小學數學s
1、獲得適應未來社會生活和進一步發展所必需的重要數學知識(包括數學事實、數學活動經驗)以及基本的數學思想方法和必要的應用技能;
2、初步學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活中和其他學科學習中的問題,增強應用數學的意識;
3、體會數學與自然及人類社會的密切聯系,了解數學的價值,增進對數學的理解和學好數學的信心
4、具有初步的創新精神和實踐能力,在情感態度和一般能力方面都能得到充分發展。
(1)小學數學s擴展閱讀:
義務教育階段的數學學習目標:
1、獲得適應社會生活和進一步發展所必需的數學的基礎知識、基本技能、基本思想、基本活動經驗。
2、體會數學知識之間、數學與其他學科之間、數學與生活之間的聯系,運用數學的思維方式進行思考,增強發現和提出問題的能力、分析和解決問題的能力。
3、了解數學的價值,提高學習數學的興趣,增強學好數學的信心,養成良好的學習習慣,具有初步的創新意識和實事求是的科學態度。
⑵ 小學數學知識點總結(全部)
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
⑶ 如何教好小學數學
良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。
現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。
⑷ 小學數學知識大全
第一單元 數與代數
(一)數的認識
整數【正數、0、負數】
1、一個物體也沒有,用0表示。0和1、2、3……都是自然數。自然數是整數。
2、最小的一位數是1,最小的自然數是0。
3、零上4攝氏度記作+4℃;零下4攝氏度記作-4℃。「+4」讀作正四。「-4」讀作負四。+4也可以寫成4。
4、像+4、19、+8844這樣的數都是正數。像-4、-11、-7、-155這樣的數都是負數。
5、0既不是正數,也不是負數。正數都大於0,負數都小於0。
6、通常情況下,比海平面高用正數表示,比海平面低用負數表示。
通常情況下,盈利用正數表示,虧損用負數表示。
通常情況下,上車人數用正數表示,下車人數用負數表示。
通常情況下,收入用正數表示,支出用負數表示。
通常情況下,上升用正數表示,下降用負數表示。
小數【有限小數、無限小數】
1、分母是10、100、1000……的分數都可以用小數表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
2、整數和小數都是按照十進制計數法寫出的數,個、十、百……以及十分之一、百分之一……都是計數單位。每相鄰兩個計數單位間的進率都是10。
3、每個計數單位所佔的位置,叫做數位。數位是按照一定的順序排列的。
4、小數點位置移動引起小數大小變化的規律
一個小數乘10、100、1000……只要把這個小數的小數點向右移動一位、兩位、三位……
一個小數除以10、100、1000……只要把這個小數的小數點向左移動一位、兩位、三位……
5、小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
根據小數的性質,通常可以去掉小數末尾的「0」,把小數化簡。
6、比較小數大小的一般方法:先比較整數部分的數,再依次比較小數部分十分位上的數,百分位上的數,千分位上的數,從左往右,如果哪個數位上的數大,這個小數就大。
7、把一個數改寫成用「萬」或「億」作單位的數,只要在萬位或億位右邊點上小數點,再在數的後面添寫「萬」字或「億」字。
8、求小數近似數的一般方法:
(1)先要弄清保留幾位小數;
(2)根據需要確定看哪一位上的數;
(3)用「四捨五入」的方法求得結果。
9、整數和小數的數位順序表:
整 數 部 分 小數點 小 數 部 分
… 億 級 萬 級 個 級
數位 … 千億位 百億位 十億位 億
位 千萬位 百萬位 十萬位 萬
位 千
位 百
位 十
位 個
位 • 十分位 百分位 千分位 萬分位 …
計數單位 … 千億 百億 十億 億 千萬 百萬 十萬 萬 千 百 十 個(一) 十分之一 百分之一 千分之一 萬分之一 …
分數【真分數、假分數】
1、把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數,是這個分數的分數單位。
2、兩個數相除,它們的商可以用分數表示。即:a÷b= (b≠0)
3、從小數和分數的意義可以看出,小數實際上就是分母是10、100、1000……的分數。
4、分數可以分為真分數和假分數。
5、分子小於分母的分數叫做真分數。真分數小於1。
6、分子大於或等於分母的分數叫做假分數。假分數大於或等於1。
7、分子和分母只有公因數1的分數叫做最簡分數。
8、分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。
9、小數的性質和分數的基本性質是一致的,應用分數的基本性質,可以通分和約分。
百分數【稅率、利息、折扣、成數】
1、表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫百分率或
百分比,百分數通常用「%」表示。
2、分數與百分數比較:
不同點 相同點
分 數 可以表示具體數量,可以有單位名稱 表示兩個數之間的關系
百分數 不可以表示具體數量,不可以有單位名稱
3、分數、小數、百分數的互化。
(1)把分數化成小數,用分數的分子除以分母。
(2)把小數化成分數,先改寫成分母是10、100、1000……的分數,再約分。
(3)把小數化成百分數,先把小數點向右移動兩位,然後添上百分號。
(4)把百分數化成小數,先去掉百分號,然後把小數點向左移動兩位。
(5)把分數化成百分數,先把分數化成小數(除不盡時通常保留三位小數),再把小數化成百分數。
(6)把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
4、熟記常用三數的互化。
=0.5=50%
≈0.333=33.3%
≈0.667=66.7%
=0.25=25%
=0.75=75%
=0.2=20%
=0.4=40%
=0.6=60%
=0.8=80%
≈0.167=16.7%
≈0.833=83.3%
=0.125=12.5%
=0.375=37.5%
=0.625=62.5%
=0.875=87.5%
=0.1=10%
=0.3=30%
=0.7=70%
=0.9=90%
=0.05=5%
=0.15=15%
=0.35=35%
=0.45=45%
=0.55=55%
=0.65=65%
