究其原因,把有關這一類的問題都好好整理完之後,下次再遇到類似的問題就簡單多了。
第三,學會總結類型題,這點是第二條的升華,因為你在整理錯題的時候就會發現類似的題有好多,所以啊,把相似或者相近的題總結道一起,這樣會對你的思維和解題技巧有著更重要的影響。
第四,做題量(即多做題),如今的數學題種類每年更新的不是很多,基本上就那麼多了,如果你做題的覆蓋面越來越大,那麼數學的分數想不提高都困難,呵呵,所以有人會說,數學是拿題陪出來的,在做題的過程當中去尋找簡單的方法,那是一件很有意思的事。
第五,總結做題方法,題會越做越簡單,很多題都是一樣,有很多方法去做,但是你要用最簡潔的方法去做,那你就是優秀的,因為現在的高考就是這樣,在規定的時間內取得最高的分數,這才是王道,所以啊,平時聽講的時候一定要聽老師講的方法啊,呵呵,這樣才會有進一步的提升,多和同學去交流,他們也有很多很多技巧,慢慢把這些技巧變成適合你自己的技巧,你的數學也會有些進步的
最後,希望你在高中的學習生活一帆風順,天天開心,加油!

② 求高中數學解題套路和技巧

怎樣學好高中數學?首先要摘要答題技巧

現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?

高中數學試卷

怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.

③ 高中數學經典解題技巧和方法

高中數學是很多同學高考道路上的攔路虎,很多同學一致回答:大題沒思路。高考數學6道大題,每題12分,一分都不能丟啊!

所以,今天學霸菌給大家整理了數學答題模板,大家要好好利用哈~

選擇/填空題

1、易錯點歸納:

九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。

針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。

2、答題方法:

選擇題十大速解方法:

(十大解題技巧 你會了沒)

排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;

填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。

解答題

專題一、三角變換與三角函數的性質問題

1、解題路線圖

①不同角化同角

②降冪擴角

③化f(x)=Asin(ωx+φ)+h

④結合性質求解。

2、構建答題模板

①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為「一角、一次、一函數」的形式。

②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。

③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。

④反思:反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。

專題二、解三角形問題

1、解題路線圖

(1) ①化簡變形;②用餘弦定理轉化為邊的關系;③變形證明。

(2) ①用餘弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。

2、構建答題模板

①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然後確定轉化的方向。

②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。

③求結果。

④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然後進行恆等變形。

專題三、數列的通項、求和問題

1、解題路線圖

①先求某一項,或者找到數列的關系式。

②求通項公式。

③求數列和通式。

2、構建答題模板

①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。

②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。

③定方法:根據數列表達式的結構特徵確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。

④寫步驟:規范寫出求和步驟。

⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。

專題四、利用空間向量求角問題

1、解題路線圖

①建立坐標系,並用坐標來表示向量。

②空間向量的坐標運算。

③用向量工具求空間的角和距離。

2、構建答題模板

①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。

②寫坐標:建立空間直角坐標系,寫出特徵點坐標。

③求向量:求直線的方向向量或平面的法向量。

④求夾角:計算向量的夾角。

⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。

專題五、圓錐曲線中的范圍問題

1、解題路線圖

①設方程。

②解系數。

③得結論。

2、構建答題模板

①提關系:從題設條件中提取不等關系式。

②找函數:用一個變數表示目標變數,代入不等關系式。

③得范圍:通過求解含目標變數的不等式,得所求參數的范圍。

④再回顧:注意目標變數的范圍所受題中其他因素的制約。

專題六、解析幾何中的探索性問題

1、解題路線圖

①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)

②將上面的假設代入已知條件求解。

③得出結論。

2、構建答題模板

①先假定:假設結論成立。

②再推理:以假設結論成立為條件,進行推理求解。

③下結論:若推出合理結果,經驗證成立則肯。 定假設;若推出矛盾則否定假設。

④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。

專題七、離散型隨機變數的均值與方差

1、解題路線圖

(1)①標記事件;②對事件分解;③計算概率。

(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。

2、構建答題模板

①定元:根據已知條件確定離散型隨機變數的取值。

②定性:明確每個隨機變數取值所對應的事件。

③定型:確定事件的概率模型和計算公式。

④計算:計算隨機變數取每一個值的概率。

⑤列表:列出分布列。

⑥求解:根據均值、方差公式求解其值。

專題八、函數的單調性、極值、最值問題

1、解題路線圖

(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。

(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。

2、構建答題模板

①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)

②解方程:解f′(x)=0,得方程的根。

③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,並列出表格。

④得結論:從表格觀察f(x)的單調性、極值、最值等。

⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。

④ 高中數學解題技巧有哪些

首先是淡定。。。很多題不難,但是自己卻想復雜了;當你遇到有的題位置比較靠前(相對簡單)但不會做時,先把這道題空過去,寫下面的,過一會再反過來答這道題。要學會放棄,最後三道大題最後一問都是比較有難度的,所以在自己不會的時候,不要緊張,你不會別人也不會。尤其是最後一道大題最後一問,老師跟我們說,考上清華北大的都沒幾個答上來的,果斷放棄,還能留出檢查的時間。大題中不會的,一定先把公式寫出來,舉例:導數的題,完全沒有思路,那就把所有有關導數的公式都寫出來,能求出來得的東西全寫出來,老師會給你找分。
高考中公式很重要,所以背熟公式比做題重要。不要在復習時盲目地多做題,先掌握個公式及其變形,再做題,你會覺得輕松而且事半功倍!!
祝你成功!!採納吧。。

