當前位置:首頁 » 語數英語 » 小學數學概論

小學數學概論

發布時間: 2021-07-29 14:35:40

A. 小學生數學概念

統計概率與小學數學教學

北京師范大學教育學院 劉京莉

《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。

一、基本概念

1.描述統計。

通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。

2.概率的統計定義。

人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:

可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。

例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;

某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?

因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。

3.概率的古典定義。

對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:

某試驗具有以下性質

(1)試驗的結果是有限個(n個)

(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)

如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。

例:擲一顆均勻的骰子,求出現2點的概率。

由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。

又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3

出現偶數點的概率是,即。

概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。

在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。

二、在學習統計與概率的過程中發展學生的能力

統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。

例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:

從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。

三、統計、概率與小學其它內容的聯系

例1

上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。

例2

從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。

例3下面是用扇形統計圖統計的資料

對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。

從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。

總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。

和差問題

已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:

(和-差)÷2=較小數

(和+差)÷2=較大數

例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?

(24+4)÷2

=28÷2

=14 →乙數

(24-4)÷2

=20÷2

=10 →甲數

答:甲數是10,乙數是14。

差倍問題

已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:

兩數差÷倍數差=較小數

例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?

分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:

(40-5×2)÷(3-1)-5

=(40-10)÷2-5

=30÷2-5

=15-5

=10(噸) →第一堆煤的重量

10+40=50(噸) →第二堆煤的重量

答:第一堆煤有10噸,第二堆煤有50噸。

還原問題

已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。

還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。

例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?

分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。

列式:[(19+12)×2-12]×2

=[31×2-12]×2

=[62-12]×2

=50×2

=100(噸)

答:這個倉庫原來有大米100噸。

置換問題

題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。

例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?

分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。

列式:(2000-1880)÷(20-10)

=120÷10

=12(張)→10分一張的張數

100-12=88(張)→20分一張的張數

或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。

盈虧問題(盈不足問題)

題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。

解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:

當一次有餘數,另一次不足時:

每份數=(余數+不足數)÷兩次每份數的差

當兩次都有餘數時:

總份數=(較大余數-較小數)÷兩次每份數的差

當兩次都不足時:

總份數=(較大不足數-較小不足數)÷兩次每份數的差

例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?

分析:由條件可知,這道題屬第一種情況。

列式:(14+4)÷(7-5)

=18÷2

= 9(人)

5×9+14

=45+14

=59(棵)

或:7×9-4

=63-4

=59(棵)

答:這個班有9人,一共有樹苗59棵。

年齡問題

年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。

常用的計算公式是:

成倍時小的年齡=大小年齡之差÷(倍數-1)

幾年前的年齡=小的現年-成倍數時小的年齡

幾年後的年齡=成倍時小的年齡-小的現在年齡

例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?

(54-12)÷(4-1)

=42÷3

=14(歲)→兒子幾年後的年齡

14-12=2(年)→2年後

答:2年後父親的年齡是兒子的4倍。

例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?

(54-12)÷(7-1)

=42÷6

=7(歲)→兒子幾年前的年齡

12-7=5(年)→5年前

答:5年前父親的年齡是兒子的7倍。

例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?

(148×2+4)÷(3+1)

=300÷4

=75(歲)→父親的年齡

148-75=73(歲)→母親的年齡

答:王剛的父親今年75歲,母親今年73歲。

或:(148+2)÷2

=150÷2

=75(歲)

75-2=73(歲)

雞兔問題

已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。

一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:

(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數

(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數

例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?

3k W UEw9I0

R,@ F/|1V7YWd-r0

Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV

'IG\ rf Y E0
(64-2×24)÷(4-2)

=(64-48)÷(4-2)

=16 ÷2

=8(只)→兔的只數

24-8=16(只)→雞的只數

答:籠中的兔有8隻,雞有16隻

鳳凰博客3@8Zp|S5|+U



牛吃草問題(船漏水問題)

若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?

例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?

分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)

=(150-125)÷(10-5)

=25÷5

=5(頭)→可供5頭牛吃一天。

150-10×5

=150-50

=100(頭)→草地上原有的草可供100頭牛吃一天

100÷(10-5)

=100÷5

=20(天)

答:若供10頭牛吃,可以吃20天。

例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?

(100×4-50×6)÷(100-50)

=(400-300)÷(100-50)

=100÷50

=2

400-100×2

=400-200

=200

200÷(7-2)

=200÷5

=40(分)

答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。

公約數、公倍數問題

運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。

例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?

分析:2.5=250厘米

1.75=175厘米

0.75=75厘米

其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。

(250÷25)×(175÷25)×(75÷25)

=10×7×3

=210(塊)

答:正方體的棱長是25厘米,共鋸了210塊。

例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?

分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。

120÷24=5(周)

120÷40=3(周)

答:每個齒輪分別要轉5周、3周。

分數應用題

指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。

分數應用題一般分為三類:

1.求一個數是另一個數的幾分之幾。

2.求一個數的幾分之幾是多少。

3.已知一個數的幾分之幾是多少,求這個數。

其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。

例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?