=0.85=85%
=0.95=95%
=0.04=4%
=0.025=2.5%
=0.02=2%
=0.01=1%
5、出勤率表示出勤人數占總人數的百分之幾。
合格率表示合格件數占總件數的百分之幾。
成活率表示成活棵數占總棵數的百分之幾。
6、求一個數比另一個數多百分之幾,就是求一個數比另一個數多的占另一個數的百分之幾。
7、多的÷「1」=多百分之幾 少的÷「1」=少百分之幾
8、應得利息是稅前利息,實得利息是稅後利息。
9、利息=本金×利率×時間
10、應得利息-利息稅=實得利息
11、幾折表示十分之幾,表示百分之幾十;幾幾折表示十分之幾點幾,表示百分之幾十幾。
12、原價×折扣=現價 現價÷原價=折扣 現價÷折扣=原價
13、幾成表示十分之幾表示百分之幾十;幾成幾表示十分之幾點幾,表示百分之幾十幾。
因數與倍數【素數、合數、奇數、偶數】
1、4×3=12,12是4的倍數,12也是3的倍數,4和3都是12的因數。
2、一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。
3、一個數最小的因數是1,最大的因數是它本身。一個數因數的個數是有限的。
一個數最大的因數等於這個數最小的倍數。
4、5的倍數:個位上的數是5或0。
2的倍數:個位上的數是2、4、6、8或0。2的倍數都是雙數。
3的倍數:各位上數的和一定是3的倍數。
5、是2的倍數的數叫做偶數。不是2的倍數的數叫做奇數。
6、一個數,如果只有1和它本身兩個因數,這樣的數就叫做素數(或質數)。
7、一個數,如果除了1和它本身還有別的因數,這樣的數就叫做合數。
8、在1—20這些數中: (1既不是素數,也不是合數)
奇數:1、3、5、7、9、11、13、15、17、19。
偶數:2、4、6、8、10、12、14、16、18、20。
素數:2、3、5、7、11、13、17、19。(共8個,和為77。)
合數:4、6、8、9、10、12、14、15、16、18、20。(共11個,和為132。)
9、最小的奇數是1,最小的偶數是0,最小的素數是2,最小的合數是4。
10、兩個素數的積一定是合數。
11、幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數。幾個數的公倍數也是無限的。
12、兩個數公有的因數,叫做這兩個數的公因數,其中最大的一個,叫做這兩個數的最大公因數。兩個數的公因數也是有限的。
13、兩個數的最小公倍數一定是它們的最大公因數的倍數。
14、求最大公因數和最小公倍數的方法:
倍數關系的兩個數,最大公因數是較小的數,最小公倍數是較大的數。
互質關系的兩個數(兩個數只有公因數1),最大公因數是1,最小公倍數是它們的乘積。
一般關系的兩個數,求最大公因數用小數列舉法或短除法,求最小公倍數用大數翻倍法或短除法。
兩數之積等於兩數的最小公倍數與最大公因數的積。兩數之積除以最大公因數得到最小公倍數(A×B÷最大公因數=最小公倍數)。
⑸ 小學數學概念有哪些
小學數學知識概念公式匯總
小學一年級 九九乘法口訣表。學會基礎加減乘。
小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級 學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。
小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算。
小學五年級 分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。
小學六年級 比例百分比概率,圓扇圓柱及圓錐。
必背定義、定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c
一般運算規則
1 每份數×份數=總數總數÷每份數=份數 總數÷份數=每份數
2 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3 速度×時間=路程路程÷速度=時間 路程÷時間=速度
4 單價×數量=總價總價÷單價=數量 總價÷數量=單價
5 工作效率×工作時間=工作總量工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6 加數+加數=和和-一個加數=另一個加數
7 被減數-減數=差被減數-差=減數 差+減數=被減數
8 因數×因數=積積÷一個因數=另一個因數
9 被除數÷除數=商被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 正方形 C周長 S面積 a邊長
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2 正方體 V:體積 a:棱長
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3 長方形 C周長 S面積 a邊長
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4 長方體 V:體積 s:面積 a:長 b: 寬 h:高
表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
體積=長×寬×高 V=abh
5 三角形 s面積 a底 h高
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底三角形底=面積 ×2÷高
6 平行四邊形 s面積 a底 h高
面積=底×高 s=ah
7 梯形 s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圓形 S面積 C周長 ∏ d=直徑 r=半徑
周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
面積=半徑×半徑×∏
9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
側面積=底面周長×高表面積=側面積+底面積×2
體積=底面積×高體積=側面積÷2×半徑
10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
奉上,望採納!
⑹ 小學數學
1、25×16÷16
=25×1
=25(卷)
2、A種:32×16=512(張)
B種:24×25=600(張)
B種拍的相片數多。
⑺ 小學數學新課標的主要內容有哪些
2014小學數學新課標內容
一、前言
