數學符號q
Ⅰ 數學符號R、Q、Z、N分別代表什麼(具體點、那個包括0那個不包括。。。。。)
R-實數集 包括0
Q-有理數集 包括0
Z-整數集 包括0
N-- 自然數集 包括0
Ⅱ 數學符號QC是什麼。我只知道Q是有理數集。幫忙說下
Q是有理數集,右上角c表示的是補集,所以Qc表示的是無理數集。
有理數集,即由所有有理數所構成的集合,用黑體字母Q表示。有理數集是實數集的子集。有理數集是一個無窮集,不存在最大值或最小值。
補集一般指絕對補集,即一般地,設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做子集A在S中的絕對補集。補集用C表示。
(2)數學符號q擴展閱讀:
數集的表示:
1、N:非負整數集合或自然數集合{0,1,2,3,…}。
2、Z:整數集合{…,-1,0,1,…}。
3、R:實數集合(包括有理數和無理數)。
4、R+:正實數集合。
5、R-:負實數集合。
6、∅ :空集(不含有任何元素的集合)。
7、N*或N+:正整數集合{1,2,3,…}。
8、Q+:正有理數集合。
9、Q-:負有理數集合。
Ⅲ 數學符號「¬」、「∧」、「∨」是什麼意思
是否定。合取。析取。
「∨」是或的意思,相當於集合中的並集,命題P∨Q的真假也與P,Q的真假有關,當P,Q全是假命題時,命題P∨Q為假命題,其他都是真命題。
「∧」是且的意思,相當於集合中的交集,命題P∧Q的真假與P,Q的真假有關,當P,Q全是真命題時,命題P∧Q為真命題,其他都是假命題。
(3)數學符號q擴展閱讀:
數學符號「¬」、「∧」、「∨」屬於邏輯運算。
邏輯運算包括聯合、相交、相減。在圖形處理操作中引用了這種邏輯運算方法以使簡單的基本圖形組合產生新的形體,並由二維邏輯運算發展到三維圖形的邏輯運算。
由於布爾在符號邏輯運算中的特殊貢獻,很多計算機語言中將邏輯運算稱為布爾運算,將其結果稱為布爾值。
Ⅳ 一個像9卻不是9,讀做Q的數學符號怎麼打出來
鍵盤的字母Q:q,q,q,q,
Ⅳ 數學符號M,Z,Q,R指的都是什麼數
數學符號中沒有M,有N,N代表自然數集;Z代表整數集;Q代表有理數集;R代表實數集;C代表復數集。
非負整數集是一種特定的集合,指全體自然數的集合,常用符號N表示。非負整數包括正整數和零。非負整數集是一個可列集。
由全體整數組成的集合叫整數集。它包括全體正整數、全體負整數和零。數學中整數集通常用Z來表示。
有理數集,即由所有有理數所構成的集合,用黑體字母Q表示。有理數集是實數集的子集。
實數集通俗地認為,通常包含所有有理數和無理數的集合就是實數集,通常用大寫字母R表示。
集合C={a+bi | a,b∈R}中的數,即形如a+bi(a,b∈R)的數叫做復數。其中i叫做虛數單位,全體復數所成的集合C叫做復數集。
(5)數學符號q擴展閱讀:
集合特性:
1、確定性
給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。
2、互異性
一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次[6]。
3、無序性
一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。
Ⅵ 數學中的Z,Q,R分別代表什麼
Z表示集合中的整數集
Q表示有理數集
R表示實數集
N表示集合中的自然數集
N+表示正整數集
拓展資料:
符號法
有些集合可以用一些特殊符號表示,比如:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Z:整數集合{…,-1,0,1,…}
Q:有理數集合
Q+:正有理數集合
Q-:負有理數集合
R:實數集合(包括有理數和無理數)
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
Ⅶ 在數學中,N、Z、Q、R 分別代表什麼呢
N全體非負整數(或自然數)組成的集合;R是實數集;是整數集;Q是有理數集;Z*是正整數集;N*是正整數集。
集合及運算的概念