答:三好學生佔全校學生的。

例2:一堆煤有180噸,運走了。走了多少噸?

180×=80(噸)

答:運走了80噸。

例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?

1800×(1+)

=1800×

=2400(台)

答:今年計劃生產2400台。

例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?

2400×(1-)×(1-)

=2400××

=1200(米)

答:還剩下1200米。

例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?

168÷=840(人)

答:全校有學生840人。

例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?

120÷=120×=180(噸)

答:乙庫存糧180噸。

例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?

8÷(-)

= 8÷

=48(噸)

答:這堆煤原有48噸。

工程問題

它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。

解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:

6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV

P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量

'F5q/f,z5b@y0
工作量÷工作時間=工作效率

鳳凰博客q!q1Nc3E-n`a9[Q$M

工作量÷工作效率=工作時間

鳳凰博客9FA*o d#`7I!l

例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?

N W5l,VjH`|0
鳳凰博客+ZO'R HhI

鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷

=×18

=4(天)

答:(略)。

鳳凰博客1Q0RO&]%owG

例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?

|5W.WuC3p0
鳳凰博客 SX}9q7|f

鳳凰博客UO`8_%F(u8Br

"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD

=1÷

=1(小時)

答:(略)

鳳凰博客o Sj4ON:}2\/a+N

百分數應用題

這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。

例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。

答:發芽率為92%。

1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh

B. 小學數學 概率

3個球都不同,則有(20*19*18)/(3*2*1)=1140種

如果買其中一種,中獎機會為1/(1140)=1/1140,
現在買了3注,則中獎概率為3/1140=1/380

C. 小學數學的基本概念都有哪些

統計概率與小學數學教學

北京師范大學教育學院 劉京莉

《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。

一、基本概念

1.描述統計。

通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。

2.概率的統計定義。

人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:

可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。

例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;

某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?

因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。

3.概率的古典定義。

對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:

某試驗具有以下性質

(1)試驗的結果是有限個(n個)

(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)

如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。

例:擲一顆均勻的骰子,求出現2點的概率。

由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。

又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3

出現偶數點的概率是,即。

概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。

在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。

二、在學習統計與概率的過程中發展學生的能力

統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。

例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:

從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。

三、統計、概率與小學其它內容的聯系

例1

上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。

例2

從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。

例3下面是用扇形統計圖統計的資料

對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。

從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。

總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。

和差問題

已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:

(和-差)÷2=較小數

(和+差)÷2=較大數

例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?

(24+4)÷2

=28÷2

=14 →乙數

(24-4)÷2

=20÷2

=10 →甲數

答:甲數是10,乙數是14。

差倍問題

已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:

兩數差÷倍數差=較小數

例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?

分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:

(40-5×2)÷(3-1)-5

=(40-10)÷2-5

=30÷2-5

=15-5

=10(噸) →第一堆煤的重量

10+40=50(噸) →第二堆煤的重量

答:第一堆煤有10噸,第二堆煤有50噸。

還原問題

已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。

還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。

例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?

分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。

列式:[(19+12)×2-12]×2

=[31×2-12]×2

=[62-12]×2

=50×2

=100(噸)

答:這個倉庫原來有大米100噸。

置換問題

題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。

例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?

分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。

列式:(2000-1880)÷(20-10)

=120÷10

=12(張)→10分一張的張數

100-12=88(張)→20分一張的張數

或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。

盈虧問題(盈不足問題)

題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。

解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:

當一次有餘數,另一次不足時:

每份數=(余數+不足數)÷兩次每份數的差

當兩次都有餘數時:

總份數=(較大余數-較小數)÷兩次每份數的差

當兩次都不足時:

總份數=(較大不足數-較小不足數)÷兩次每份數的差

例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?

分析:由條件可知,這道題屬第一種情況。

列式:(14+4)÷(7-5)

=18÷2

= 9(人)

5×9+14

=45+14

=59(棵)

或:7×9-4

=63-4

=59(棵)

答:這個班有9人,一共有樹苗59棵。

年齡問題

年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。

常用的計算公式是:

成倍時小的年齡=大小年齡之差÷(倍數-1)

幾年前的年齡=小的現年-成倍數時小的年齡

幾年後的年齡=成倍時小的年齡-小的現在年齡

例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?

(54-12)÷(4-1)

=42÷3

=14(歲)→兒子幾年後的年齡

14-12=2(年)→2年後

答:2年後父親的年齡是兒子的4倍。

例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?

(54-12)÷(7-1)

=42÷6

=7(歲)→兒子幾年前的年齡

12-7=5(年)→5年前

答:5年前父親的年齡是兒子的7倍。

例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?

(148×2+4)÷(3+1)

=300÷4

=75(歲)→父親的年齡

148-75=73(歲)→母親的年齡

答:王剛的父親今年75歲,母親今年73歲。

或:(148+2)÷2

=150÷2

=75(歲)

75-2=73(歲)

雞兔問題

已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。

一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:

(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數

(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數

例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?