《全日制義務教育數學課程標准(修定稿)》(以下簡稱《標准》)是針對我國義務教育階段的數學教育制定的。根據《義務教育法》.《基礎教育課程改革綱要(試行)》的要求,《標准》以全面推進素質教育,培養學生的創新精神和實踐能力為宗旨,明確數學課程的性質和地位,闡述數學課程的基本理念和設計思路,提出數學課程目標與內容標准,並對課程實施(教學.評價.教材編寫)提出建議。
《標准》提出的數學課程理念和目標對義務教育階段的數學課程與教學具有指導作用,教學內容的選擇和教學活動的組織應當遵循這些基本理念和目標。《標准》規定的課程目標和內容標準是義務教育階段的每一個學生應當達到的基本要求。《標准》是教材編寫.教學.評估.和考試命題的依據。在實施過程中,應當遵照《標准》的要求,充分考慮學生發展和在學習過程中表現出的個性差異,因材施教。為使教師更好地理解和把握有關的目標和內容,以利於教學活動的設計和組織,《標准》提供了一些有針對性的案例,供教師在實施過程中參考。
二、設計理念
數學是研究數量關系和空間形式的科學。數學與人類的活動息息相關,特別是隨著計算機技術的飛速發展,數學更加廣泛應用於社會生產和日常生活的各個方面。數學作為對客觀現象抽象概括而逐漸形成的科學語言與工具,不僅是自然科學和技術科學的基礎,而且在社會科學與人文科學中發揮著越來越大的作用。數學是人類文化的重要組成部分,數學素養是現代社會每一個公民所必備的基本素養。數學教育作為促進學生全面發展教育的重要組成部分,一方面要使學生掌握現代生活和學習中所需要的數學知識與技能,一方面要充分發揮數學在培養人的科學推理和創新思維方面的功能。
義務教育階段的數學課程具有公共基礎的地位,要著眼於學生的整體素質的提高,促進學生全面.持續.和諧發展。課程設計要滿足學生未來生活.工作和學習的需要,使學生掌握必需的數學基礎知識和基本技能,發展學生抽象思維和推理能力,培養應用意識和創新意識,在情感.態度與價值觀等方面都要得到發展;要符合數學科學本身的特點.體現數學科學的精神實質;要符合學生的認知規律和心理特徵.有利於激發學生的學習興趣;要在呈現作為知識與技能的數學結果的同時,重視學生已有的經驗,讓學生體驗從實際背景中抽象出數學問題.構建數學模型.得到結果.解決問題的過程。為此,制定了《標准》的基本理念與設計思路。
基本理念
數學課程應致力於實現義務教育階段的培養目標,體現基礎性.普及性和發展性。義務教育階段的數學課程要面向全體學生,適應學生個性發展的需要,使得:人人都能獲得良好的數學教育,不同的人在數學上得到不同的發展。課程內容既要反映社會的需要.數學學科的特徵,也要符合學生的認知規律。它不僅包括數學的結論,也應包括數學結論的形成過程和數學思想方法。課程內容要貼近學生的生活,有利於學生經驗.思考與探索。內容的組織要處理好過程與結果的關系,直觀與抽象的關系,生活化.情境化與知識系統性的關系。課程內容的呈現應注意層次化和多樣化,以滿足學生的不同學習需求。數學活動是師生共同參與.交往互動的過程。有效的數學教學活動是教師教與學生學的統一,學生是數學學習的主體,教師是數學學習的組織者與引導者。數學教學活動必須激發學生興趣,調動學生積極性,引發學生思考;要注重培養學生良好的學習習慣.掌握有效的學習方法。學生學習應當是一個生動活潑的.主動地和富有個性的過程,除接受學習外,動手實踐.自主探索與合作交流也是數學學習的重要方式,學生應當有足夠的時間和空間經歷觀察.實驗.猜測.驗證.推理.計算.證明等活動過程。教師教學應該以學生的認知發展水平和益友的經驗為基礎,面向全體學生,注重啟發式和因材施教,為學生提供充分的數學活動的機會。要處理好教師講授和學生自主學習的關系,通過有效的措施,啟發學生思考,引導學生自主探索,鼓勵學生合作交流,使學生真正理解和掌握基本的數學知識與技能.數學思想和方法,得到必要的數學思維訓練,獲得廣泛的數學活動經驗。學習評價的主要目的是為了全面了解學生數學學習的過程和結果,激勵學生的學習和改進教師的教學。應建立評價目標多元.評價方法多樣的評價體系。評價要關注學生學習的結果,也要關注學習的過程;要關注學生數學學習的水平,也要關注學生在數學活動中所表現出來的情感與態度,幫助學生認識自我,盡力信心。信息技術的發展對數學教育的價值.目標.內容以及教學方式產生了很大的影響。數學課程的設計與實施應根據實際情況合理地運用現代信息技術,要注意信息技術與課程內容的有機結合。要充分考慮計算器.計算機對數學學習內容和方式的影響以及所具有的優勢,大力開發並向學生提供豐富的學習資源,把現代信息技術作為學生學習數學和解決問題的強有力工具,致力於改變學生的學習方式,使學生樂意並有更多的精力投入到現實的.探索性的數學活動中去。
三、設計思路
(一)關於學段
為了體現義務教育數學課程的整體性,《標准》統籌考慮了九年的課程內容。同時,根據兒童發展的生理和心理特徵,將九年的學習時間具體劃分為三個學段:第一學段(1-3年級).第二學段(4-6年級).第三學段(7-9年級)。設計思路
(二)關於目標《標准》提出義務教育階段數學課程的總體目標和分學段目標,並從知識技能.數學思考.問題解決.情感態度等四個方面具體闡述。《標准》用了「了解(認識).理解.掌握.運用」等認知目標動詞表述知識技能目標的不同水平。一句「基本理念」,數學學習必須注重過程,標《准》使用「經歷(感受).體驗(體會).探索」等認知過程動詞表述學習活動的不同程度。使用這些動詞進行表述是為了更准確地刻畫上述四個方面的具體目標。在《標准》中,這些動詞的具體含義如下。了解(了解認識):從具體事例中知道或舉例說明對象的有關特徵;根據對象的特徵,從具體情景中辨認或者舉例說明對象。理解:描述對象的特徵和由來,闡述此對象與相關對象之間的區別和聯系。掌握:在理解的基礎上,把對象用於新的情境。運用:用已掌握的對象,選擇或創造適當的方法。經歷(感受):在特定的數學活動中,獲得一些感性認識。體驗(體會):參與特定的數學活動,認識或驗證對象的特徵,獲得經驗():驗。探索:獨立或與他人合作參與特定的數學活動,發現對象的特徵及其與相關對象的區別和聯系,獲得理性認識。
(三)關於學習內容之一:數與代數
在各個教學段中,《標准》安排了四個方面的內容:「數與代數」,「圖形與幾何」,「統計與概率」,「綜合與實踐」。數與代數「數與代數」的主要內容有:數的認識,數的表示,數的大小,數的運算,數量的估計;字母表示數,代數式及其運算;方程.方程組.不等式.函數等。
在「數與代數」的教學中,應幫助學生建立數感和符號意識,發展運算能力,樹立模型思想。
數感主要是指關於數與數量表示.數量大小比較.數量和運算結果的估計等方面的直觀感覺。建立「數感」有助於學生理解現實生活中數的意義,理解或表述具體情景中的數量關系。