集合:一般的,一定范圍內某些確定的,不同的對象的全體構成一個集合。
子集:對於兩個集合A和B,如果集合A中的任意一個元素都是集合B中的元素,我們就說這兩個集合有包含關系,稱集合A是集合B的子集,記作A⊆B讀作A包含於B。
空集:不含任何元素的集合叫做空集。記為Φ。
集合的三要素:確定性、互異性、無序性。
集合的表示方法:列舉法、描述法、視圖法、區間法。
集合的分類:(按集合中元素個數多少分為:)有限集、無限集、空集。
(7)數學符號q擴展閱讀:
集合的運算性質
1、A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ。
2、A∪B=BUA; A⊆A∪B; B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A 。
3、Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律)。
4、A⊇B,B⊇A,則A=B,A⊇B,B⊇C,則A⊇C。
常用結論
1、A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B。
2、CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律。
Ⅷ 數學中的Q表示什麼數
有理數
整數用Z
自然數用N
實數用R
正整數用N+ 或N*
負整數用N-
有理數用Q
0有多種定義,這里只舉最為常見的幾種。(樓上列舉了許多是0的性質,但一般不作為定義)
一、自然數0的定義及其擴充。
1、根據皮亞諾(Peano)自然數公理體系,0就是自然數中首先出現的數。皮亞諾公理1就是:0屬於自然數集。
2、自然數集的定義也可以以1為首先出現的自然數,那麼公理1成為:1屬於自然數集。這時0並不屬於自然數集。相應地,0是作為自然數的擴充出現的。可以定義「擴大了的自然數集」,即定義0是任何兩個相等自然數的差(當然先已經定義了減法),也可以用後面代數學中0的一般定義,將0並入這個擴大了的自然數集中。
3、整數、有理數、實數、復數中的0,都來源於自然數集中的0。在數集的擴張理論中,較小的數集都是以較大數集的序對或序列的一個等價類的形式嵌入較大數集的。比如把任意兩個相同自然數的序對的等價類定義為整數(涵義就是這兩個自然數的差),其中兩個相同的自然數構成的序對的等價類就是0。
4、在皮亞諾公理中,只是抽象地定義了自然數。也可以用構造的方法構成集合論中的自然數。這樣,自然數0被等同於空集,而1就是{空集},2就是{空集,{空集}},等等。
二、一般代數理論中的0。
在一般代數結構中,如果定義了加法運算(一般加法是可交換的),那麼則定義0就是滿足集中任何元素與之相加都仍得該元素性質的元素(也就是x+0=x這一性質)。如任何一個域中都有0元素,實數域中的0也可以這樣定義。
如果一個代數結構沒有定義加法,只定義了乘法,有時也可以說滿足集中任何元素與之相乘都仍得0性質的元素(也就是0*x=0或x*0=0)。由於這里乘法沒有交換律,所以有「左0元」和「右0元」之分。如數域K上N階方陣關於乘法構成一個群,就可以說它有左、右0元。
順變提一下,布爾(Boolean)代數中0是另一種符號,遵循的又是邏輯運算的法則了。
附:皮亞諾自然數公理(也就是自然數的公理化定義)
PA1:零是個自然數.
PA2:每個自然數都有一個後繼(也是個自然數).
PA3:零不是任何自然數的後繼.
PA4:不同的自然數有不同的後繼.
PA5:(歸納公理)設由自然數組成的某個集含有零,且每當該集含有某個自然數時便也同時含有這個數的後繼,那麼該集定含有全部自然數.
參考資料:汪芳庭,數學基礎.潘承洞,潘承彪,初等數論.藍以中,高等代數簡明教程,抽象代數復明教程.范德瓦爾登,代數學
Ⅸ 高中數學符號 R Q N
高中用到的:
N-- 自然數集
N*或N+- --正整數集
Q--有理數集
Z--整數集
R--實數集
C--復數集
Ⅹ 數學符號q右上角帶有一個星是什麼意思
如果q是復數,則q*表示q的共軛;如果q是實數,則表示q本身。