⑤ 高中數學解題技巧與方法

對於兩個實力相當的同學,在考試中某些解題策略技巧使用的好壞,往往會導致兩人最後的成績有很大的差距。
一、選擇題解題策略
數學選擇題具有概栝性強,知識覆蓋面廣,小巧靈活,有一定的綜合性和深度等特點,考生能否迅速、准確、全面、簡捷地解好選擇題,成為高考成功的關鍵。
解選擇題的基本要求是熟練准確,靈活快速,方法得當,出奇制勝。解題一般有三種思路:一是從題干出發考慮,探求結果;二是題乾和選擇支聯合考慮;三是從選擇支出發探求滿足題乾的條件。 選擇題屬易題(個別為中檔題),解題基本原則是:「小題不可大做」。
1、直接法:涉及數學定理、定義、法則、公式的問題,常從題設條件出發,通過運算或推理,直接求得結論;再與選擇支對照。
例:已知函數y=f(x)存在反函數y=g(x),若f(3)= -1,則函數y=g(x-1)的圖像在下列各點中必經過( )
A.(-2,3) B.(0,3) C.(2,-1) D.(4,-1)
解:由題意函數y=f(x)圖像過點(3,-1),它的反函數y=g(x)的圖像經過點(-1,3),由此可得函數y=g(x-1)的圖像經過點(0,3),故選B。
2、篩選法(排除法、淘汰法):充分運用選擇題中單選的特徵,通過分析、推理、計算、判斷,逐一排除錯誤支,得到正確支的解法。
例.若x為三角形中的最小內角,則函數y=sinx+cosx值域是( )
A.(1,]B.(0,] C.[,] D.(,]
解: 因x為三角形中的最小內角,故x∈(0, ),由此可得y=sinx+cosx>1,排除錯誤支B,C,D,應選A。
3、圖象法(數形結合):通過數形結合的思維過程,借於圖形直觀,迅速做出選擇的方法。
例.已知α、β都是第二象限角,且cosα>cosβ,則( )
A.α<β B.sinα>sinβ C.tanα>tanβ D.cotα<cotβ
解:在第二象限內通過餘弦函數線cosα>cosβ找出α、β的終邊位置關系,再作出判斷,得B。

⑥ 高中數學解題思路,方法總結

本來想具體說點兒可是現在高中的題也忘得差不多了,只記得當時就是做題,我做的時5年模擬3高考,這個東西沒啥技巧做多了就行了,高考真的只考基礎,

⑦ 怎樣解題 高中數學解題方法與技巧

一.解題時需要注意的問題
1.精選題目,避免題海戰術 只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
2. 認真分析題目 解答任何一個數學題目之前,都要先進行分析。相對於比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。
3. 做好題目總結 解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足,以便改進和提高。因此,解題後的總結至關重要,這正是我們學習的大好機會。對於一道完成的題目,有以下幾個方面需要總結:
1)在知識方面。題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
2)在方法方面。如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
3)能否歸納出題目的類型,進而掌握這類題目的解題方法。
二.數學解題的一些技巧
1.思路思想提煉法 催生解題靈感。「沒有解題思想,就沒有解題靈感」。但「解題思想」對很多學生來說是既熟悉又陌生的。熟悉是因為教師每天掛在嘴邊,陌生就是說不請它究竟是什麼。建議同學們在老師的指導下,多做典型的數學題目,則可以快速掌握。
2. 典型題型精熟法 抓准重點考點管理學的「二八法則」說:20%的重要工作產生80%的效果,而80%的瑣碎工作只產生20%的效果。數學學習上也有同樣現象:20%的題目(重點、考點集中的題目)對於考試成績起到了80%的貢獻。因此,提高數學成績,必須優先抓住那20%的題目。針對許多學生「題目解答多,研究得不透」的現象,應當通過科學用腦,達到每個章節的典型題型都胸有成竹時,解題時就會得心應手。
3. 逐步深入糾錯法 鞏固薄弱環節管理學上的「木桶理論」說:一隻水桶盛水多少由最短板決定,而不是由最長板決定。學數學也是這樣,數學考試成績往往會因為某些薄弱環節大受影響。因此,鞏固某個薄弱環節,比做對一百道題更重要。

熱點內容
校園群芳記第二部718節 發布:2025-09-06 03:13:28 瀏覽:193
物理實驗室安卓版 發布:2025-09-06 02:53:07 瀏覽:529
課程與教學概論 發布:2025-09-06 01:18:43 瀏覽:437
老師用教鞭 發布:2025-09-06 01:01:58 瀏覽:219
英語折 發布:2025-09-06 00:22:22 瀏覽:383
三年級上冊語文第七單元測試卷 發布:2025-09-05 23:42:37 瀏覽:800
班主任感人故事 發布:2025-09-05 23:40:38 瀏覽:531
幼兒園教師師德感想 發布:2025-09-05 23:21:19 瀏覽:762
學校師德師風建設匯報材料 發布:2025-09-05 23:10:33 瀏覽:117
煙圈教學 發布:2025-09-05 18:57:49 瀏覽:478