符號意識主要是指能夠理解並且運用符號表示數.數量關系和變化規律;知道使用符號可以進行一般性的運算和推理。建立「符號意識」有助於學生理解符號的使用是數學表達和進行數學思考的重要形式。
運算是「數與代數」的重要內容,運算是基於法則進行的,通常運算滿足一定的運算律。學習這些內容有助於理解運算律,培養運算能力。
模型也是「數與代數」的重要內容,方程.方程組.不等式.函數等都是基本的數學模型。從現實生活或者具體情境中抽象出數學問題,是建立模型的出發點;用符號表示數量關系和變化規律,是建立模型的過程;求出模型的結果並討論結果的意義,是求解模型的過程。這些內容有助於培養學生的學習興趣和應用意識,體會數學建模的過程,樹立模型思想。
關於學習內容之二:圖形與幾何
圖形與幾何「圖形與幾何」主要內容有:空間和平面的基本徒刑,圖形的性質和分類;平面圖形基本性質的證明;圖形的平移.旋轉.軸對稱.相似和投影;運用坐標描述圖形的位置和圖形的運動。
在「圖形與幾何」的學習中,應幫助學生建立空間觀念。空間觀念是指根據物體特徵抽象出幾何圖形,根據幾何圖形想像出所描述的實際物體;能夠想像出空間物體的方位和相互之間的位置關系;根據語言描述或通過想像畫出圖形等。
直觀與推理是「圖形與幾何」學習中的兩個重要方面。幾何直觀是指利用圖形描述幾何或者其他數學問題.探索解決問題的思路.預測結果。在許多情況下,藉助幾何直觀可以把復雜的數學問題變得簡明.形象。幾何直觀不僅在「圖形與幾何」的學習中發揮著不可替代的作用,並且貫穿在整個數學學習中。
推理是數學的基本思維方式,是人們學習和生活中經常使用的思維方式,也因此,與直觀一樣,推理也貫穿在整個數學學習中。推力一般包括合情推理和演繹推理。合情推理是從已有的事實出發,憑借經驗和直覺,通過歸納和類比等推測某些結果,是由特殊到一般的過程。演繹推理是從已有的事實(包括定義.公理.定理等)出發,按照規定的法則(包括邏輯和運算)驗證結論,是由一般到特殊的過程。在解決問題的過程中,合情推力有助於探索解決問題的思路.發現結論;演繹推理用於驗證結論的正確性。
關於學習內容之三:統計與概率
統計與概率「統計與概率」主要內容有:收集.整理和描述數據,包括簡單抽樣.記錄調查數據.描繪統計圖表等;處理數據,包括計算平均數.中位數.眾數.極差.方差等;從數據中提取信息並進行簡單的判斷。簡單隨機事件及其發生的概率。
在「統計與概率」中,幫助學生逐漸建立起數據分析的觀念是重要的。數據分析包括:了解在現實生活中有許多問題應當先做調查研究.收集數據,通過分析作出判斷,體會數據中是蘊涵著信息的;體驗數據是隨機的和有規律的,一方面對於同樣的事情每次收集到的數據可能會是不同的,另一方面只要有足夠的數據就可能從中發現規律;了解對於同樣的數據可以有多種分析的方法,需要根據問題的背景選擇合適的方法。在概率的學習中,所涉及的隨機現象都基於簡單事件:所有可能發生的結果是有限的.每個結果發生的可能性是相同的。「統計與概率」的內容與現實生活聯系密切,必須結合具體案例組織教學。
關於學習內容之四:綜合與實踐
綜合與實踐「綜合與實踐」是以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。針對問題情景,學生藉助所學的知識和生活經驗,獨立思考或與他人合作,經歷發現問題和提出問題.分析問題和解決問題的全過程,感悟數學各部分內容之間.數學與生活實際之間及其他學科的聯系,激發學生學習數學的興趣,加深學生對所學數學內容的理解。
這種類型的課程對於培養學生的抽象能力和邏輯思維能力.對於培養學生的創新意識和應用能力是有益處的,還有利於培養學生的合作精神。合理地設計課程內容以及教學方法是達到教學目標的關鍵,既要考慮學生的直接經驗.能夠啟發學生思考,也要考慮問題的數學實質.培養學生的數學素養。這種類型的課程對教師是一種挑戰,教師應努力把握住問題的本質,能夠引導學生思考,同時,教師又應努力幫助學生整理清楚自己的思路,指導學生以不同的形式展示自己的成果或報告自己的工作。這種類型的課程應當貫徹「少而精」的原則,保證每學期至少一次。它可以在課堂上完成,也可以將課內外相結合。
關於實施建議
為了保證《標准》的順利實施,《標准》分別對教學活動.學習評價,以及教材編寫.課程資源的開發與利用等方面提出了實施建議;同時,為了更好地說明課程內容,《標准》在相關部分提供了一些案例。以上內容供有關人員參考.借鑒。
《課標》修改稿---總體目標(1)通過義務教育階段的數學學習,學生能夠:1.獲得適應社會生活和進一步發展所必須的數學的基本知識.基本技能.基本思想.基本活動經驗。2.體會數學知識之間.數學與其他學科之間.數學與生活之間的聯系,運用數學的思維方式進行思考,增強發現問題和提出問題的能力.分析問題和解決問題的能力。3.了解數學的價值,提高學習數學的興趣,增強學好數學的信心,養成良好的學習習慣,具有初步的創新意識和實事求是的科學態度。
《課標》修改稿---總體目標(2)知識與技能:*經歷數與代數的抽象運算與建模等過程,掌握數與代數的基礎知識和基本技能。*經歷圖形的抽象.分類.性質探討.運動.位置確定等過程,掌握圖形與幾何的基礎知識和基本技能。*經歷在實際問題中收集和處理數據.利用數據分析問題.獲得信息的過程,掌握統計與概率的基礎知識和基本技能。*參與綜合實踐活動,積累綜合運用數學知識.技能和方法解決簡單實際問題的數學活動經驗。
數學思考
*體會代數表示運算和幾何直觀等方面的作用,初步建立數感.符號意識和空間觀念,發展形象思維和抽象思維。*了解數據和隨機現象,體會統計方法的意義,發展數據分析和隨機觀念。*在參與觀察.實驗.猜想.證明.綜合實踐等數學活動中,發展合情推理和演繹推理能力,清晰地表達自己的想法。*學會獨立思考,體會數學的基本思想和思維方式。
問題解決
*初步學會從數學的角度發現問題和提出問題,綜合運用數學知識和其他知識解決簡單的數學問題,發展應用意識和實踐能力。*獲得分析問題和解決問題的一些基本方法,體驗解決問題方法的多樣性,發展創新意識。
情感態度
*學會與他人合作.交流。*初步形成評價與反思的意識。*積極參與數學活動,對數學有好奇心和求知慾。*體驗獲得成功的樂趣,鍛煉克服困難的意志,建立學好數學的自信心。*體會數學的特點,了解數學的價值。*養成勇於質疑的習慣,形成實事求是的態度。
《課標》修改稿---總體目標(3)總體目標的四個方面,不是互相獨立和割裂的,而是一個密切聯系.相互交融的有機整體。課程組織和教學活動中,應同時兼顧四個方面的目標。這些目標的實現,使學生受到良好數學教育的標志,它對學生的全面.持續.和諧發展,有著重要的意義。數學思考.問題解決.情感態度的發展離不開知識技能的學習,知識技能的學習必須有利於其他三個目標的實現。