3k W UEw9I0

R,@ F/|1V7YWd-r0

Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV

'IG\ rf Y E0
(64-2×24)÷(4-2)

=(64-48)÷(4-2)

=16 ÷2

=8(只)→兔的只數

24-8=16(只)→雞的只數

答:籠中的兔有8隻,雞有16隻

鳳凰博客3@8Zp|S5|+U



牛吃草問題(船漏水問題)

若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?

例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?

分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)

=(150-125)÷(10-5)

=25÷5

=5(頭)→可供5頭牛吃一天。

150-10×5

=150-50

=100(頭)→草地上原有的草可供100頭牛吃一天

100÷(10-5)

=100÷5

=20(天)

答:若供10頭牛吃,可以吃20天。

例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?

(100×4-50×6)÷(100-50)

=(400-300)÷(100-50)

=100÷50

=2

400-100×2

=400-200

=200

200÷(7-2)

=200÷5

=40(分)

答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。

公約數、公倍數問題

運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。

例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?

分析:2.5=250厘米

1.75=175厘米

0.75=75厘米

其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。

(250÷25)×(175÷25)×(75÷25)

=10×7×3

=210(塊)

答:正方體的棱長是25厘米,共鋸了210塊。

例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?

分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。

120÷24=5(周)

120÷40=3(周)

答:每個齒輪分別要轉5周、3周。

分數應用題

指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。

分數應用題一般分為三類:

1.求一個數是另一個數的幾分之幾。

2.求一個數的幾分之幾是多少。

3.已知一個數的幾分之幾是多少,求這個數。

其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。

例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?

答:三好學生佔全校學生的。

例2:一堆煤有180噸,運走了。走了多少噸?

180×=80(噸)

答:運走了80噸。

例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?

1800×(1+)

=1800×

=2400(台)

答:今年計劃生產2400台。

例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?

2400×(1-)×(1-)

=2400××

=1200(米)

答:還剩下1200米。

例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?

168÷=840(人)

答:全校有學生840人。

例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?

120÷=120×=180(噸)

答:乙庫存糧180噸。

例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?

8÷(-)

= 8÷

=48(噸)

答:這堆煤原有48噸。

工程問題

它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。

解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:

6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV

P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量

'F5q/f,z5b@y0
工作量÷工作時間=工作效率

鳳凰博客q!q1Nc3E-n`a9[Q$M

工作量÷工作效率=工作時間

鳳凰博客9FA*o d#`7I!l

例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?

N W5l,VjH`|0
鳳凰博客+ZO'R HhI

鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷

=×18

=4(天)

答:(略)。

鳳凰博客1Q0RO&]%owG

例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?

|5W.WuC3p0
鳳凰博客 SX}9q7|f

鳳凰博客UO`8_%F(u8Br

"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD

=1÷

=1(小時)

答:(略)

鳳凰博客o Sj4ON:}2\/a+N

百分數應用題

這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。

例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。

答:發芽率為92%。

D. 小學數學基本概念大全

統計概率與小學數學教學

北京師范大學教育學院 劉京莉

《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。

一、基本概念

1.描述統計。

通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。

2.概率的統計定義。

人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:

可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。

例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;

某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?

因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。

3.概率的古典定義。

對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:

某試驗具有以下性質

(1)試驗的結果是有限個(n個)

(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)

如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。

例:擲一顆均勻的骰子,求出現2點的概率。

由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。

又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3

出現偶數點的概率是,即。

概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。

在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。

二、在學習統計與概率的過程中發展學生的能力

統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。

例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:

從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。

三、統計、概率與小學其它內容的聯系

例1

上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。

例2

從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。

例3下面是用扇形統計圖統計的資料

對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。

從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。

總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。

和差問題

已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:

(和-差)÷2=較小數

(和+差)÷2=較大數

例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?

(24+4)÷2

=28÷2

=14 →乙數

(24-4)÷2

=20÷2

=10 →甲數

答:甲數是10,乙數是14。

差倍問題

已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:

兩數差÷倍數差=較小數

例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?

分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:

(40-5×2)÷(3-1)-5

=(40-10)÷2-5

=30÷2-5

=15-5

=10(噸) →第一堆煤的重量

10+40=50(噸) →第二堆煤的重量

答:第一堆煤有10噸,第二堆煤有50噸。

還原問題

已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。

還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。

例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?

分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。

列式:[(19+12)×2-12]×2

=[31×2-12]×2

=[62-12]×2

=50×2

=100(噸)

答:這個倉庫原來有大米100噸。

置換問題

題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。

例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?

分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。

列式:(2000-1880)÷(20-10)

=120÷10

=12(張)→10分一張的張數

100-12=88(張)→20分一張的張數

或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。

盈虧問題(盈不足問題)

題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。

解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:

當一次有餘數,另一次不足時:

每份數=(余數+不足數)÷兩次每份數的差

當兩次都有餘數時:

總份數=(較大余數-較小數)÷兩次每份數的差

當兩次都不足時:

總份數=(較大不足數-較小不足數)÷兩次每份數的差

例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?