《課標》修改稿---學段目標
第一學段(1-3年級)
知識技能
1.經歷從日常生活中抽象出數的過程,理解常見的量;了解四則運算的意義,掌握必要的運算技能。了解估算。
2.經歷從實際物體中抽象出簡單幾何體和平面圖形的過程,了解一些簡單幾何體和常見的平面圖形;感受平移.旋轉.軸對稱,認識物體的相對位置。掌握初步的測量.識圖和畫圖的技能。
3.經歷數據的收集和整理的過程,了解簡單的數據處理方法。
數學思考
1.能夠理解身邊有關數字的信息,會用數(合適的量綱)描述現實生活中的簡單現象。發展數感。
2.再討論簡單物體性質的過程中,發展空間觀念。
3.在教師的指導下,能對簡單的調查數據歸類。
4.會思考問題,能表達自己的想法;在討論問題過程中,能夠初步辨別結論的共同點和不同點。
問題解決
1.能在教師的指導下,從日常生活中發現和提出簡單的數學問題。
2.獲得分析問題和解決問題的一些基本方法,知道同一問題可以有不同的解決方法。
3.體驗與他人合作交流.解決問題的過程。
4.初步學會整理解決問題的過程和結果。
情感態度
1.對身邊與數學有關的事務(現象)有好奇心,能夠參與數學活動。
2.在他人幫助下,體驗克服數學活動中的困難的過程。
3.了解數學可以描述生活中的一些現象,感受數學與生活有密切聯系。
4.在解決問題的過程中,養成詢問「為什麼」的習慣。
第二學段(4-6年級)
知識技能
1.體驗從具體情境中抽象出數的過程;理解分數.百分數的意義,了解負數,掌握必要的運算技能;理解估算的意義;掌握用方程表示簡單的數量關系.解簡單方程的方法。
2.探索一些圖形的形狀.大小和位置關系,了解一些幾何體和平面圖形的基本特徵;體驗圖形的簡單運動,了解確定物體位置的方法,掌握測量.識圖和畫圖的基本方法。
3.歷數據的收集.理和分析的過程,握一些簡單的數據處理技能;經整掌體驗事件發生的等可能性,掌握簡單的計算等可能性的方法。
數學思考
1.能夠對生活中的數字信息作出合理的解釋,會用數(合適的量綱).字母和圖表描述生活中的簡單問題;初步形成數感,發展符號意識。
2.在探索簡單圖形的性質.運動現象的過程中,初步形成空間觀念。
3.能根據解決問題的需要,收集與表示數據,歸納出有用的信息
4.能進行有條理的思考,能清楚地表達思考的過程與結果;在與他人交流過程中,能夠進行簡單的辯論。
問題解決
1.能從社會生活中發現並提出簡單的數學問題。
2.能探索分析問題.解決問題的有效方法,了解解決問題方法的多樣性。
3.能藉助於數字計算器解決簡單的計算問題。
4.初步學會與他人合作解決問題,嘗試解釋自己的思考過程。
5.能初步判斷結果的合理性,經歷回顧與分析解決問題過程的活動。
情感態度
1.願意了解社會生活中與數學相關的信息,主動參與數學學習活動。
2.在他人的鼓勵和引導下,嘗試克服數學活動中遇到的困難,相信自己能夠學好數學。
3.在運用數學解決問題的過程中,體驗數學的價值。
4.初步養成樂於思考.實事求是.勇於質疑等良好品質。
第三學段(7-9年級)
知識技能
1.體驗從具體情境中抽象出數學符號的過程;理解有理數.實數.代數式.方程.不等式.函數。掌握必要的運算(包括估算)技能;探索具體問題中的數量關系和變化規律,掌握用代數.方程.不等式進行表述的方式。
2.探索並理解圖形的基本性質.位置關系和平移.旋轉.軸對稱等。掌握三角形.四邊形的基本性質(包括判定),掌握基本的證明方法。
3.體驗數據收集.處理.分析和推斷過程,理解抽樣方法;體驗用樣本估計總體的過程,理解頻率。理解計算簡單事件概率的方法。數學思考
1.能從具體情境中抽象出數量關系,並且能用代數式.方程.不等式.函數等表述,體會模型的思想。
2.在研究圖形運動現象.確定物體位置的過程中,進一步發展空間觀念,初步建立幾何直觀。
3.初步建立數據觀念,理解通過數據進行統計推斷的合理性。
4.步形成通過實例探索數學結論的思維方式。多種形式的數學活動中,初在發展合情推理與演繹推理的能力。
問題解決
1.嘗試在具體的情境中,從數學的角度發現問題和提出問題。
2.試從不同角度尋求分析問題和解決問題的方法,解不同方法的差異。嘗了
3.在與他人合作和交流過程中,能較好地理解他人的思考方法和結論。
4.在表述自己的想法時,能針對他人所提的問題進行反思。
情感態度
1.願意談論某些數學話題,能夠在數學學習活動中發揮一定的作用。
2.體驗獨立克服困難.解決數學過程的過程,有克服困難的勇氣,具備學好數學的信心。
3.在運用數學表達現實.解決問題的過程中,認識數學抽象.嚴謹和應用廣泛的特點,體會數學的價值。
4.勇於發表自己的觀點,質疑他人的觀點,養成良好的學習習慣。
⑻ 小學數學很差怎麼辦
1,數學的基礎很重要,數學這門課的特點是連慣性太強,每一個知識點就象我們上樓的每一級台階,你某一個知識點沒學好,就象那裡少了一級台階。
有的同學說,老師在課堂上講我能聽得懂,為什麼做題時就是做不出來呢?這是因為課堂上老師講好比開著燈上樓梯,雖然有一兩級台階沒有(只要它們不連慣)還是能上去的,但做作業或考試時就象關著燈上樓梯,完全憑感覺走,沒有任何人幫你指出哪裡沒有台階,所以走到斷級的時候不跌到才怪。那這種情況怎麼辦呢?唯一的辦法只有把缺少了的那級台階補上去。其方法就是一定要抽出時間去看以前的課本,如果你拿某一本舊課本來看還是看不懂,那說明你要補的還在前面,暫時把這本書放下,去看更前面的舊課本。只到你能完全弄明白了為止,然後從這一本書一直往後看,直到你現在所學的課本。我個人認為這比你為了完成任務而做作業重要得多,這才是你跟得上課程的根本保證。我有一個外孫女就是這種情況。有一次她拿一道數學題來問我,那道題有四個知識點,我問她,她竟然一個都回答不了,我叫她先去看以前的課本上的相應部分再來做這個題,她竟然去問同學去了,結果當然是不了了之的把答案抄了一遍,完成了作業。還說我不如她的同學厲害,我只有苦笑(在這里我不由的又要報怨現在的教育起來了,作業,作業,做孽,對優生是一條拖後腿的繩,對差生是套牢脖子的繩。當年我就是經常沒能完成作業而。。。這是題外話不說也罷)依我的看法,對於所謂的差生來說,花時間去學習以前被遺忘了的知識點比做作業要重要得多。當然我不是在這叫大家都不要做作業,而是說要花適當的時間去自己給自己補課。
2,要學好數學,興趣最關鍵,人人都這么說。但歸根到底還是基礎要好才可能產生興趣,一個人不可能對那個讓自己陷入困境的事情產生興趣。所以成績不好的同學還是要把時間多花在第一步上。如果你是一名中學生,那麼小學課本應當能看懂吧,你能看懂它,做小學的一些奧數題你一定會覺得其樂無窮。這樣你就能培養起對數學的興趣了。有了光趣還有什麼做不好呢!
3,數學不是靠的死記硬背,要理解,怎樣理解呢,還是在基礎,所以成績不好的同學還是要多把時間花在第一步上。對於公式的記憶呢,只要求能記住最基本的就行了,其餘的要學會自己推導出來,發明狂當年很多公式都記不住,但我能在考場上花上一兩分鍾就把需要的公式當場推導出來,這比你花死力氣去死記要保險得多,而且絕對准確,這就叫做理解記憶,發明狂與課本無緣已有一二十年了,但做題時所要的公式還是能根據它的定義把它推導出來。所謂好鋼用在刀刃上,就是這個意思,不要把時間花在毫無意義的事情上,死記硬背是靠不住的,關鍵時刻最容易出亂子,你一下子想不起,或對一個符號不敢確定,這一題就完了,而自己會推導就不一樣了,一本書你要記的不過幾個公式而已,從小學到高中真正要記憶的公式恐怕不會超過二十個吧。
比如:面積公式,只要記住矩形和圓的面積公式就行了。矩形面積=底X高(S=ab)。三角形面積如何從這推導呢?在矩形中劃一條對角線,是不是得兩個面積一樣大的三角形?那當然就有:(S=ab/2)
那梯形呢?在梯形中劃一條對角線,是不是得兩個三角形?而且它們的高相等?根據三角形面積公式就有S=ah/2+bh/2=(a+b)h/2。有一點要說的是你在推導公式時用特殊的情況就行了,因為你不是證明。發明狂已多年沒接觸課本了,對課本都已不了解了,如有什麼問題大家可以共同探討,共同進步。
4,要多做題,多思考,才能打開思維面。上面我反對作業不是叫你不要做作業,而是反對浪費時間去做那些對你來說一看就會毫無意義的作業。你應當把這鍾時間花在做真正要做的題目上。如果你確實覺得做作業是浪費時間,你可以向老師申請不做作業。我想老師應當同意的(你們現在的老師應當比我們那時的老師開明得多了吧?)
5,碰到好的題目時,要多思考一個問題:那就是——這個題是怎樣提出來的?你能不能出一個相類似的題、或比它有所改變的題、或者有所提高的題。這樣下次碰到這一題或與它相類似的題時你就能很容易的做出來了。這也是訓練發散思維的好方法。也是發明家最重要的思維方式了。
6,認真聽講,有不懂的問題及時向老師或同學請教,只到弄懂為止,孔子都不恥下問呢,何況我們!
7,信心很重要,要相信自己一定能行才會成功。
廢話就不多說了,最後希望你愛上數學,這樣你一定會覺得數學是那樣的其樂無窮了。還愁學不好數學?祝你成功。
數學是理化的基礎,數學學好了,物理和化學等於已學好了一半了, 學物理和學數學相類似,都要求理解每一個概念 ,公式也要學會推導。另外,物理和化學要多做實驗,這能加深你對概念的理解,但主要的還是提高你的興趣。
⑼ 小學數學
9405-2940÷28×21
920-1680÷40÷7
690+47×52-398
97-12×6+43
26×4-125÷5
148+3328÷64-75
360×24÷32+730
2100-94+48×54
51+(2304-2042)×23
4215+(4361-716)÷81
(247+18)×27÷25
36-720÷(360÷18)
1080÷(63-54)×80
(528+912)×5-6178
8528÷41×38-904
264+318-8280÷69
(174+209)×26- 9000
814-(278+322)÷15
1406+735×9÷45
3168-7828÷38+504
796-5040÷(630÷7)
285+(3000-372)÷36
546×(210-195)÷30
3/7 × 49/9 - 4/3
8/9 × 15/36 + 1/27
12× 5/6 – 2/9 ×3
6÷ 3/8 – 3/8 ÷6
4/7 × 5/9 + 3/7 × 5/9
5/2 -( 3/2 + 4/5 )
7/8 + ( 1/8 + 1/9 )
9 × 5/6 + 5/6
3/4 × 8/9 - 1/3
7 × 5/49 + 3/14
6 ×( 1/2 + 2/3 )
8 × 4/5 + 8 × 11/5
31 × 5/6 – 5/6
9/7 - ( 2/7 – 10/21 )
5/9 × 18 – 14 × 2/7
4/5 × 25/16 + 2/3 × 3/4
14 × 8/7 – 5/6 × 12/15
17/32 – 3/4 × 9/24
3 × 2/9 + 1/3
5/7 × 3/25 + 3/7
3/14 ×× 2/3 + 1/6
1/5 × 2/3 + 5/6
9/22 + 1/11 ÷ 1/2
5/3 × 11/5 + 4/3
45 × 2/3 + 1/3 × 15
7/19 + 12/19 × 5/6
1/4 + 3/4 ÷ 2/3
8/7 × 21/16 + 1/2
101 × 1/5 – 1/5 × 21
50+160÷40
(58+370)÷(64-45)
120-144÷18+35
347+45×2-4160÷52
(58+37)÷(64-9×5)
95÷(64-45)
178-145÷5×6+42
420+580-64×21÷28
812-700÷(9+31×11)
(136+64)×(65-345÷23)
85+14×(14+208÷26)
(284+16)×(512-8208÷18)
120-36×4÷18+35
(58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8
(3.2×1.5+2.5)÷1.6
3.2×(1.5+2.5)÷1.6
6-1.6÷4= 5.38+7.85-5.37=
7.2÷0.8-1.2×5= 6-1.19×3-0.43=
6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
10.15-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74
32.52-(6+9.728÷3.2)×2.5
(7.1-5.6)×0.9-1.15] ÷2.5
5.4÷[2.6×(3.7-2.9)+0.62]
12×6÷(12-7.2)-6 (4)12×6÷7.2-6
2/3÷1/2-1/4×2/5
2-6/13÷9/26-2/3
2/9+1/2÷4/5+3/8
10÷5/9+1/6×4
1/2×2/5+9/10÷9/20
5/9×3/10+2/7÷2/5
1/2+1/4×4/5-1/8
3/4×5/7×4/3-1/2
23-8/9×1/27÷1/27
8×5/6+2/5÷4
1/2+3/4×5/12×4/5
8/9×3/4-3/8÷3/4
5/8÷5/4+3/23÷9/11
0.6×(1.7-0.9)÷0.24+1.25
5.4×[(2.73+1.85)÷2.29]-3.56
9405-2940÷28×21