分析:由條件可知,這道題屬第一種情況。

列式:(14+4)÷(7-5)

=18÷2

= 9(人)

5×9+14

=45+14

=59(棵)

或:7×9-4

=63-4

=59(棵)

答:這個班有9人,一共有樹苗59棵。

年齡問題

年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。

常用的計算公式是:

成倍時小的年齡=大小年齡之差÷(倍數-1)

幾年前的年齡=小的現年-成倍數時小的年齡

幾年後的年齡=成倍時小的年齡-小的現在年齡

例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?

(54-12)÷(4-1)

=42÷3

=14(歲)→兒子幾年後的年齡

14-12=2(年)→2年後

答:2年後父親的年齡是兒子的4倍。

例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?

(54-12)÷(7-1)

=42÷6

=7(歲)→兒子幾年前的年齡

12-7=5(年)→5年前

答:5年前父親的年齡是兒子的7倍。

例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?

(148×2+4)÷(3+1)

=300÷4

=75(歲)→父親的年齡

148-75=73(歲)→母親的年齡

答:王剛的父親今年75歲,母親今年73歲。

或:(148+2)÷2

=150÷2

=75(歲)

75-2=73(歲)

雞兔問題

已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。

一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:

(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數

(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數

例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?

3k W UEw9I0

R,@ F/|1V7YWd-r0

Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV

'IG\ rf Y E0
(64-2×24)÷(4-2)

=(64-48)÷(4-2)

=16 ÷2

=8(只)→兔的只數

24-8=16(只)→雞的只數

答:籠中的兔有8隻,雞有16隻

鳳凰博客3@8Zp|S5|+U



牛吃草問題(船漏水問題)

若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?

例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?

分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)

=(150-125)÷(10-5)

=25÷5

=5(頭)→可供5頭牛吃一天。

150-10×5

=150-50

=100(頭)→草地上原有的草可供100頭牛吃一天

100÷(10-5)

=100÷5

=20(天)

答:若供10頭牛吃,可以吃20天。

例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?

(100×4-50×6)÷(100-50)

=(400-300)÷(100-50)

=100÷50

=2

400-100×2

=400-200

=200

200÷(7-2)

=200÷5

=40(分)

答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。

公約數、公倍數問題

運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。

例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?

分析:2.5=250厘米

1.75=175厘米

0.75=75厘米

其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。

(250÷25)×(175÷25)×(75÷25)

=10×7×3

=210(塊)

答:正方體的棱長是25厘米,共鋸了210塊。

例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?

分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。

120÷24=5(周)

120÷40=3(周)

答:每個齒輪分別要轉5周、3周。

分數應用題

指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。

分數應用題一般分為三類:

1.求一個數是另一個數的幾分之幾。

2.求一個數的幾分之幾是多少。

3.已知一個數的幾分之幾是多少,求這個數。

其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。

例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?

答:三好學生佔全校學生的。

例2:一堆煤有180噸,運走了。走了多少噸?

180×=80(噸)

答:運走了80噸。

例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?

1800×(1+)

=1800×

=2400(台)

答:今年計劃生產2400台。

例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?

2400×(1-)×(1-)

=2400××

=1200(米)

答:還剩下1200米。

例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?

168÷=840(人)

答:全校有學生840人。

例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?

120÷=120×=180(噸)

答:乙庫存糧180噸。

例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?

8÷(-)

= 8÷

=48(噸)

答:這堆煤原有48噸。

工程問題

它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。

解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:

6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV

P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量

'F5q/f,z5b@y0
工作量÷工作時間=工作效率

鳳凰博客q!q1Nc3E-n`a9[Q$M

工作量÷工作效率=工作時間

鳳凰博客9FA*o d#`7I!l

例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?

N W5l,VjH`|0
鳳凰博客+ZO'R HhI

鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷

=×18

=4(天)

答:(略)。

鳳凰博客1Q0RO&]%owG

例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?

|5W.WuC3p0
鳳凰博客 SX}9q7|f

鳳凰博客UO`8_%F(u8Br

"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD

=1÷

=1(小時)

答:(略)

鳳凰博客o Sj4ON:}2\/a+N

百分數應用題

這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。

例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。

答:發芽率為92%。

1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh

E. 談談為什麼要學習小學數學教育概論

您好,一點通網校回答您的問題:

學習計劃中一門,專業的需要。

F. 小學數學原理

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

G. 小學,數學概率

都是三分之一,命題關鍵在於放回去,如果第一次拿的黑筆不放回去,第二次拿到黑筆的概率就是0,有不懂的可以問我

H. 小學數學新課標的主要內容有哪些

2014小學數學新課標內容
一、前言
《全日制義務教育數學課程標准(修定稿)》(以下簡稱《標准》)是針對我國義務教育階段的數學教育制定的。根據《義務教育法》.《基礎教育課程改革綱要(試行)》的要求,《標准》以全面推進素質教育,培養學生的創新精神和實踐能力為宗旨,明確數學課程的性質和地位,闡述數學課程的基本理念和設計思路,提出數學課程目標與內容標准,並對課程實施(教學.評價.教材編寫)提出建議。
《標准》提出的數學課程理念和目標對義務教育階段的數學課程與教學具有指導作用,教學內容的選擇和教學活動的組織應當遵循這些基本理念和目標。《標准》規定的課程目標和內容標準是義務教育階段的每一個學生應當達到的基本要求。《標准》是教材編寫.教學.評估.和考試命題的依據。在實施過程中,應當遵照《標准》的要求,充分考慮學生發展和在學習過程中表現出的個性差異,因材施教。為使教師更好地理解和把握有關的目標和內容,以利於教學活動的設計和組織,《標准》提供了一些有針對性的案例,供教師在實施過程中參考。
二、設計理念
數學是研究數量關系和空間形式的科學。數學與人類的活動息息相關,特別是隨著計算機技術的飛速發展,數學更加廣泛應用於社會生產和日常生活的各個方面。數學作為對客觀現象抽象概括而逐漸形成的科學語言與工具,不僅是自然科學和技術科學的基礎,而且在社會科學與人文科學中發揮著越來越大的作用。數學是人類文化的重要組成部分,數學素養是現代社會每一個公民所必備的基本素養。數學教育作為促進學生全面發展教育的重要組成部分,一方面要使學生掌握現代生活和學習中所需要的數學知識與技能,一方面要充分發揮數學在培養人的科學推理和創新思維方面的功能。
義務教育階段的數學課程具有公共基礎的地位,要著眼於學生的整體素質的提高,促進學生全面.持續.和諧發展。課程設計要滿足學生未來生活.工作和學習的需要,使學生掌握必需的數學基礎知識和基本技能,發展學生抽象思維和推理能力,培養應用意識和創新意識,在情感.態度與價值觀等方面都要得到發展;要符合數學科學本身的特點.體現數學科學的精神實質;要符合學生的認知規律和心理特徵.有利於激發學生的學習興趣;要在呈現作為知識與技能的數學結果的同時,重視學生已有的經驗,讓學生體驗從實際背景中抽象出數學問題.構建數學模型.得到結果.解決問題的過程。為此,制定了《標准》的基本理念與設計思路。
基本理念
數學課程應致力於實現義務教育階段的培養目標,體現基礎性.普及性和發展性。義務教育階段的數學課程要面向全體學生,適應學生個性發展的需要,使得:人人都能獲得良好的數學教育,不同的人在數學上得到不同的發展。課程內容既要反映社會的需要.數學學科的特徵,也要符合學生的認知規律。它不僅包括數學的結論,也應包括數學結論的形成過程和數學思想方法。課程內容要貼近學生的生活,有利於學生經驗.思考與探索。內容的組織要處理好過程與結果的關系,直觀與抽象的關系,生活化.情境化與知識系統性的關系。課程內容的呈現應注意層次化和多樣化,以滿足學生的不同學習需求。數學活動是師生共同參與.交往互動的過程。有效的數學教學活動是教師教與學生學的統一,學生是數學學習的主體,教師是數學學習的組織者與引導者。數學教學活動必須激發學生興趣,調動學生積極性,引發學生思考;要注重培養學生良好的學習習慣.掌握有效的學習方法。學生學習應當是一個生動活潑的.主動地和富有個性的過程,除接受學習外,動手實踐.自主探索與合作交流也是數學學習的重要方式,學生應當有足夠的時間和空間經歷觀察.實驗.猜測.驗證.推理.計算.證明等活動過程。教師教學應該以學生的認知發展水平和益友的經驗為基礎,面向全體學生,注重啟發式和因材施教,為學生提供充分的數學活動的機會。要處理好教師講授和學生自主學習的關系,通過有效的措施,啟發學生思考,引導學生自主探索,鼓勵學生合作交流,使學生真正理解和掌握基本的數學知識與技能.數學思想和方法,得到必要的數學思維訓練,獲得廣泛的數學活動經驗。學習評價的主要目的是為了全面了解學生數學學習的過程和結果,激勵學生的學習和改進教師的教學。應建立評價目標多元.評價方法多樣的評價體系。評價要關注學生學習的結果,也要關注學習的過程;要關注學生數學學習的水平,也要關注學生在數學活動中所表現出來的情感與態度,幫助學生認識自我,盡力信心。信息技術的發展對數學教育的價值.目標.內容以及教學方式產生了很大的影響。數學課程的設計與實施應根據實際情況合理地運用現代信息技術,要注意信息技術與課程內容的有機結合。要充分考慮計算器.計算機對數學學習內容和方式的影響以及所具有的優勢,大力開發並向學生提供豐富的學習資源,把現代信息技術作為學生學習數學和解決問題的強有力工具,致力於改變學生的學習方式,使學生樂意並有更多的精力投入到現實的.探索性的數學活動中去。
三、設計思路
(一)關於學段
為了體現義務教育數學課程的整體性,《標准》統籌考慮了九年的課程內容。同時,根據兒童發展的生理和心理特徵,將九年的學習時間具體劃分為三個學段:第一學段(1-3年級).第二學段(4-6年級).第三學段(7-9年級)。設計思路