920-1680÷40÷7
690+47×52-398
148+3328÷64-75
360×24÷32+730
2100-94+48×54
51+(2304-2042)×23
4215+(4361-716)÷81
(247+18)×27÷25
36-720÷(360÷18)
1080÷(63-54)×80
(528+912)×5-6178
8528÷41×38-904
264+318-8280÷69
(174+209)×26- 9000
814-(278+322)÷15
1406+735×9÷45
3168-7828÷38+504
796-5040÷(630÷7)
285+(3000-372)÷36
546×(210-195)÷30
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.[(7.1-5.6)×0.9-1.15] ÷2.5
52.5.4÷[2.6×(3.7-2.9)+0.62]
53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6
121 - 111 ÷ 37
(121 - 111 ÷ 37)× 5
280 + 650 ÷ 13
1000 -(280 + 650 ÷ 13)
707 - 35 × 20
(120 - 103)× 50
760 ÷ 10 ÷ 38
(95 - 19 × 5 )÷74
45 × 20 × 3
(270 + 180)÷(30 - 15)
1.125*3+125*5+25*3+25
2.9999*3+101*11*(101-92)
3.(23/4-3/4)*(3*6+2)
4. 3/7 × 49/9 - 4/3
5. 8/9 × 15/36 + 1/27
6. 12× 5/6 – 2/9 ×3
7. 8× 5/4 + 1/4
8. 6÷ 3/8 – 3/8 ÷6
9. 4/7 × 5/9 + 3/7 × 5/9
10. 5/2 -( 3/2 + 4/5 )
11. 7/8 + ( 1/8 + 1/9 )
12. 9 × 5/6 + 5/6
13. 3/4 × 8/9 - 1/3
14. 7 × 5/49 + 3/14
15. 6 ×( 1/2 + 2/3 )
16. 8 × 4/5 + 8 × 11/5
17. 31 × 5/6 – 5/6
18. 9/7 - ( 2/7 – 10/21 )
19. 5/9 × 18 – 14 × 2/7
20. 4/5 × 25/16 + 2/3 × 3/4
21. 14 × 8/7 – 5/6 × 12/15
22. 17/32 – 3/4 × 9/24
23. 3 × 2/9 + 1/3
24. 5/7 × 3/25 + 3/7
25. 3/14 ×× 2/3 + 1/6
26. 1/5 × 2/3 + 5/6
27. 9/22 + 1/11 ÷ 1/2
28. 5/3 × 11/5 + 4/3
29. 45 × 2/3 + 1/3 × 15
30. 7/19 + 12/19 × 5/6
31. 1/4 + 3/4 ÷ 2/3
32. 8/7 × 21/16 + 1/2
33. 101 × 1/5 – 1/5 × 21
34.50+160÷40
35.120-144÷18+35
36.347+45×2-4160÷52
37(58+37)÷(64-9×5)
38.95÷(64-45)
39.178-145÷5×6+42
40.812-700÷(9+31×11)
41.85+14×(14+208÷26)
42.77+27÷(99-96)-3
43.120-36×4÷18+35
44.(58+37)÷(64-9×5)
45.(6.8-6.8×0.55)÷8.5
46.0.12× 4.8÷0.12×4.8
47.(3.2×1.5+2.5)÷1.6
48.6-1.6÷4= 5.38+7.85-5.37=
49.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
50.6.5×(4.8-1.2×4)=
51.5.8×(3.87-0.13)+4.2×3.74
52.32.52-(6+9.728÷3.2)×2.5
53.[(7.1-5.6)×0.9-1.15] ÷2.5
54.5.4÷[2.6×(3.7-2.9)+0.62]
55.12×6÷(12-7.2)-6
56.12×6÷7.2-6
57.0.68×1.9+0.32×1.9
58.58+370)÷(64-45)
59.420+580-64×21÷28
60.136+6×(65-345÷23)
15-10.75×0.4-5.7
62.18.1+(3-0.299÷0.23)×1
63.(6.8-6.8×0.55)÷8.5
64.0.12× 4.8÷0.12×4.8
65.(3.2×1.5+2.5)÷1.6
66.3.2×6+(1.5+2.5)÷1.6
67.0.68×1.9+0.32×1.9
68.10.15-10.75×0.4-5.7
69.5.8×(3.87-0.13)+4.2×3.74
70.32.52-(6+9.728÷3.2)×2.5
71.[(7.1-5.6)×0.9-1.15] ÷2.5
72.5.4÷[2.6×(3.7-2.9)+0.62]
73.12×6÷(12-7.2)-6
74.12×6÷7.2-6
75.33.02-(148.4-90.85)÷2.5
1) 86+49+114=
2) 240+(39-40)=
3) 255+(352+145+48)=
4) (345+377)+(55+23)=
5) 9+(80+191)=
6) (268+314+132)+86=
7) 5190÷15=
8) 495+(278+5)+222=
9) 174×36×25=
10) 399-199=
11) 48+(164+152)+36=
12) 133-(28+29)-43=
13) 1650÷25=
14) 260×8-8-8×59=
15) 996+500=
16) 6975÷25=
17) 196-95=
18) 328-(163-72)=
19) 199+(84-99)=
20) 885-1-201-298=
21) 460-35-3-262=
22) (98+59+2)+41=
23) 736×12-12-12×335=
24) 116+(112+184)=
25) 150×258+142×150=
26) 31×24×25=
27) 9000÷25=
28) 502-287-54-159=
29) 307+(92+93)=
30) 80×125=
31) 102×15=
32) 30+(63+70)+37=
33) 27+(73+73)+27=
34) 86+(98+14+2)=
35) 544-272-28=
36) 18000÷150÷4=
37) 103×69=
38) 25×64×125=
39) 343-188-12=
40) 509×11-11-11×8=
41) 79×24×25=
42) (145+25)+(155+275)=
43) (447+423)+(53+77)=
44) 46+15+54=
45) 589-109-(6+185)=
46) 8×125=
47) 20×25=
48) 89×245+155×89=
49) 92+(79+8+21)=
50) 222+15+78=
51) 96×125= 52) 30600÷25÷4=
53) 5996+3004= 54) 6015-(518+699)-2783=
55) 4003×2426= 56) 2467×70-70-70×466=
57) 84×25= 58) 4001-2002=
59) 1616×506+2494×1616= 60) 4×17+4+1982×4=
61) 799×660+340×799= 62) 3991×36×25=
63) 6076-875-(805+3320)= 64) 6056-679-40-4281=
65) 4134+(2819+866)+2181= 66) 5898-(2065-102)=
67) 3297×1273+2727×3297= 68) 1312+(153+688+1847)=
69) 2315-793-114-1093= 70) 3940+(1739-1940)=
71) 1455+(1768+1545)+1232= 72) 975+(1007+2025)=
73) 24×1951+24+48×24= 74) 30425÷25=
75) 1376+(1961+624+39)= 76) (686+1872+2314)+1128=
77) 2922+(260-922)= 78) 113600÷100÷4=
79) 2002×658= 80) 1428+(958+2572)=
81) 2001×786= 82) 190×760+190+3239×190=
83) 2976×1145+2855×2976= 84) 88×25=
85) 8122-(3084-1878)= 86) 879+(1295+2121)=
87) 3998+2001= 38) 2595×178-178-178×594=
89) 4467-2024-976= 90) 1319×1339+1661×1319=
91) 997×885= 92) 453×8×125=
93) 4928-(871+1928)= 94) 997×917=
95) 1526+(938-526)= 96) 803×12×25=
97) 114000÷1200= 98) 6933×332-332-332×2932=
99) 16×25= 100) 25×224×125=
101)9/22 + 1/11 ÷ 1/2
102)5/3 × 11/5 + 4/3
103)45 × 2/3 + 1/3 × 15
104) 7/19 + 12/19 × 5/6
106) 8/7 × 21/16 + 1/2
107) 101 × 1/5 – 1/5 × 21
108)50+160÷40 (58+370)÷(64-45)
109)120-144÷18+35
110)347+45×2-4160÷52
111)(58+37)÷(64-9×5)
112)95÷(64-45)
113)178-145÷5×6+42 420+580-64×21÷28
114)812-700÷(9+31×11) (136+64)×(65-345÷23)
115)85+14×(14+208÷26)
116)(284+16)×(512-8208÷18)
117)120-36×4÷18+35
118)(58+37)÷(64-9×5)
119)(6.8-6.8×0.55)÷8.5
120)0.12× 4.8÷0.12×4.8
121)(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
121)6-1.6÷4= 5.38+7.85-5.37=
122)7.2÷0.8-1.2×5= 6-1.19×3-0.43=
123)6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
124)10.15-10.75×0.4-5.7
125)5.8×(3.87-0.13)+4.2×3.74
126)32.52-(6+9.728÷3.2)×2.5
127)[(7.1-5.6)×0.9-1.15] ÷2.5
128)5.4÷[2.6×(3.7-2.9)+0.62]
129)0.9+0.1÷0.1 0.3×0.3×0.3
130)0.5÷0.5÷0.5 0.8-0.8×0.5
131)0.8÷0.8×0.5 2.7+2.3÷0.2
132)5.4÷1.8-1.8 11.2-1.93+0.8
133)0.38×2.9+0.38 0.5-0.5×0.5
134)0.8÷0.8×0.5 2.7+2.3÷0.2
135)5.4÷1.8-0.8 11.2-1.93+8.07
136)1-1÷4 0.65×102
137)9.87-(5.87+2.9)
138)(0.25+0.45)×0.4
139)(0.36+1.29)÷3 0.008+0.992×2.5×40
140)4.84+0.3×15÷0.2+77.5 0.15×(3.79-1.9)+1.11×0.15
141)0.05×[30-(18.4+27.83÷4.6)] (6.8-6.8×0.55)÷8.5
142)0.12× 4.8÷0.12×4.8 1.6-1.6÷4
143)5.38+7.85-5.37 7.2÷0.8-1.2×5
144)6-1.19×3-0.43 6.5×(4.8-1.2×4)
145)0.68×1.9+0.32×1.9 10.15-10.75×0.4-5.7
147)146)5.8×(3.87-0.13)+4.2×3.74 32.52-(6+9.728÷3.2)×2.5
148)[(7.1-5.6)×0.9-1.15] ÷2.5 5.4÷[2.6×(3.7-2.9)+0.62]
149)5.47+12.81+3.53+7.19 0.83×12.5×8
2.9×102 3.8×6.9+3.8×2.1+3.8
150)109+(72+91)-93×24×125=