(二)關於目標《標准》提出義務教育階段數學課程的總體目標和分學段目標,並從知識技能.數學思考.問題解決.情感態度等四個方面具體闡述。《標准》用了「了解(認識).理解.掌握.運用」等認知目標動詞表述知識技能目標的不同水平。一句「基本理念」,數學學習必須注重過程,標《准》使用「經歷(感受).體驗(體會).探索」等認知過程動詞表述學習活動的不同程度。使用這些動詞進行表述是為了更准確地刻畫上述四個方面的具體目標。在《標准》中,這些動詞的具體含義如下。了解(了解認識):從具體事例中知道或舉例說明對象的有關特徵;根據對象的特徵,從具體情景中辨認或者舉例說明對象。理解:描述對象的特徵和由來,闡述此對象與相關對象之間的區別和聯系。掌握:在理解的基礎上,把對象用於新的情境。運用:用已掌握的對象,選擇或創造適當的方法。經歷(感受):在特定的數學活動中,獲得一些感性認識。體驗(體會):參與特定的數學活動,認識或驗證對象的特徵,獲得經驗():驗。探索:獨立或與他人合作參與特定的數學活動,發現對象的特徵及其與相關對象的區別和聯系,獲得理性認識。
(三)關於學習內容之一:數與代數
在各個教學段中,《標准》安排了四個方面的內容:「數與代數」,「圖形與幾何」,「統計與概率」,「綜合與實踐」。數與代數「數與代數」的主要內容有:數的認識,數的表示,數的大小,數的運算,數量的估計;字母表示數,代數式及其運算;方程.方程組.不等式.函數等。
在「數與代數」的教學中,應幫助學生建立數感和符號意識,發展運算能力,樹立模型思想。
數感主要是指關於數與數量表示.數量大小比較.數量和運算結果的估計等方面的直觀感覺。建立「數感」有助於學生理解現實生活中數的意義,理解或表述具體情景中的數量關系。
符號意識主要是指能夠理解並且運用符號表示數.數量關系和變化規律;知道使用符號可以進行一般性的運算和推理。建立「符號意識」有助於學生理解符號的使用是數學表達和進行數學思考的重要形式。
運算是「數與代數」的重要內容,運算是基於法則進行的,通常運算滿足一定的運算律。學習這些內容有助於理解運算律,培養運算能力。
模型也是「數與代數」的重要內容,方程.方程組.不等式.函數等都是基本的數學模型。從現實生活或者具體情境中抽象出數學問題,是建立模型的出發點;用符號表示數量關系和變化規律,是建立模型的過程;求出模型的結果並討論結果的意義,是求解模型的過程。這些內容有助於培養學生的學習興趣和應用意識,體會數學建模的過程,樹立模型思想。
關於學習內容之二:圖形與幾何
圖形與幾何「圖形與幾何」主要內容有:空間和平面的基本徒刑,圖形的性質和分類;平面圖形基本性質的證明;圖形的平移.旋轉.軸對稱.相似和投影;運用坐標描述圖形的位置和圖形的運動。
在「圖形與幾何」的學習中,應幫助學生建立空間觀念。空間觀念是指根據物體特徵抽象出幾何圖形,根據幾何圖形想像出所描述的實際物體;能夠想像出空間物體的方位和相互之間的位置關系;根據語言描述或通過想像畫出圖形等。
直觀與推理是「圖形與幾何」學習中的兩個重要方面。幾何直觀是指利用圖形描述幾何或者其他數學問題.探索解決問題的思路.預測結果。在許多情況下,藉助幾何直觀可以把復雜的數學問題變得簡明.形象。幾何直觀不僅在「圖形與幾何」的學習中發揮著不可替代的作用,並且貫穿在整個數學學習中。
推理是數學的基本思維方式,是人們學習和生活中經常使用的思維方式,也因此,與直觀一樣,推理也貫穿在整個數學學習中。推力一般包括合情推理和演繹推理。合情推理是從已有的事實出發,憑借經驗和直覺,通過歸納和類比等推測某些結果,是由特殊到一般的過程。演繹推理是從已有的事實(包括定義.公理.定理等)出發,按照規定的法則(包括邏輯和運算)驗證結論,是由一般到特殊的過程。在解決問題的過程中,合情推力有助於探索解決問題的思路.發現結論;演繹推理用於驗證結論的正確性。
關於學習內容之三:統計與概率
統計與概率「統計與概率」主要內容有:收集.整理和描述數據,包括簡單抽樣.記錄調查數據.描繪統計圖表等;處理數據,包括計算平均數.中位數.眾數.極差.方差等;從數據中提取信息並進行簡單的判斷。簡單隨機事件及其發生的概率。
在「統計與概率」中,幫助學生逐漸建立起數據分析的觀念是重要的。數據分析包括:了解在現實生活中有許多問題應當先做調查研究.收集數據,通過分析作出判斷,體會數據中是蘊涵著信息的;體驗數據是隨機的和有規律的,一方面對於同樣的事情每次收集到的數據可能會是不同的,另一方面只要有足夠的數據就可能從中發現規律;了解對於同樣的數據可以有多種分析的方法,需要根據問題的背景選擇合適的方法。在概率的學習中,所涉及的隨機現象都基於簡單事件:所有可能發生的結果是有限的.每個結果發生的可能性是相同的。「統計與概率」的內容與現實生活聯系密切,必須結合具體案例組織教學。
關於學習內容之四:綜合與實踐
綜合與實踐「綜合與實踐」是以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。針對問題情景,學生藉助所學的知識和生活經驗,獨立思考或與他人合作,經歷發現問題和提出問題.分析問題和解決問題的全過程,感悟數學各部分內容之間.數學與生活實際之間及其他學科的聯系,激發學生學習數學的興趣,加深學生對所學數學內容的理解。
這種類型的課程對於培養學生的抽象能力和邏輯思維能力.對於培養學生的創新意識和應用能力是有益處的,還有利於培養學生的合作精神。合理地設計課程內容以及教學方法是達到教學目標的關鍵,既要考慮學生的直接經驗.能夠啟發學生思考,也要考慮問題的數學實質.培養學生的數學素養。這種類型的課程對教師是一種挑戰,教師應努力把握住問題的本質,能夠引導學生思考,同時,教師又應努力幫助學生整理清楚自己的思路,指導學生以不同的形式展示自己的成果或報告自己的工作。這種類型的課程應當貫徹「少而精」的原則,保證每學期至少一次。它可以在課堂上完成,也可以將課內外相結合。
關於實施建議
為了保證《標准》的順利實施,《標准》分別對教學活動.學習評價,以及教材編寫.課程資源的開發與利用等方面提出了實施建議;同時,為了更好地說明課程內容,《標准》在相關部分提供了一些案例。以上內容供有關人員參考.借鑒。
《課標》修改稿---總體目標(1)通過義務教育階段的數學學習,學生能夠:1.獲得適應社會生活和進一步發展所必須的數學的基本知識.基本技能.基本思想.基本活動經驗。2.體會數學知識之間.數學與其他學科之間.數學與生活之間的聯系,運用數學的思維方式進行思考,增強發現問題和提出問題的能力.分析問題和解決問題的能力。3.了解數學的價值,提高學習數學的興趣,增強學好數學的信心,養成良好的學習習慣,具有初步的創新意識和實事求是的科學態度。
《課標》修改稿---總體目標(2)知識與技能:*經歷數與代數的抽象運算與建模等過程,掌握數與代數的基礎知識和基本技能。*經歷圖形的抽象.分類.性質探討.運動.位置確定等過程,掌握圖形與幾何的基礎知識和基本技能。*經歷在實際問題中收集和處理數據.利用數據分析問題.獲得信息的過程,掌握統計與概率的基礎知識和基本技能。*參與綜合實踐活動,積累綜合運用數學知識.技能和方法解決簡單實際問題的數學活動經驗。
數學思考
*體會代數表示運算和幾何直觀等方面的作用,初步建立數感.符號意識和空間觀念,發展形象思維和抽象思維。*了解數據和隨機現象,體會統計方法的意義,發展數據分析和隨機觀念。*在參與觀察.實驗.猜想.證明.綜合實踐等數學活動中,發展合情推理和演繹推理能力,清晰地表達自己的想法。*學會獨立思考,體會數學的基本思想和思維方式。
問題解決
*初步學會從數學的角度發現問題和提出問題,綜合運用數學知識和其他知識解決簡單的數學問題,發展應用意識和實踐能力。*獲得分析問題和解決問題的一些基本方法,體驗解決問題方法的多樣性,發展創新意識。
情感態度
*學會與他人合作.交流。*初步形成評價與反思的意識。*積極參與數學活動,對數學有好奇心和求知慾。*體驗獲得成功的樂趣,鍛煉克服困難的意志,建立學好數學的自信心。*體會數學的特點,了解數學的價值。*養成勇於質疑的習慣,形成實事求是的態度。
《課標》修改稿---總體目標(3)總體目標的四個方面,不是互相獨立和割裂的,而是一個密切聯系.相互交融的有機整體。課程組織和教學活動中,應同時兼顧四個方面的目標。這些目標的實現,使學生受到良好數學教育的標志,它對學生的全面.持續.和諧發展,有著重要的意義。數學思考.問題解決.情感態度的發展離不開知識技能的學習,知識技能的學習必須有利於其他三個目標的實現。
《課標》修改稿---學段目標
第一學段(1-3年級)
知識技能
1.經歷從日常生活中抽象出數的過程,理解常見的量;了解四則運算的意義,掌握必要的運算技能。了解估算。
2.經歷從實際物體中抽象出簡單幾何體和平面圖形的過程,了解一些簡單幾何體和常見的平面圖形;感受平移.旋轉.軸對稱,認識物體的相對位置。掌握初步的測量.識圖和畫圖的技能。
3.經歷數據的收集和整理的過程,了解簡單的數據處理方法。
數學思考
1.能夠理解身邊有關數字的信息,會用數(合適的量綱)描述現實生活中的簡單現象。發展數感。
2.再討論簡單物體性質的過程中,發展空間觀念。
3.在教師的指導下,能對簡單的調查數據歸類。
4.會思考問題,能表達自己的想法;在討論問題過程中,能夠初步辨別結論的共同點和不同點。
問題解決
1.能在教師的指導下,從日常生活中發現和提出簡單的數學問題。
2.獲得分析問題和解決問題的一些基本方法,知道同一問題可以有不同的解決方法。
3.體驗與他人合作交流.解決問題的過程。
4.初步學會整理解決問題的過程和結果。
情感態度
1.對身邊與數學有關的事務(現象)有好奇心,能夠參與數學活動。
2.在他人幫助下,體驗克服數學活動中的困難的過程。
3.了解數學可以描述生活中的一些現象,感受數學與生活有密切聯系。
4.在解決問題的過程中,養成詢問「為什麼」的習慣。
第二學段(4-6年級)
知識技能
1.體驗從具體情境中抽象出數的過程;理解分數.百分數的意義,了解負數,掌握必要的運算技能;理解估算的意義;掌握用方程表示簡單的數量關系.解簡單方程的方法。
2.探索一些圖形的形狀.大小和位置關系,了解一些幾何體和平面圖形的基本特徵;體驗圖形的簡單運動,了解確定物體位置的方法,掌握測量.識圖和畫圖的基本方法。
3.歷數據的收集.理和分析的過程,握一些簡單的數據處理技能;經整掌體驗事件發生的等可能性,掌握簡單的計算等可能性的方法。
數學思考
1.能夠對生活中的數字信息作出合理的解釋,會用數(合適的量綱).字母和圖表描述生活中的簡單問題;初步形成數感,發展符號意識。
2.在探索簡單圖形的性質.運動現象的過程中,初步形成空間觀念。
3.能根據解決問題的需要,收集與表示數據,歸納出有用的信息
4.能進行有條理的思考,能清楚地表達思考的過程與結果;在與他人交流過程中,能夠進行簡單的辯論。
問題解決
1.能從社會生活中發現並提出簡單的數學問題。
2.能探索分析問題.解決問題的有效方法,了解解決問題方法的多樣性。
3.能藉助於數字計算器解決簡單的計算問題。
4.初步學會與他人合作解決問題,嘗試解釋自己的思考過程。
5.能初步判斷結果的合理性,經歷回顧與分析解決問題過程的活動。
情感態度
1.願意了解社會生活中與數學相關的信息,主動參與數學學習活動。
2.在他人的鼓勵和引導下,嘗試克服數學活動中遇到的困難,相信自己能夠學好數學。
3.在運用數學解決問題的過程中,體驗數學的價值。
4.初步養成樂於思考.實事求是.勇於質疑等良好品質。

第三學段(7-9年級)
知識技能
1.體驗從具體情境中抽象出數學符號的過程;理解有理數.實數.代數式.方程.不等式.函數。掌握必要的運算(包括估算)技能;探索具體問題中的數量關系和變化規律,掌握用代數.方程.不等式進行表述的方式。
2.探索並理解圖形的基本性質.位置關系和平移.旋轉.軸對稱等。掌握三角形.四邊形的基本性質(包括判定),掌握基本的證明方法。
3.體驗數據收集.處理.分析和推斷過程,理解抽樣方法;體驗用樣本估計總體的過程,理解頻率。理解計算簡單事件概率的方法。數學思考
1.能從具體情境中抽象出數量關系,並且能用代數式.方程.不等式.函數等表述,體會模型的思想。
2.在研究圖形運動現象.確定物體位置的過程中,進一步發展空間觀念,初步建立幾何直觀。
3.初步建立數據觀念,理解通過數據進行統計推斷的合理性。
4.步形成通過實例探索數學結論的思維方式。多種形式的數學活動中,初在發展合情推理與演繹推理的能力。
問題解決
1.嘗試在具體的情境中,從數學的角度發現問題和提出問題。
2.試從不同角度尋求分析問題和解決問題的方法,解不同方法的差異。嘗了
3.在與他人合作和交流過程中,能較好地理解他人的思考方法和結論。
4.在表述自己的想法時,能針對他人所提的問題進行反思。
情感態度
1.願意談論某些數學話題,能夠在數學學習活動中發揮一定的作用。
2.體驗獨立克服困難.解決數學過程的過程,有克服困難的勇氣,具備學好數學的信心。
3.在運用數學表達現實.解決問題的過程中,認識數學抽象.嚴謹和應用廣泛的特點,體會數學的價值。
4.勇於發表自己的觀點,質疑他人的觀點,養成良好的學習習慣。

熱點內容
在機場的英語 發布:2025-08-05 12:18:42 瀏覽:561
數學2017全國卷文科 發布:2025-08-05 11:25:28 瀏覽:147
2017年教師師德總結 發布:2025-08-05 11:19:05 瀏覽:765
鬼步小步教學 發布:2025-08-05 10:06:17 瀏覽:127
小程序模板教育 發布:2025-08-05 09:51:37 瀏覽:190
教育系統師德教育月活動總結 發布:2025-08-05 07:54:40 瀏覽:632
為什麼視頻是黑的 發布:2025-08-05 07:05:02 瀏覽:957
數學六年級上冊小狀元答案 發布:2025-08-05 06:31:13 瀏覽:281
火鍋雞的歷史 發布:2025-08-05 06:06:24 瀏覽:605
教育咨詢經營范圍 發布:2025-08-05 03:05:28 瀏覽:580